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Motion of Small Solid Particles in a Viscous Fluid
Enclosed in a Cavity

L. Hedhili, A. Sellier, L. Elasmi and F. Feuillebois

Abstract: The motion of a solid particle embedded in a viscous fluid in a closed
container requires a precise account of wall effects when in creeping flow. The
boundary integral method, which amounts to solving a Fredholm integral equation
for the stress on the particle and walls, is used here. The accuracy of the method is
improved by using curvilinear six-node triangular boundary elements, the size of
which is specially adapted to the particle shape and position with respect to walls.
The method is applied to resolve the case of a moving particle in a parallelepiped
container. It is validated by comparing with earlier analytical results for a sphere
interacting with two parallel or perpendicular walls and with numerical results for
a sphere in the center of a cubic container. Results are then provided for a spherical
and an ellipsoidal particle, both either with imposed motion or settling in a cubic
container.

Keywords: Stokes flow, wall-particle interactions, cubic cavity, sedimentation,
Green tensor, boundary-integral equations.

1 Introduction

The motion of small solid particles in a viscous fluid enclosed in a cavity is of
interest for various applications at microscales, such as microfluidic devices, lab-
oratories on chips, biology (e.g. particles in lungs and in blood vessels). At these
scales, the Reynolds number based on the particle size a and characteristic velocity
V relative to the fluid is usually low compared with unity: Re = aV/ν � 1, where
ν is the kinematic viscosity. Then the unsteady Navier-Stokes equations for the
fluid motion simplify in the first approximation Re→ 0 to the steady Stokes equa-
tions for inertialess fluid motion. Solutions of these equations have been the topic
of a large body of literature since the seminal work of Stokes (1851). The Green
function of Stokes equations in unbounded fluid, also called the Stokeslet after
Hancock (1953), is the flow field due to a point force applied to the viscous fluid.
The Stokeslet fluid velocity decays as the inverse of the distance to the point force,
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so that all hydrodynamic interactions are long-ranged. As a consequence, all walls
surrounding the fluid have a significant influence. When the whole fluid is enclosed
in a cavity, all walls may then widely modify the flow field. This is the incentive for
the present paper. Another peculiar property of Stokes equations is the lubrication
effect: when a particle approaches a wall so that the gap becomes small compared
with the particle dimension, expelling the viscous fluid requires a force which in-
creases like the inverse of the gap. The difficulty then is to calculate accurately the
large variations in stress in the gap. The literature is huge, even when restricting
the focus to wall effects in Stokes flow. Thanks to the linearity of Stokes equations,
a number of analytical - exact or even approximate - solutions exist. Many such
solutions are provided in textbooks and review articles (e.g. Berker (1963); Hap-
pel and Brenner (1991); Kim and Karrila (1991); Feuillebois (1989)). Only a few
landmarks will be recalled here. Lorentz (1897), then Faxen (1924) provided ap-
proximate solutions for the force on a spherical particle at some distance from one
and two walls. The Green function of Stokes equations in a fluid domain limited by
a plane wall was obtained later by Blake (1971). Analytical solutions for the case
of a sphere near a wall were obtained by the method of bispherical coordinates.
Various results may be found in Brenner (1961); Maude (1961); Dean and O’Neill
(1963); O’Neill (1964, 1967, 1968); Cooley and O’Neill (1969); O’Neill (1969).
More recently, it was proven that this method may provide accurate results even for
a small gap between a sphere and a plane wall (see Chaoui and Feuillebois (2003);
Pasol, Chaoui, Yahiaoui, and Feuillebois (2005); Pasol, Sellier, and Feuillebois
(2006)). A review of these recent papers is given in Pasol, Sellier, and Feuillebois
(2009). The Green function of Stokes equations in presence of parallel walls, al-
beit more complicated, was found in different forms by Vasseur and Cox (1976)
(Sec. 3), Liron and Mochon (1976) and Jones (2004). Results for a sphere interact-
ing with two perpendicular walls, or more generally with a wedge, were obtained
by Sano and Hasimoto (1976, 1977); Sano (1978). Results for a cylindrical con-
tainer exist, either when open, starting with the early work of Faxen (1922-1923),
or closed at both ends. The Green function for a point force located on the cylinder
axis in this case was found by Blake (1979) (see also Sano (1987)). In the frame
of analytical or semi-analytical methods, the multipoles method has the advantage
of providing results for several interacting spheres (see Cichocki, Felderhof, Hin-
sen, Wajnryb, and Bławzdziewicz (1994)), even in the presence of two parallel
walls (see Bhattacharya, Bławzdziewicz, and Wajnryb (2005)). A good review of
the method is presented in Ekiel-Jeżewska and Wajnryb (2009). By comparison,
works concerned with a closed container are relatively less numerous. A spherical
container can be considered simply as another spherical particle in the calculation.
Thus, the bispherical coordinates method may be applied (see Jones (2009)). By
also considering a spherical container as a sphere among other ones, the interac-
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tions of two spheres in a spherical container were taken into account by Beenakker
and Mazur (1985). They used an earlier method akin to the multipoles method, al-
beit more complicated. Therefore, this method could practically only provide a few
terms of asymptotic expansions of particle mobilities for large distances compared
with a particle radius. The case of a closed rectangular container was considered
by Shankar (2007) who obtained solutions as series for lid driven flows. However,
the Green function for the rectangular container is still too difficult to tackle, to our
knowledge. When the geometry becomes increasingly complicated, the analytical
or semi-analytical solutions become increasingly cumbersome and eventually not
feasible. Numerical solutions are then appropriate. General numerical methods
(finite elements method, fine volumes method, finite differences) may be applied
to Stokes equations, like for the more general Navier-Stokes equations. But since
Stokes equations are linear, it proves more efficient to exploit this property by us-
ing analytical-numerical types of solutions. For instance, for a sphere moving along
the axis of a cylindrical container close at both ends, Lecoq, Masmoudi, Anthore,
and Feuillebois (2007) used solutions of Stokes equations as series adapted to the
cylindrical geometry and applied the no-slip condition on the moving sphere in the
sense of least squares. In three dimensions, various analytical-numerical methods
use distributions of Stokeslets. For instance, the method of fundamental solution
(see Debbech, Elasmi, and Feuillebois (2010) and references therein; the method
in this context is also called the singularity method) consists in expressing the flow
field in terms of Stokeslets and its derivatives positioned at chosen points outside
of the fluid domain. But the most widely used method based on the Green func-
tion is the boundary integral method, probably initiated by Youngren and Acrivos
(1975, 1976) and used in a number of papers even since. The method consists in
distributing Stokeslets on the particles surfaces and adjusting their intensities so
as to enforce the proper boundary conditions on surfaces. When in presence of
walls with simple geometries, it is often more efficient to use the appropriate Green
function which satisfies automatically the boundary condition on walls (e.g. Blake
(1971) Green function for one wall and Jones (2004) for two parallel plane walls);
this technique was applied in Pasol and Sellier (2006) to determine the motion of
a two-particle cluster between parallel walls. In the case of a closed cavity of any
shape, the Green function is unknown, except for a spherical cavity (see Sellier
(2008)). It is then necessary to distribute Stokeslets on all surfaces, that is on par-
ticles and on the walls of the cavity. As compared with the classical numerical
methods quoted above (finite elements, etc.), only surfaces have to be meshed here.
This restriction provides a tremendous gain in rapidity and also improved accuracy
over the classical methods in which the whole fluid domain has to be meshed. This
is here the incentive for using the boundary integral method. The refinements pro-
posed in the present paper aim at increasing the precision of this method, in particu-
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lar for close surfaces. First, the seldom used 6-node curvilinear triangular boundary
elements are prefered. Then, because of lubrication, it appears necessary to refine
and adapt the mesh in the gap between a particle and the wall, so as to describe with
sufficient accuracy the rapidly varying stresses which apply on the surfaces in this
region. The improvements provided by these refinements are illustrated on the case
of particles moving in a rectangular cavity. This type of container is ubiquitous in
man-made applications. The paper is organized as follows. First the assumptions
and relevant boundary integral formulation are presented in §2.Then, the proposed
numerical strategy and carefully selected benchmarks are addressed in §3. Sec-
tion 4 is devoted to numerical results, both for spherical and ellipsoidal particles.
Some results are compared with previous works and with those obtained with a
commercial finite elements software (Comsol). Finally conclusions are drawn in
§5.

2 Governing problem and proposed boundary formulation

This section first presents the assumptions and addressed problems. It then intro-
duces the boundary formulation and associated boundary-integral equations to be
solved.

2.1 Assumptions and addressed problems

Consider, as depicted in Figure 1, a solid particle P with center of mass O1, uni-
form density ρs, volume V and boundary S. The particle shape should be smooth,
but otherwise may in principle be arbitrary.

The particle is immersed in a Newtonian fluid with uniform viscosity µ > 0 and
density ρ > 0 confined in a closed cavity with surface Σ. A Cartesian coordinates
system (O,x1,x2,x3) is attached to the cavity. On the fluid boundary S∪Σ, a unit
normal vector n points into the fluid domain D . The particle is submitted to a
uniform gravity field g and moves as a rigid body with a translational velocity U
(the velocity of O1) and an angular velocity ±Ω. The fluid pressure is written as
p+ρg.x, where p is the dynamic pressure and x a position vector, and its velocity
is u (with typical magnitude V ). Let the particle length scale be a (for a sphere, we
take its radius). The particle is small enough for the Reynolds number Re = ρVa/µ

to be low as compared with unity. In the first approximation, fluid inertia may be
neglected and the flow (u, p) is described by the steady Stokes equations:

µ∇
2u = ∇p , ∇ ·u = 0 in D . (1)

The no-slip boundary condition for the velocity applies on each solid surface:

u = U+±Ω∧ r on S , u = 0 on Σ , (2)
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Figure 1: A moving solid particle P in a motionless cavity Σ.

where r is a position vector originating from O1. The flow (u, p) with stress tensor
±σ exerts on the particle a force F and a torque T (about O1) given by

F =
∫

S
±σ ·ndS, T =

∫
S

r∧±σ ·ndS. (3)

At this stage U,±Ω,F,T are unknown but related through the flow field. We con-
sider here the two cases introduced in the following subsections.

2.1.1 Case 1: prescribed particle rigid-body motion

In this case, the velocities (U,± ) are prescribed. As shown in Pozrikidis (1992),
the problem (1)-(2) then has a unique solution. From linearity of Stokes equa-
tions (1), it is also convenient to introduce six auxiliary Stokes flows (u(i)

T , p(i)
T ) and

(u(i)
R , p(i)

R ) with i = 1,2,3, which are solutions of (1) with the specific boundary
conditions:

u(i)
T = 0, u(i)

R = 0 on Σ , (4a)

u(i)
T = ei, u(i)

R = ei∧ r on S. (4b)

In other words, these flows are produced when the particle either translates or ro-
tates at the unit dimensionless velocity ei. Such a convenient choice is standard
in this intermediate mathematical step (see, for instance, Happel & Brenner [21]),
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but care should be taken about dimensions: u(i)
T is dimensionless, u(i)

R is in metres;
then, for consistency with (1), p(i)

T is in Pa.s/m and p(i)
R ) is in Pa.s.

For L = T or L = R and i = 1,2,3 we introduce the stress tensor±σ
(i)
L associated to

the flow field (u(i)
L , p(i)

L ), the resulting stress f(i)L = ±σ
(i)
L ·n on the particle surface

and the coefficients:

A(i, j)
L = −

∫
S

e j · f(i)L dS , (5a)

B(i, j)
L = −

∫
S
[r∧ f(i)L ] · e j dS. (5b)

Note that from the dimensions Pa.s/m of f(i)T and Pa.s of f(i)R , the dimension of AT is
N.m−1s, that of AR and BT is N.s and that of BR is N.m.s.

From Lorentz reciprocal theorem (Lorentz (1897), as detailed e.g. in Happel and
Brenner (1991)): ∫

S∪Σ

u · f(i)L dS =
∫

S∪Σ

u(i)
L · σ ·n dS. (6)

Since both u and u(i)
L vanish on the cavity walls Σ, it follows that:

A(i, j)
T = A( j,i)

T , B(i, j)
R = B( j,i)

R , A( j,i)
R = B( j,i)

T . (7)

Adopting henceforth the usual tensor summation convention and setting U j = U ·e j

and Ω j = ±Ω · e j, it follows (by linearity) that the flow field (u, p) applies on the
particle the force F and torque T given from (3) by

F = −[Ai, j
T U j +Bi, j

T Ω j]ei , (8a)

T = −[Ai, j
R U j +Bi, j

R Ω j]ei . (8b)

From these expressions and the definitions (5), calculating F and T amounts to
determine the stresses f(i)T and f(i)R induced on the particle surface S by these aux-
iliary flows. This is the so-called resistance matrix problem and the result is the
grand resistance matrix constructed with the AT ,AR,BT ,BR matrices (with Carte-
sian components defined in (5)). The method to calculate the stresses f(i)T and f(i)R
will be presented below in §2.2.

2.1.2 Case 2: Settling motion of a particle

For this case the particle and fluid are embedded in an uniform gravity field g and
the particle settles as a rigid body with presently unknown velocities (Us,±Ωs).
For simplicity, particle inertia is neglected here. This assumption obviously applies
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when the particle motion is steady. It is also appropriate to the unsteady (i.e. start-
ing) motion of a solid particle in a liquid, since with densities of the same order it is
consistent to neglect particle inertia when neglecting fluid inertia. The translational
and rotational velocities (Us,±Ωs) are then obtained from the particle equations
of motion by requiring zero net force on and torque about the particle. Using (8)
and assuming a solid particle with uniform density ρs then yields the following
6-equation linear system for the Cartesian velocity components:

Ai, j
T [Us · e j]+Bi, j

T [±Ωs · e j] = (ρ−ρs)V g · ei, (9a)

Ai, j
R [Us · e j]+Bi, j

R [±Ωs · e j] = 0. (9b)

Since the left-hand-sides of (9) correspond to dissipative forces and torques, it is
shown (see e.g. Kim and Karrila (1991)) that this system has a real-valued matrix
which is not only symmetric (7) but also positive-definite. Accordingly, (9) admits
a unique solution (Us,±Ωs) which is obtained by first calculating on the particle’s
boundary the stresses f(i)T and f(i)R (i.e by first solving the previously-introduced Case
1).

2.2 Boundary integral formulation

This subsection shows how to obtain the surface stresses f(i)T and f(i)R for any arbitrarily-
shaped solid particle and motionless closed cavity surface Σ. The starting point is
the well-known integral representation of the Stokes velocity field in the entire fluid
domain. The Cartesian components Gk j(x,y) of the Oseen-Burgers tensor G(x,y)
due to a point force located at the pole y are given by:

8πµGk j(x,y) =
δk j

|x−y|
+

[(x−y) · ek][(x−y) · e j]
|x−y|3

(10)

(for j and k = 1,2,3) with δk j the kronecker delta. Following Youngren and Acrivos
(1975, 1976) and Pozrikidis (1992), the integral representation for the fluid velocity
at a point x in the fluid domain D is:

u j(x) = [u · e j](x) =−
∫

S∪Σ

[f · ek](y)Gk j(x,y)dS(y), (11)

where f = ±σ ·n is the stress exerted by the Stokes flow (u, p) governed by (1)-
(2) on the entire surface S∪Σ. The relationship (11) shows that the fluid velocity
u is induced by a single-layer distribution of stresses f on both the particle S and
cavity Σ surfaces. In general, the integral representation of a Stokes flow field
involves two contributions: a single layer one as in (11) and a double-layer one.
That one vanishes here (see Pozrikidis (1992)) because u is a rigid-body motion
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on each surface S and Σ. Clearly, one can compute u in the entire fluid domain
D with Eq. (11), once f is known on S∪Σ. This required stress f is obtained by
letting x tend onto the surface S in (11). Since each component Gk j(x,y) is only
weakly singular as x approaches y on S, it turns out that (11) remains valid for x
on the particle surface S. Accordingly, the unknown stress is obtained from the
various f(i)L , solutions of the following Fredholm boundary-integral equation of the
first kind:

[u(i)
L · e j](x) =−

∫
S∪Σ

[f(i)L · ek](y)Gk j(x,y)dS(y)for x on S∪Σ , (12)

with u(i)
L prescribed on S and Σ as in (4). As previously noticed, the pressure field

p of the solution (u, p) to (1)-(2) is defined up to a constant. Therefore, the local
stress f = σ ·n on S is defined up to a vector that is a multiple of the unit normal
n. That is, this property when written in (12) is the identity{∫

S∪Σ

[n · ek](y)Gk j(x,y)dS(y)
}
· e j = 0 (13)

which holds for x located on S∪Σ and also for x→ ∞ (see Pozrikidis (1992)). In
summary, the boundary-integral equation (12) provides the stress f =±σ ·n on the
entire surface S∪Σ. It does not admit a unique solution since f is obtained on S∪Σ

up to λn with λ constant. It should be remarked that adding λn to f in (3), (5) and
(11) does not affect the results, in particular the solutions to Cases 1 and 2 .

2.3 Basic Remarks

The approach presented in §2.1 and §2.2 is valid in essence for any arbitrarily-
shaped particle S and cavity Σ surfaces. As to the practical application, a few basic
remarks are appropriate.
(i) When discretized, equation (12) still admits a non-singular influence matrix and
therefore a unique solution f which, not surprisingly, depends on the selected mesh
on S∪Σ (more precisely, the differences between the exact solution f and computed
solution f′ takes the form λn with λ constant on S∪Σ).
(ii) The proposed boundary integral equation (12) involves the stress f on the entire
surface S∪ Σ. As discussed in the introduction, it is sometimes possible to use
instead of the Oseen-Burgers Green tensor G defined by (10) another Green tensor
Gc which vanishes on the cavity, i.e such that its Cartesian components Gc

i j(x,y)
vanish for x on Σ. In such a case, the result is a boundary-integral equation obtained
by replacing in (12) S∪Σ and Gk j(x,y) with S and Gc

k j(x,y), respectively. The main
advantage is that the only stress f to be determined is that on the particle surface S
and therefore only this surface has to be meshed (i.e there is no need to mesh the
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cavity). Such an efficient approach was previously worked out in Sellier (2008) for
a spherical cavity. This type of approach is based on the availability of the "cavity
Green tensor" Gc which is, up to now, known analytically only for very particular
geometries. Now, this Green tensor might be in principle calculated numerically.
However, this strategy would be much more CPU time consuming than directly
solving the boundary-integral equation (12) for the usual Oseen Burgers tensor
G. Therefore, the present work is based on a direct solution of (12) for which it
proposes a relevant numerical strategy, that is efficient even for large cavities.

3 Numerical implementation and benchmarks

This section presents the proposed numerical implementation for inverting the boun-
dary-integral equation (12) in the case of a rectangular cavity. It also performs
benchmark tests by comparing to accurate earlier results for a fluid confined be-
tween two parallel or perpendicular plane walls (see Bhattacharya, Bławzdziewicz,
and Wajnryb (2005), Sano and Hasimoto (1976)) and with computations achieved
with the finite elements commercial software Comsol for a rectangular cavity.

3.1 The boundary element technique

For details about the boundary element technique, the reader is refered to classical
textbooks (C. A. Brebbia and Wrobel (1984), Domingez (1993), Beskos (1998),
Bonnet (1999)) and also to papers by Pasol and Sellier (2006) and Sellier (2007).
Each curvilinear triangular boundary element ∆e is mapped onto the standard tri-
angle ∆ with inequations 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1, ξ1 + ξ2 ≤ 1. The location y
and the unknown stress f(y) on this 6-node isoparametric boundary element ∆e are
expanded as:

y =
6

∑
q=1

Mq(ξ )ye
q , f(y) =

6

∑
q=1

Mq(ξ )f(ye
q) , (14)

where ye
q are the nodal points belonging to the element ∆e and Mq(ξ ) is a quadratic

interpolation function with ξ = (ξ1,ξ2) located on ∆. In discretizing the boundary-
integral equation (12) at the node x on S∪Σ, the following integrals have to be
computed accurately:

Ie,q
k j (x) =

∫
∆

Gk j(x,y)[MqJ](ξ )dξ1dξ2 , (15)

in which J is the Jacobian of the mapping from Cartesian cordinates yi(ξ ) =
y(ξ ) · ei to intrinsic coordinates ξ1,ξ2. In adequately handling the integral Ie,q

k j (x),
two alternative circumstances occur:
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(i) Either the point x does not belong to the boundary element ∆e. Since it is regular,
the integral is then evaluated with standard Gaussian quadratures (see e.g. Lyness
and Jespersen (1975); Stroud and Secrest (1966)).
(ii) Or the point x is one node of ∆e. In that case Gk j(x,y) becomes weakly sin-
gular as y tends to x on ∆e. The weak singularity at x is removed by using polar
coordinates on the pattern ∆, as detailed in Bonnet (1999). It should be remarked
that in both cases (i) and (ii) a regular integral on ∆ is evaluated using Gaussian
quadratures of either low, medium, or high order, depending upon the location of x
with respect to the element ∆e.The way to select the proper order of quadrature in
order to ascertain a given accuracy is a key issue which has not yet received a math-
ematical background. For the present work, we adopted the well tested proposition
of H. Rezayat and Rizzo (1986). Once discretized by distributing N nodal points
on S∪Σ, the integral equation(12) takes the form of a linear system AX = B with
a fully-populated and non symmetric 3N× 3N influence matrix A. This system is
then inverted by Gaussian elimination.

3.2 Adaptative mesh refinement

In practice, the cavity Σ might be large as compared with the typical particle dimen-
sion. It is then more efficient to adapt a non-uniform mesh on Σ, that is boundary
elements ∆e with different sizes depending upon the location of the particle. Ac-
cordingly, for a small particle-cavity gap it is necessary to distribute enough nodal
points on Σ near the particle and less nodal points elsewhere on Σ. The choice of
an adequate non-uniform mesh is a key issue in order to achieve a good accuracy
of the boundary element approach at a reasonable CPU time and RAM memory
cost. For a particle with length scale a and a particle-cavity gap of order η (here η

denotes the smallest distance from a point of the particle surface to Σ), we obtain a
suitable mesh of S∪Σ by proceeding as follows:
(i) Step 1 : First, the particle is meshed using 6-node curvilinear triangular bound-
ary elements with typical size of the order of the particle-cavity gap η or less.
(ii) Step 2 : An initial rough mesh is constructed on Σ by using 6-node flat (for a
rectangular cavity) triangular boundary elements ∆r

e.
(iii) Step 3 : Finally, one iteratively refines each element ∆r

e depending on its dis-
tance ηe to the particle and its typical length δe. The refinement consists in dividing
the triangle ∆r

e in four sub-triangles if δe > ηe. This last step is repeated as many
times as necessary for a prescribed accuracy to be achieved. The cases of a sphere
located near two walls or three walls of a cubic cavity and at the center of a cubic
cavity are illustrated in Figure 2 and 3, respectively.
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Figure 2: Adaptative mesh on a cubic cavity (L1 = L2 = L3 = 6a) for a spherical
particle with radius a and center O1 close to either two or three walls: (a) case
of two close walls with O1 = (0,1.9a,−1.8a); (b) case of three close walls with
O1 = (−1.9a,1.9a,−1.9a).
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Figure 3: Sphere with radius a at the center of a cubic cavity with size 4a. (a)
Meshes for the present Boundary Element Method (putting Ns = 1058 and Nc =
1538 nodal points on the sphere and cavity respectively). (b) External view of the
15615 three-dimensional finite elements used with the Comsol FEM software.
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3.3 Numerical benchmarks

This subsection presents results and comparisons for a spherical particle with radius
a and a rectangular cavity. Such circumstances are depicted in Figure 1. First, the
sphere is located at the center of a cubic cavity with sides L1 = L2 = L3 = 2h. The
sphere translates at a prescribed velocity U without rotation (±Ω= 0). Because of
its symmetric location, it experiences no torque and a drag force F directed along
its velocity with

F =−6πµaλU , λ = λ (h/a) , (16)

where λ > 0 is a normalized friction coefficient which tends to unity as h/a be-
comes large. Note that, by matching with (8a), the following relationship holds:
6πµaλ = A(1,1)

T = A(2,2)
T = A(3,3)

T . The computed values of λ are displayed ver-
sus h/a in Table 1 and plotted in Figure 4. It is found that, in order to keep the
shown accuracy, the number Ns of nodal points on the sphere may be kept constant
whereas the number Nc of nodal points on the cavity should be increased for small
gap. The results are compared to ones obtained with the Comsol finite elements
software.

Table 1: Results for the friction factor λ on a sphere located at the center of a cubic
cavity versus the normalized half-side of the cavity, from the boundary element
method (BEM) and the Comsol package (C). Ns and Nc denote the number of nodal
points used in BEM on the sphere and cavity, respectively.

h/a λ (BEM) λ (C) Ns Nc
1.1 72.51 79.96 1058 2702
1.5 11.41 11.64 1058 2702
1.9 5.377 5.412 1058 1790
2.044 4.535 4.541 1058 1538
3 2.433 2.425 1058 1538
4 1.851 1.847 1058 1538
6 1.462 1.462 1058 1538
8 1.315 1.313 1058 1538
10 1.238 1.237 1058 1538
14 1.160 1.162 1058 1538
21.5 1.099 1.090 1058 1538
35 1.059 1.056 1058 1538
55 1.018 1.035 1058 1538
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Figure 4: Plot of λ versus h/a. Results using the BEM approach (�) and the
Comsol package (?).

The meshes used in our method and in our Comsol finite elements calculation
for h = 4a are shown in Figure 3(a) and 3(b) respectively. Table 1 shows that a
good agreement between λ (BEM) and λ (C) is obtained within a O(10−2) accu-
racy, which is typical of the Comsol software for a fully three-dimensional Stokes
flow. This accuracy of Comsol is also illustrated in Table 2 for a sphere located at
the center of a spherical cavity.

β 1.1 2 5
λ 1623.9 7.2797 1.7151
λt 1624.0 7.2941 1.7558
∆ = |λ/λt −1| 0.0001 0.0020 0.0232

Table 2: Friction coefficient for a sphere with radius a located at the center of a
spherical cavity with radius βa: computed results λ using the Comsol FEM soft-
ware, analytical results λt calculated by Eq. (22) and relative difference ∆.

A second comparison is shown for a sphere located at the center of a non-cubic
rectangular cavity with L = L1 = L2 and L3 = 2H (Figure 1), still using a Ns-node
and Nc-node mesh on the sphere and cavity, respectively. The sphere translates in
a direction normal to e2 without rotating. The drag force F, which is not in general
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directed along U, may be written as

F =−6πµa[λ1U1e1 +λ3U3e3] (17)

and the torque T vanishes by symmetry. A partial comparison is possible here
with results obtained by Bhattacharya, Bławzdziewicz, and Wajnryb (2005) for
an open fluid domain bounded by two stationary parallel plane walls. That case is
incorported here by considering the walls located at x3 = 0 and x3 = 2H, as depicted
in Figure 5, and letting L→ ∞.

Figure 5: Notation for a spherical particle immersed in a fluid bounded by the
x3 = 0 and x3 = 2H planes.

Bhattacharya, Bławzdziewicz, and Wajnryb (2005) used the hydromultipole tech-
nique which provide accurate results. Their data may be represented also as in
(17), with normalized friction coefficients λ B

1 and λ B
3 . Our results for λ1,λ3 for

L/a = 10,30,50 are compared to their values λ B
1 ,λ B

3 for L→∞ in Table 3 for three
values of H/a. It is observed that the relative difference ∆λi = |λi/λ B

i −1| (for i = 1
and 3) decays when increasing the number of nodes Ns and Nc distributed on the
sphere S and cavity Σ, respectively.

Our last comparisons concern a sphere with radius a immersed in a fluid bounded
by two perpendicular plane solid walls. These circumstances are depicted in Figure
6 and the force F exerted on the sphere translating with the velocity U has the
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Ns Nc L/a H/a λ1,λ
B
1 ∆λ1 λ3,λ

B
3 ∆λ3

74 3940 10 1.209 3.181 0.0049 9.948 0.047
242 3998 10 1.209 3.200 0.0012 10.31 0.013
B ∞ 1.209 3.196 10.44
74 822 30 2.862 1.485 0.0112 1.883 0.013
242 822 30 2.862 1.482 0.0081 1.889 0.010
B ∞ 2.862 1.502 1.908
74 590 50 11 1.100 0.0002 1.148 0.034
242 590 50 11 1.103 0.0025 1.150 0.001
B ∞ 11 1.100 1.151

Table 3: Drag coefficients of a sphere in a rectangular cavity. Ns and Nc are the
numbers of nodes on the sphere and cavity, respectively. Comparison of our results
λ1,λ3 in the cases L/a = 10,30,50 to the results (denoted with B) λ B

1 ,λ B
3 of [4] in

the case of two parallel planes (L→∞). The relative differences ∆λi = |λi/λ B
i −1|

(for i = 1 and 3) are also shown.

Figure 6: A sphere in a fluid bounded by two perpendicular plane walls at x1 = 0
and x2 = 0.

following components:

F =−6πµaU(F1e1 +F2e2) if U = Ue1, (18)

F =−6πµaUF3e3 if U = Ue3, (19)

with friction coefficients Fi depending upon the sphere to wall gaps d1 − a and
d2−a. For a sufficiently distant sphere with ε = a/min(d1,d2)� 1, Sano and Hasi-
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moto (1976) obtained asymptotic expansions of coefficients Fi at order ε . These
approximations are compared in Table 4 in the case ε = 0.1 to our numerical re-
sults obtained for large values of L1,L2 and L3 (We chose values of L/a = L1/a =
L2/a = L3/a, as shown in Table 4).

d1/d2 F1 F1
(Sano)

F2 F2
(Sano)

F3 F3
(Sano)

L/a

1 1.144 1.126 0.013 0.010 1.089 1.082 400
1.6 1.099 1.090 0.072 0.006 1.072 1.067 500
2 1.085 1.079 0.004 0.004 1.067 1.063 600

Table 4: Friction coefficients Fi for a sphere near two perpendicular walls in the
case ε = 0.1 and comparison with Sano & Hasimoto [42] approximation at order ε .

As observed in Table 4, our results are in good agreement with the asymptotic
formulae of Sano and Hasimoto (1976): that is, the difference is consistent with the
neglected O(ε2) terms in their approach.

4 Numerical results

This section presents and discusses numerical results both for spherical and ellip-
soidal particles.

4.1 Case of a solid spherical particle

4.1.1 Prescribed rigid-body motion

We consider a sphere with radius a and center O1 and two alternative cavities with
center O: a cubic one with side length 2h > 2a and a spherical one with radius
R > a. In view of a comparison, we choose R so that the volume of cavities is the
same:

R =
(

6
π

)1/3

h. (20)

The sphere is located in one plane of symmetry of the cavity with either O1 = O
(sphere centered at the cavity center) or O1 6= O. The relevant notation is depicted
in Figure 7.

By symmetry, when the sphere with imposed translational and angular velocities
U and ±Ω is located at the cavity center, it experiences the following force F and
torque T (with respect to its center O1):

F =−6πµaλtU, T =−8πµa3
λr±Ω . (21)
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Figure 7: A sphere located either at the center (cases (a) and (b)) or in a plane
of symmetry (cases (c) and (d)) of two volume- equivalent cubic and spherical
cavities.

The friction coefficients λt and λr for the force F and torque T (about the sphere
center), respectively, depend upon the cavity shape and size. When the sphere is
located at the center of the spherical cavity, analytical results are available (see e.g.
Happel and Brenner (1991)) for both λt and λr:

λt =
1−β 5

1− 9
4 β + 5

2 β 3− 9
4 β 5 +β 6

, (22)

λr =
1

1−β 3 for β =
a
R

< 1. (23)

In contrast, for the cubic cavity an analytical result (e.g. using the method of re-
flexions) would be difficult to obtain. Thus a simpler evaluation of the coefficients
λt and λr requires numerics. Computed coefficients are plotted in Figure 8 versus
the normalized size h/a of the cubic cavity (Eq. (20) then provides the radius of the
spherical cavity).
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Figure 8: Friction coefficients for (a) translation (λt) and (b) rotation (λr) of a
sphere centered in a spherical and a cubic cavity. The solid curves represent the
analytical expressions (22)-(23) for the spherical cavity. The symbols (joined by
lines as a guide to the eye) represent our computed results for the cubic cavity.
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It turns out that both for a pure translation (λt) and a pure rotation (λr) the cubic
cavity yields stronger wall-sphere interactions (higher values for the friction coeffi-
cient) than the spherical cavity. Although the sphere-cavity gap for the cubic cavity,
h−a is smaller than its value R−a ∼ 1.24h−a for the spherical cavity, it should
be remarked that this minimum gap is actually reached on the entire sphere surface
of the spherical cavity. Then this geometrical configuration results in larger fric-
tion coefficients. Note also that, for both cavities, sphere-cavity interactions decay
much faster for λr than for λt as the cavity becomes large.

4.1.2 Settling motion of a spherical particle

Let us now examine the motion of a sphere with radius a and uniform density ρs

settling in an uniform gravity field g = −ge3 (see Figure 1). We consider a cubic
cavity with mid-size 3a, and locate the sphere center O1 in the x2− x3 plane, i.e
select OO1.e1 = 0. Under these assumptions, the settling sphere translational and
angular velocities U and±Ω, obtained as explained in §2.1.2, read U =U2e2 +U3e3
and ±Ω = Ω1e1. Setting OO1 = d2e2 +d3e3, symmetries make it further possible
to restrict the attention to the values 0 ≤ d2 < 2a and −2a < d3 ≤ 0. Non-zero
velocity components may then be normalized as follows:

u2 =
9µ U2

2g(ρ−ρs)a2 ,u3 =
9µ U3

2g(ρ−ρs)a2 , (24)

ω1 =
9µ Ω1

2g(ρ−ρs)a
(25)

They are based on the Stokes settling velocity 2(ρs− ρ)a2g/(9µ) of the sphere
when immersed in an unbounded fluid. Results for u2,u3,ω1 versus 0≤ d2 ≤ 1.9a
for d3/a = 0,−1,−1.5,−1.8 are displayed in Figure 9.

The u2 component vanishes for d3 = 0 by symmetry and is thus not shown in Figure
9 (a). Note that u3 decreases strongly for a given value of d2 as d3 increases in
magnitude (i.e as the sphere approaches the cavity bottom). In contrast, u2 is less
affected as d3 and d2 change. Actually, sphere-cavity interactions are larger for
the velocity component normal to a close boundary for (u3) than for the velocity
component (u2) tangent to it. In all cases, the sphere angular velocity ω1 is low.
For symmetry reasons, ω1 = 0 for d2 = 0 for any value of d3. Furthermore, ω1 > 0
for any d2 > 0 when the sphere is not close to the x3 = −3a bottom side of the
cavity. In contrast, for d3 =−1.8a (close to the bottom side), ω1 is either positive or
negative, depending upon d2, and vanishes at d2 ∼ 1.3a. Of course, larger particle-
wall interactions are expected when the sphere lies close to three walls, as sketched
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Figure 9: Normalized settling translational and angular velocities versus 0 ≤ d2 <
1.9a for d3/a = 0(H), d3/a =−1(�), d3/a =−1.5(?), d3/a =−1.8(•) for a cubic
cavity with mid-size 3a. (a) Translational velocities u3 (solid lines) and u2 (dashed
lines). (b) Angular velocities ω1.
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in Figure 2(b). We thus also look at the settling rigid-body migration of the sphere
(again for g = −ge3 and the cubic cavity with center O and mid-size 3a) with
center O1 such that OO1 = (d−2a)(e1− e2 + e3) for 0 < d� 2a. In that case, it
is easily shown by symmetry that U = U2(e2− e1)+U3e3 and ±Ω = Ω1(e1 + e2).
The associated normalized velocities u2,u3 and ω1 (recall (24)-(25)) are plotted in
Figure 10.

As d vanishes, the sphere approaches the cavity corner and hydrodynamic interac-
tions with the three cavity walls then strongly increase the velocity component u3
parallel to gravity. In contrast, other components u2 = −u1 and angular velocities
ω1 = ω2 reach a maximum value (i.e. the largest boundary effects occur) for values
of d/a of medium magnitude (d/a∼ 0.6 and d/a∼ 0.8, respectively).

4.2 Case of a solid ellipsoidal particle

Cavity-particle interactions are expected to depend upon the particle shape. To
investigate this basic issue, we consider in this section a particle of ellipsoidal shape
with center O1 and semi-axes ai in the ei directions (i = 1,2,3). Hence, the ellipsoid
and the rectangular cavity have parallel planes of symmetry. For a given cavity, it
is practically significant to consider a given fluid volume, i.e to select ellipsoids
having the same volume as a sphere with radius a. Therefore, we henceforth take
a1a2a3 = a3. We choose for the numerical computations the values a1 = a, a2 =
0.8a and a3 = (1/0.8)a.

4.2.1 Prescribed rigid-body of the ellipsoid

The selected volume-equivalent ellipsoid is located at the center of a cubic cavity
(L = L1 = L2 = L3 and O1 = O). From symmetries, it is then shown that for imposed
translational and angular velocity U and ±Ω the hydrodynamic force F and torque
T (about O1) exerted on the ellipsoid read:

F =−6πµa
3

∑
i=1

Riλ
(i)
t (U.ei)ei, (26)

T =−8πµa3
3

∑
i=1

Λiλ
(i)
r (±Ω.ei)ei. (27)

When the cubic cavity becomes large (L� a), the friction coefficients λ
(i)
t and λ

(i)
r

asymptote unity and the normalized force and torque coefficients are from Jeffery
(1922) (see e.g. Happel and Brenner (1991)):

Ri =
8a1a2a3

3a(χ +αia2
i )

, (28)
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Figure 10: Normalized settling velocities for a sphere with center O1 such that
OO1 = (d−2a)(e1−e2 +e3). (a) u2 =−u1 (�) and u3 (I). (b) Angular velocities
ω1 = ω2 (◦).



160 Copyright © 2011 Tech Science Press CMES, vol.73, no.2, pp.137-169, 2011

Λi =
2(a2

1 +a2
2 +a3

1−a2
i )

3(a2
1α1 +a2

2α2 +a2
3α3−a2

i αi)
, (29)

with:

χ = a1a2a3

∫
∞

0

dt
∆(t)

,αi =
∫

∞

0

dt
(a2

i + t)∆(t)
, (30)

∆(t) = {(a2
1 + t)(a2

2 + t)(a2
3 + t)}1/2. (31)

with i = 1,2,3 (Note that there is no summation over repeated indices i in (28)-
(30)). The above coefficients Ri and Λi for the addressed ellipsoid a1 = a,a2 =
0.8a,a3 =(1/0.8)a have been calculated using the Maple Software. The results are:
R1 ∼ 0.970, R2 ∼ 1.060, R3 ∼ 1.014, Λ1 = 22.930, Λ2 = 30.006 and Λ3 = 27.992.
The frictions coefficients λ

(i)
t and λ

(i)
r introduced by (26)-(27) were computed for

different cubic cavities with mid-size L/2 and are plotted versus L/a in Figure 11.

The λ
(i)
t and λ

(i)
r coefficients directly measure to which extent the ellipsoid-cavity

interactions affect the imposed translation or rotation parallel to the ei direction
when compared with the motion in unbounded fluid. The comparison of Figures 8
and 11 shows that these interactions may be either stronger or weaker than for the
volume-equivalent sphere.

4.2.2 Settling ellipsoid

This last subsection examines the motion of the volume-equivalent ellipsoidal par-
ticle, with uniform density ρs, settling in a uniform gravity field aligned with one
direction ei (i = 1,2,3). If immersed in an unbounded fluid with g∧ ei = 0, the
ellipsoid is known to settle without rotation at the velocity (using Eq. (26) with
λ

(i)
t = 1):

Ui =
2a2(ρs−ρ)

9µRi
g for g∧ ei = 0. (32)

When the fluid is confined by the cavity, the ellipsoid-cavity interactions affect the
previous solution and also induce a possible rotation of the ellipsoid. These key
effects are investigated for a cubic cavity with center O and mid size 2.5a when
the ellipsoid representative equation is x2

1/a2
1 + x2

2/a2
2 + x2

3/a2
3 = 1 and its center

O1 is such that OO1 = d2e2 + d3e3 with now 0 ≤ d2 < 2.5a− a2 and 0 ≤ d3 <
2.5a−a3. By superposition, we successively assume that g is parallel to e1,e2 and
e3. The resulting normalized Cartesian velocity components are moreover defined
as follows:

u j =
9µR jU.e j

2a2(ρs−ρ)g
,ω j =

9µ±Ω.e j

2a(ρs−ρ)g
(33)
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Figure 11: Results for the friction coefficients for an ellipsoid with dimensions
a1 = 1,a2 = 0.8a,a3 = (1/0.8)a located at the center of a cubic cavity with side
length L: (a) coefficients for translation, λ
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comparison, the dashed lines show the values of λt and λr for a spherical particle
with radius a.
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(without summation over indices j) 1. For our given cubic cavity and OO1.e1 = 0
the non-zero velocities u j and ω j depend upon the selected direction ei of the grav-
ity g and the data (d2,d3). These velocities, computed here for d3 = 0,0.2,0.8,1.4,
are given for g∧ ei = 0 in Figure 12, 13 and 14 (i = 1,2,3).
If g∧e1 = 0 then, for symmetry reasons, u2 = u3 = ω1 = 0. The normalized velocity
u2 is at a maximum value ∼ 0.36 for d2 = d3 = 0 (the ellipsoid being located at the
cavity center) and decreases as d2 or/and d3 increases(s) with a lowest value∼ 0.24
for d2 = 1.6a and d3 = 1.4a. Thus, the ellipsoid-cavity interactions for g∧ e1 = 0
can result in a 30% relative loss in settling velocity. Note that ω2 is weakly sensitive
to d2 and strongly sensitive to d3. The quantity ω3 follows opposite behaviors. The
ellipsoid settling velocity might be strongly affected for g.e1 = 0 as revealed by
Figures 13-14. For instance, for g∧ e2 = 0 then u1 = ω2 = ω3 = 0, u3 is weak and
u2 deeply depends upon d2 and the ellipsoid-wall interactions may even result in a
∼ 80% relative velocity loss (for d2 = 1.6a and d3 = 1.4a). In addition the (weak)
angular velocity ω1 may either be positive or negative. Similar trends are observed
in Figure 14 for g∧ e3 = 0 with now u1 = ω2 = ω1 = 0.

5 Conclusions

Particle-cavity interactions in the low-Reynolds-number approximation are calcu-
lated accurately by incorporating refinements in the Boundary Elements Method.
The method amounts to solve six Fredholm boundary-integral equations of the first
kind governing the surface stress on the motionless cavity and the moving solid
particle, for the six elementary motions of translation and rotation of the particle.
Then, the method solely requires to mesh the particle and cavity surfaces. The
refinements consist in simultaneously:

1. using six-node curvilinear triangular boundary elements;

2. building up adequately and iteratively a non-uniform mesh of the cavity to
account for the particle shape and its proximity.

The numerical implementation is achieved here for a rectangular cavity, These re-
finements provide a good accuracy at a reasonable CPU time cost as demonstrated
by several benchmarks against results obtained by previous authors. New numeri-
cal results are given and discussed for spherical and volume-equivalent ellipsoidal
particles, thereby illustrating the ability of the proposed technique to deal with var-
ious particles. Not surprisingly, particle-cavity interactions are found to deeply
depend upon the particle shape, location and also upon the experienced force and
torque components, settling velocity components and applied gravity field.

1 Note that such definitions are opposite to the ones given in (24)− (25) for which g =−g.e3
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Figure 12: Non-zero normalized settling velocity components for g∧ e1 = 0 and
d3/a = 0(◦), 0.2(�), 0.4(?), 0.8(�), 1.4(•). (a) u1. (b) ω2 (solid lines) and ω3
(dashed lines).
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Figure 13: Non-zero normalized settling velocity components for g∧ e2 = 0 and
d3/a = 0(◦), 0.2(�), 0.4(?), 0.8(�), 1.4(•). (a) u2 (solid lines) and u3 (dashed
lines). (b) ω1.
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Figure 14: Non-zero normalized settling velocity components for g∧ e3 = 0 and
d3/a = 0(◦), 0.2(�), 0.4(?), 0.8(�), 1.4(•); (a): u2 (Solid lines) and u3 (dashed
lines); (b): ω1.
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This approach may by essence adequately deal with arbitrarily-shaped cavity and
particle. It should also be emphasized that the method may also efficiently cope
with several interacting particles suspended in a fluid bounded by a cavity. Such
a basic problem, in which both particle-particle and cavity-particle interactions are
important, is postponed to a future work. An application in view is in particular the
modeling of experiments of collective sedimentation and diffusion.
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