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The Coupling FEM and Natural BEM for a Certain
Nonlinear Interface Problem with Non-Matching Grids

Ju’e Yang1 and Dehao Yu2

Abstract: In this paper, we introduce a domain decomposition method with non-
matching grids for a certain nonlinear interface problem in unbounded domains. To
solve this problem, we discuss a new coupling of finite element method(FE) and
natural boundary element(NBE). We first derive the optimal energy error estimate
of finite element approximation to the coupled FEM-NBEM problem. Then we
use a dual basis multipier on the interface to provide the numerical analysis with
non-matching grids.Finally, we give some numerical examples further to confirm
our theoretical results.
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1. Introduction

The coupling method of finite element method (FEM) and boundary element method
(BEM) [Hsiao (1988); Yu (1983, 1992); Han (1990)] was developed as a general-
ization of the standard finite element method to problems in unbounded domains
with complicated geometry shapes. It keeps all advantages of the finite element
in treating the complicated bounded domains as well as the boundary element in
treating unbounded domains. Many authors have made contributions to the cou-
pling method of this kind and there are many constructive research in this direction
both in theory and practical computation(see Hu and Yu (2001b); Liu and Yu (2008)
etc.). The standard coupling procedure can be described as following: the domain
is decomposed into two subdomains, one bounded subdomain in which the stan-
dard finite element method will be used and the other unbounded subdomain where
the boundary element method is applied. Finally, the unbounded domain problem
is reduced to a bounded domain problem.
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It is well known that domain decomposition methods (DDMs) are important nu-
merical techniques for solving partial differential equations. When a domain is
divided into some subdomains and artificial boundaries which called ‘interface’,
the underlying partial differential equations can be solved independently in each
subdomain. To get proper solution, the appropriate boundary condition must be
given on the interface of sub-domains. When an unbounded domain is divided
into some subdomains, there is at least one unbounded domain. In this case, the
boundary reduction will be needed [see Yu (1995, 1996)]. There are many ways
to accomplish boundary reduction for unbounded domain problems. the natural
boundary reduction proposed by Feng and Yu [Feng and Yu (1983)] has some dis-
tinctive advantages over the usual boundary reduction methods: the preservation
of the symmetry and coerciveness, simplification of the discrete problem and the
preservation of the optimal estimates and the numerical stability.

The existing coupling methods of FEM and natural BEM or the domain decompo-
sition methods based on the natural boundary element reduction requires that the
approximate solutions exactly satisfy the matching conditions over the interface or
on the artificial boundary. This leads to some restrictions for the finite element dis-
cretizations on subdomain. Especially in the case of singularities of the solution,
which has strong singularity near the concave vertex [see Hu and Yu (2001b)].
Therefore, we cannot expect that the approximate solution has an O(h) estimation
for the discretization error. In order to obtain the approximation of the solution
which possesses satisfactory accuracy, it is necessary to use high refinements of the
finite element grids near the concave vertices. The DDMs with non-matching grids
can couple different variational problems in different sub-domains, see, for exam-
ple, Belgacem and Maday (1999); C. Bernardi and Patera (1994). One important
character of this method is to introduce a Lagrange multiplier space on the inter-
face such that the matching conditions across the interface is replaced by a weaker
one, i.e. the pointwise matching is replaced by the integral matching. Most impor-
tantly, the relaxation of the matching conditions on the interface still yields optimal
approximation. In recent years, domain decomposition with non-matching grids
have attracted a lot of attention from computational mathematicians and engineers
(see,Wohlmuth (2000); Hu (2005) and Ju’e Yang and Yu (2005)). In [Ju’e Yang and
Yu (2005)], we first use the technique of nonmatching grid to deal with the Dirichlet
exterior boundary problem on unbounded domain. To our knowledge there seems
no study in the literature of the case of nonlinear problems in unbounded domain.

In the present paper, we try to extend the DDMs with non-matching grids to a cer-
tain nonlinear interface problems in unbounded domains by the coupling of FEM
and natural BEM. In Yu and Huang (2008), the artificial boundary method has
been used to this problem efficiently. For simplicity of exposition, we consider
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only the case with two dimensions in the paper. In our method, the multiplier
space is spanned by the dual basis multipliers presented in Wohlmuth (2000). Such
choice of the multiplier space can avoid the computation of the L2 projector on
the interface. We derive an optimal error estimate of the resulting nonconforming
approximation. It will be shown that the iteration possesses a convergence rate
independent of the mesh sizes.

Our paper is organized as following. In section 2, we introduce the interface prob-
lem in its strong and weak forms and derive a nonlinear system of coupled FEM-
NBEM equations. In section 3 we make a discretization for the resulting coupled
system based on the non-matching grids. In section 4, we give the error estimate
for the approximates and obtain the optimal accuracy. Finally, the numerical exper-
iments testify the theoretical results.

2. The Coupled FEM-NBEM Systems

Let Ω⊂R2 be a bounded and simply connected domain with Lipschitz-continuous
boundary Γ and Ωc :=R2\Ω be the exterior unbounded domain of Ω.

Assume that p ∈ C1(R+) satisfy the condition p1 < p(t) < p2 and α < p(t) +
t p′(t)≤ β for some global constants p1, p2, α, β > 0. Given the function f : Ω→
R and u0, t0 : Γ→ R, we consider the following nonlinear interface problem(see
[Mund and Stephan (1999)]).

As the interior part, we consider the nonlinear partial differential equation

−div(p(|∇u|) ·∇u) = f in Ω. (2.1)

In the exterior part, we consider the Laplace equation

∆u = 0 in Ωc, (2.2)

with the radiation condition

u(x) = a+o(1) (|x→ ∞|) (2.3)

which a is a given real constant. We consider the transmission condition on Γ

u|Γ−uc|Γ = u0 and p(|∇u|) ∂u
∂n

∣∣∣∣
Γ

− ∂uc

∂n

∣∣∣∣
Γ

= t0, (2.4)

where n denote the unit normal on Γ defined almost everywhere pointing from Ω

into Ωc. Define the inner products in L2(Ω1) and L2(Γ)

(u,v) :=
∫

Ω

u(x)v(x)dx ∀ u(x), v(x) ∈ L2(Ω) (2.5)
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〈u,v〉 :=
∫

Γ

u(x)v(x)ds ∀ u(x), v(x) ∈ L2(Γ) (2.6)

Since the boundary Γ is not necessarily a circle, we draw a auxiliary circle Γ1 with
radius r, such that the circle disc Ω′ with the boundary Γ1 contains the domain Ω̄.
Then The auxiliary boundary divides the exterior region of Ωc into two nonover-
lapping subdomains and we set Ω1 = Ωc

⋂
Ω′, Ω2 =R2\Ω̄′, and define u1 := uc|Ω1 ,

u2 := uc|Ω2(For the picture see Figure 1).

Figure 1: Ω′ = Ω
⋃

Ω1, and Γ1 is an auxiliary circle

Then we rewrite our nonlinear interface problem (2.1-2.4) as follows: Find the
function u,u1,u2 such that

−div(p(| ∇u |) ·∇u) = f , in Ω,

u −u1 = u0, p(| ∇u |)∂u
∂n
− ∂u1

∂n
= t0, on Γ,

−∆u1 = 0, in Ω1,

u1 = u2,
∂u1

∂n
=

∂u2

∂n
, on Γ1,

−∆u2 = 0, in Ω2,

u2(x) = a+ O(1), for |x| → ∞

(2.7)

To obtain a variational formulation of Eq.2.7, we first consider the unbounded do-
main Ω2. We need to define a symmetric and positive definite boundary operator.
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Let E(x,y) be the fundamental solution for the Laplacian, i.e.

E(x,y) =− 1
2π

log |x− y|, x,y ∈R2,

We have the following four classical boundary integral operators

Vt(x) =
∫

Γ1

t(y) ·E(x,y)dsy (V : H−
1
2 (Γ1)→ H

1
2 (Γ1)),

Ku(x) =
∫

Γ1

u(y) · ∂

∂ny
E(x,y)dsy (K : H

1
2 (Γ1)→ H

1
2 (Γ1)),

K′t(x) =
∫

Γ1

t(y) · ∂

∂nx
E(x,y)dsy (K′ : H−

1
2 (Γ1)→ H−

1
2 (Γ1)),

Du(x) =− ∂

∂nx

∫
Γ1

u(y) · ∂

∂ny
E(x,y)dsy (D : H

1
2 (Γ1)→ H−

1
2 (Γ1)),

Define

K u(x) =− ∂

∂nx

∫
Γ1

∂

∂ny
G(x,y)u(y)dsy, (2.8)

which G(x,y) is the Green’s function for the Laplace equation on the domain Ω2.
The operator K is just the natural integral operator, i.e. the Dirichlet-Neumann op-
erator (Steklov-Poincaré operator)(see [Yu (1993)](in Chinese) and [Yu (2002)](in
English)).

Using the Green’s formula we can obtain

K = D+(
1
2

I +K′)V−1(
1
2

I +K) (K : H
1
2 (Γ1)→ H−

1
2 (Γ1)). (2.9)

It is well known that V : H−
1
2 (Γ1)→H

1
2 (Γ1) is symmetric and positive definite, and

D : H
1
2 (Γ1)→H−

1
2 (Γ1) is symmetric and positive semidefinite. Thus, the operator

K : H
1
2 (Γ1)→H−

1
2 (Γ1) is also symmetric and positive definite with respect to the

inner product 〈·, ·〉
Γ1

.

Decomposing
∫

Ωc
|∇uc|2dxdy into two parts∫

Ωc

|∇uc|2dxdy =
∫

Ω1

|∇u1|2dxdy+
∫

Ω2

|∇u2|2dxdy, (2.10)

and applying the natural boundary element theory to Ω2, we obtain the natural
integral equation to the auxiliary boundary Γ1

∂u2

∂n
=−K (u2|Γ1) (2.11)
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Next, we multiply the divergence partial differential equation in Eq.2.7 by any test
function v ∈ H1(Ω) and apply the Green formula to yield∫

Ω

p(|∇u|)∇u∇vdx−
∫

Γ

p(|∇u|)∂u
∂n

vds =
∫

Ω

f vdx, ∀v ∈ H1(Ω), (2.12)

According to the interface condition (2.4), we have∫
Ω

p(|∇u|)∇u∇vdx−
∫

Γ

∂u1

∂n
vds =

∫
Ω

f vdx+
∫

Γ

t0vds, ∀v ∈ H1(Ω) (2.13)

Let w0 be the harmonic function in the domain Ω1 which satisfy the following
equation

∆w0 = 0 in Ω1

w0 = u0 on Γ

w0 = 0 on Γ1

(2.14)

Set w = u1 +w0, and in the same way, on Ω1, we have∫
Ω1

∇w ·∇vdx+
∫

Γ

∂u1

∂n
vds−

∫
Γ1

∂u2

∂n
vds =

∫
Ω1

∇w0 ·∇vdx, ∀v ∈ H1(Ω1) (2.15)

which, due to the natural integral equation (2.11), becomes∫
Ω1

∇w ·∇vdx+
∫

Γ

∂u1

∂n
vds+

∫
Γ1

vK u2ds =
∫

Ω1

∇w0 ·∇vdx, ∀v ∈H1(Ω1) (2.16)

Define

H := {(u,w) ∈ H1(Ω)×H1(Ω1) : u = w on Γ}. (2.17)

Then we define the nonlinear functional

A((u,w),(v,σ)) :=
∫

Ω

p(|∇u|)∇u ·∇vdxdy, (u,w),(v,σ) ∈ H, (2.18)

and the bilinear functional

B((u,w),(v,σ)) :=
∫

Ω1

∇w ·∇σdxdy+
∫

Γ1

K w ·σds, (u,w),(v,σ) ∈ H, (2.19)

Adding (2.13) and (2.16), we obtain the coupled FEM-NBEM variational problem
of Eq.2.7{

Find (u,w) ∈ H,such that

A((u,w),(v,σ))+B((u,w),(v,σ)) = F(v,σ), ∀(v,σ) ∈ H,
(2.20)
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which F is the linear functional

F(v,σ) :=
∫

Ω

f vdxdy+
∫

Ω1

∇w0 ·∇σdxdy+
∫

Γ

t0 · vds, ∀(v,σ) ∈ H. (2.21)

Define the dorm || · ||H by

||(v,σ)||H := (|v|21,Ω + |σ |21,Ω + ||σ ||21
2 ,Γ1

)
1
2 , (v,σ) ∈ H. (2.22)

Remark 2.1 The natural integral operator K : H
1
2 (Γ1) −→ H−

1
2 (Γ1) is just the

Dirichlet-Neumann operator(Steklov-Poincaré operator) for the exterior domain
Ω2. So, it is symmetric and semi-positive definite with respect to the inner product
< ·, · >Γ1 , i.e. there are positive constant c and ĉ such that(refer to [Yu (1993,
2002)])

〈K µ,µ〉 ≥ c||µ||21
2 ,Γ1

, ∀µ ∈ H
1
2 (Γ1)/P0, (2.23)

and

〈K µ,µ〉 ≤ ĉ||µ||21
2 ,Γ1

, ∀µ ∈ H
1
2 (Γ1)/P0, (2.24)

where P0 denotes the set of all constants.

We note that the bilinear form B is bounded and satisfies some positiveness con-
dition. In fact, for any functions (u,w),(v,σ) ∈ H there exist positive constant
α > 0,β > 0 such that

|B((u,w),(v,σ))| ≤ α(|u|1,Ω|v|1,Ω + ||w|| 1
2 ,Γ1
||σ || 1

2 ,Γ1
)≤ α||(u,w)||H ||(v,σ)||H ,

(2.25)

|B((v,σ),(v,σ))| ≥ β (|v|21,Ω + ||σ ||21
2 ,Γ1

)≥ β ||(v,σ)||2H (2.26)

Now, we introduce the nonlinear operators T : H→ H∗, which is defined by

[T (u,w),(v,σ)] := A((u,w),(v,σ))+B((u,w),(v,σ)) (2.27)

for all (v,σ) ∈ H. Thus, the weak formulation (2.20) can be written in the form of
an operator equation:{

Find (u,w) ∈ H,such that

T ((u,w),(v,σ)) = [F,(v,σ)], ∀(v,σ) ∈ H,
(2.28)

From the assumptions on the function p(t), we infer that T is bounded and uni-
formly monotone with respect to the norm ||(·, ·)||. Therefore, the variational prob-
lem (2.28) has a unique solution (u,w) ∈ H.
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3. Finite Element Discretization with Non-matching Grids

In this section, we make a finite element discretization for the subdomains and
introduce the non-matching grids method and the construction of basis functions of
the Larange multiplier space. The main motivation for us to do this is that we can
couple different discretizations in different subdomains in this way. It seems very
reasonable especially for the case of singularities of the solution.

Families of finite element triangulations Thi , i = 1,2, are associated with Ω and
Ω1(e.g. some regular quasi-uniform triangles and curved triangles at the inter-
faces). We denotes by hi the maximum diameter of the elements of Th1 , i = 1,2.
But in most real calculation, the curved triangle nearby the interfaces are approxi-
mated by the straight triangles which has the same nodes with the curved triangles.
This simplified method generates only small error. Here, we note that the meshes
may not match at the interface between any two subdomains, which means that the
finite element nodes on Γ respect to the triangulation Th1 don’t coincide with the
boundary nodes on Γ respect to the triangulation Th2 . A similar case is to the artifi-
cial boundary Γ1. Therefore, the continuity conditions on the interface between any
two subdomains are broken, which is required for the usual coupling of FEM and
NBEM. It is pointed out in [C. Bernardi and Patera (1994); Belgacem and Maday
(1999); ?] that some weaker continuity condition across the interface can guaran-
tee the optimal error estimate provided that the solution u is smooth enough. Now,
our interfaces are some circles and our problem consists of a nonlinear second or-
der elliptic equation in divergence form in a bounded inner region, and the Laplace
equation in the corresponding unbounded exterior region, in addition to appropriate
boundary and transmission conditions.

Let Vhi(Ωi) ⊂ H1(Ωi), i = 1,2, be the piecewise linear finite element spaces on Ωi

with respect to Th1 , i = 1,2. Next, we discretize the auxiliary circle Γ1. Given
n ∈ N, we let 0 = a0 ≤ a1 ≤ ·· · ≤ an = 2π be a uniform partition of [0,2π] with
h3 = a j+1 − a j = 2π

n , j = 0,1, · · · ,n− 1, which generates a division Th3 on the
artificial boundary Γ1. We denote this boundary element space by Vh3(Γ1). The
division in Ωi, i = 1,2, leads to a division on the interface Γ and Γ1, so we set

Vhi(Γ) := {v|Γ : v ∈Vhi(Ωi), i = 1,2} and Vh2(Γ1) := {v|Γ1 : v ∈Vh2(Ω2)} (3.29)

The parameter h is set equal to the 3-tuple(h1,h2,h3) and the Lagrange multiplies
space defined at the interfaces are denoted by Mh(Γ) and Mh(Γ1) which will be
discussed at detail later.

We set the product spaces

Qh := Vh1(Ω1)×Vh2(Ω2)×Vh3(Γ1) (3.30)
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Define

Vh := {vh = (vh1 ,vh2 ,vh3) ∈Qh :
∫

Γ
⋃

Γ1

[vh] ·µds = 0, ∀µ ∈Mh(Γ),Mh(Γ1)} (3.31)

where [·] denotes the jump of the function vh across the interfaces. We apply FEM
and NBEM to compute approximations to the finite element solution u and the
boundary element solution φ . For this purpose we denote Th := Th1 +Th2 as the
finite element space and τh as the boundary element space.

Then we obtain the following non-conforming variational problem associated with
(2.20)

Find uh := (uh1 ,uh2 ,φh3) ∈Vh,such that

(p(|∇uh1 |)∇uh1 ,∇vh1)Ω +(∇uh2 ,∇vh2)Ω1 + 〈K uh3 ,vh3〉Γ1

= ( f ,vh1)Ω +(∇w0h2 ,∇vh2)Ω1 + 〈t0,vh1〉Γ , ∀vh := (vh1 ,vh2 ,vh3) ∈Vh,

(3.32)

Let Th : Vh→ V ∗h be an operator that approximates T on Vh, and let Fh ∈ V ∗h be an
approximation of F on Vh. Then, the above variational problem is equivalent to the
following discrete operator equation:{

Find uh ∈Vh,such that

Th(uh,vh) = Fh(vh), ∀vh ∈Vh,
(3.33)

Since T is bounded and uniformly monotone on H, it can prove that Th holds the
same properties on Vh. Hence, the coupled discrete operator equation (3.33) has a
unique solution uh ∈Vh.

As we have seen, the definition of Lagrange multiplier space is of great importance
for the unique solvability. Here we’ll use the dual basis (refer to Wohlmuth (2000))
to define a new type of multiplier space for unbounded domain problems.

Here and below we only discuss the interface Γ1. a similar definition is to the
interface Γ. To avoid confusion for the subscript, let us denote the interface by Γ

which consists of the two interfaces Γ and Γ1.

Let N be the number of nodes on Γ and {θi}N
i=0,θ0 = θN be the set of nodal points

in Γ, and let γ be a segmental arc on Γ and {lγ

i }2
i=1, l

γ

i ∈ P1(γ) be a linear basis on
the element γ . Using linear Lagrange interpolation it is easy to know

lγ

1(θ) =
N
2π

(θi−θ), lγ

2(θ) =
N
2π

(θ −θi−1) (3.34)

Define the test functions {φ γ

i }2
i=1 satisfying〈

lγ

i (θ),φ γ

j (θ)
〉

γ

= δi, j
〈
lγ

i (θ),1
〉

γ
, 1≤ i, j ≤ 2, (3.35)
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where δi, j is the Kronecker delta symbol. Furthermore, we have〈
lγ

i (θ),

(
2

∑
j=1

φ
γ

j (θ)−1

)〉
γ

= 0, 1≤ i≤ 2. (3.36)

Therefore, from (3.34) and (3.35) we deduce

φ
γ

1 (θ) = 2lγ

1(θ)− lγ

2(θ) =
N
2π

(2θi +θi−1−3θ), (3.37)

φ
γ

2 (θ) =−lγ

1(θ)+2lγ

2(θ) =
N
2π

(3θ +θi−2θi−1). (3.38)

Let {Φi}N
i=1 and {Ψi(θ)}N

i=1 be the global nodal basis functions and the dual basis
functions for Γ, respectively. As a consequence, we set Mh(Γ) = span{Φi(θ),1≤
i≤ N}. Under uniform subdivision the piecewise linear basis functions(see Figure
2) are

Φi(θ) =


N
2π

(3θ −θi−2θi−1), θi−1 ≤ θθi,

N
2π

(2θi+1 +θi−3θ), θi ≤ θ ≤ θi+1,

0, otherwise,

(3.39)

where i = 1,2, · · · ,N and θi = 2πi
N .

Figure 2: Dual basis functions of Mh(Γ) with a circle interface Γ

Since Vh1(Γ) ⊂ H1/2(Γ), the test functions space Mh(Γ) may be embedded in the
dual space of H1/2(Γ) with respect to the L2-inner product. Then, we obtain
Mh(Γ) ⊂ H−1/2(Γ). Therefore, we call {Φi(θ)}N

i=1 as the dual basis on Γ. From
Figure 2, for any fixed node θi on Γ, the dual basis function Φi(θ) has its support
on two mesh intervals and decreases linearly from 2 to -1 on the second interval.
Similar to (3.35), Ψi(θ) and Φi(θ) also satisfy the following global property
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〈Φi(θ),Ψi(θ)〉
Γ

= δi, j 〈Φi(θ),1〉
Γ
, 1≤ i, j ≤ N (3.40)

Before we begin the analysis of error estimate, we’ll introduce two important pro-
jection operators. Similar to (C. Bernardi and Patera (1994)), since each interface
has two sides, we denote by Γ12 and Γ21. We define the projection operator Πh in
such way: it maps the space Vh(Γ12) into Vh(Γ21) or maps Vh(Γ21) into Vh(Γ12). The
choice of side is rather arbitrary. In our case, we choose the fine mesh side as the
beginning such as Γ12. That is to say, Given v ∈ L2(Γ), the values of Πhv ∈Vh(Γ21)
can be determined by∫

Γ

(v−Πhv) ·µds = 0, ∀µ ∈Mh(Γ). (3.41)

Next, define by Ph : L2(Γ)→Mh(Γ) the usual orthogonal projection operator. We
recall its approximation properties in the following lemma. We can verify it in the
standard manner and do not include the proof here.

Lemma 3.1 For any real number s, 0 ≤ s ≤ 1, there exists a constant c such that
the following estimate holds for any function v in Hs(Γ):

||v−Phv||0,Γ ≤ chs||v||s,Γ, (3.42)

||v−Phv||
(H

1
2 (Γ))′

≤ chs+ 1
2 ||v||s,Γ. (3.43)

Here the dual norm is defined by

|| f ||X ′ := sup
v∈X

〈 f ,v〉
||v||X

. (3.44)

where X ′ is the dual space of the Hilbert space X . The definition of operator Ph
yieds to∫

Γ

(v−Phv)µds = 0, ∀µ ∈Mh(Γ), (3.45)

where Phv ∈Mh(Γ).
The next lemma shows the stability property of the projection operator Πh in L2(Γ)
and H1(Γ).
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Lemma 3.2 There exists a constant c,c′ > 0 such that for ∀v ∈ L2()Γ

||Πhv||0,Γ ≤ c||v||0,Γ, (3.46)

Assumed that v ∈ H1(Γ), for uniform meshes we have

|Πhv|1,Γ ≤ c′|v|1,Γ. (3.47)

Proof. See (Ju’e Yang and Yu (2005)).

Then, by an interpolation argument, the following estimate holds for any function
v in H

1
2 (Γ):

||Πhv|| 1
2 ,Γ ≤C||v|| 1

2 ,Γ. (3.48)

which C is some positive constant.

4. Analysis of Error

Now, we give an approximate property of uh.

Define the norm

||vh||=
(
||vh1 ||

2
1,Ω + ||vh2 ||

2
1,Ω1

+ ||vh3 ||
2
1
2 ,Γ1

) 1
2
, ∀vh ∈Vh. (4.49)

From the assumptions on the function p(t), we infer that Th is uniformly strongly
monotone and we obtain (see Hu and Yu (2001a))

Th(uh,uh− vh)−Th(vh,uh− vh)≥ α||uh− vh||2, ∀uh,vh ∈Vh, (4.50)

and

Th(uh,vh−u)−Th(u,vh−u)≤ β ||u−uh||1,Ω|u− vh|1,Ω, ∀vh ∈Vh. (4.51)

From the well-known second Strang’s lemma, we have

||u−uh|| ≤C inf
∀vh∈Vh

||u− vh||+C̃ sup
∀vh∈Vh

∫
Γ
⋃

Γ1
∂u
∂n [vh]ds

||vh||
(4.52)

where [vh] denotes the jump of this function through the interfaces Γ and Γ1, and
the constant C̃ is associated to coefficients p(t). We note that the first term of
the right hand of (4.52) is the best approximation error, while the second term
is the consistency error. The best approximation error can be estimated by using
interpolation inequalities for conforming finite elements and stability property of
the projection Πh; For estimation of the consistency error, we use the fact the jump
of the solution is orthogonal to the multiplier space Mh. Thus we have the following
theorem.
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Theorem 4.1 Assume that the solution u of Eq.(2.7) satisfies, for any real number
s, 1

2 < εi ≤ 1, i = 1,2,u|Ω1 ∈ H1+ε1(Ω1),u|Ω2 ∈ H1+ε2(Ω2) and u|Γ1 ∈ H
3
2 (Γ1).

Then there exists a function vh ∈Vh such that

||uh− vh||H ≤C(hε1
1 |u|1+ε,Ω1 +hε2

2 |u|1+ε2,Ω2 +h3||u||3/2,Γ1) (4.53)

where C > 0 is a constant independent of the mesh parameters hi, i = 1,3.

Proof: First, we estimate the error bound on the artificial boundary Γ. Let πhi , i =
1,2 are the Lagrange interpolation operators in Ωi, i = 1,2, respectively.

Then we define vh by

vh1 = πh1u1, vh2 = πh2u2 +Πh[πh1(u1|Γ)−πh2(u2|Γ)]

. Recalling that the projection operator Πh have been defined in (3.45), we have

〈vh1− vh2 ,µ〉 |Γ = 〈{πh1(u1|Γ)−πh2(u2|Γ)}−Πh{πh1(u1|Γ)−πh2(u2|Γ)},µ〉
Γ

= 0
(4.54)

Also, we can deal with the jump of solution in the interface Γ1. Then the trace
theorem and the stability properties of Πh lead to

inf∀vh∈Vh ||u− vh|| ≤ inf∀vh∈Vh

(
||u1− vh−1||1,Ω1 + ||u2− vh2 ||2,Ω2 + ||u3− vh3 || 12 ,Γ1

)
≤ ||u−πh1u||1,Ω1 + ||u−πh2u||2,Ω2 + ||u−πh3u|| 1

2 ,Γ1

+ ||Πh(πh1u1−πh2u2)|| 1
2 ,Γ + ||Πh(πh2u2−πh3u3)|| 1

2 ,Γ1

≤ chε1
1 ||u1||1+ε1,Ω1 + chε2

2 ||u2||1+ε2,Ω2 + ch3||u3|| 3
2 ,Γ1

(4.55)

For the second part of (4.52), the consistency error, we first fix our attention to the
interface Γ. Using the definition of the projection operators Ph and Πh, we have∣∣∣∫Γ

∂u
∂n [vh]ds

∣∣∣ =
∣∣∣∫Γ

∂u
∂n(vh1−Πhvh1

)ds
∣∣∣

=
∣∣∣∫Γ

(
∂u
∂n −Ph

∂u
∂n

)
(vh1−Πhvh1)ds

∣∣∣
≤

∣∣∣∣∣∣ ∂u
∂n −Ph

∂u
∂n

∣∣∣∣∣∣
− 1

2 ,Γ
||vh1−Πhv−h1|| 1

2 ,Γ

≤
∣∣∣∣∣∣ ∂u

∂n −Ph
∂u
∂n

∣∣∣∣∣∣
− 1

2 ,Γ

(
||vh1 || 12 ,Γ + ||vh2 || 12 ,Γ

) (4.56)
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From the Lemma 3.1 and the trace theorem for vhi we deduce that∣∣∣∫Γ

∂u
∂n [vh]ds

∣∣∣ ≤ Chε1
1

∣∣∣∣∣∣ ∂u
∂n

∣∣∣∣∣∣
1
2 +ε1

(||vh1 ||1,Ω1 + ||vh2 ||1,Ω2)

≤ Ch1||u||1+ε1,Ω1(||vh1 ||1,Ω1 + ||vh2 ||1,Ω2).
(4.57)

For the consistency error of the artificial interface Γ1 we have the error bound [see
Ju’e Yang and Yu (2005)]:∣∣∣∣∫

Γ1

∂u
∂n

[vh]ds
∣∣∣∣≤Ch3||u|| 3

2 ,Γ1
(||vh2 ||1,Ω2 + ||vh3 || 12 ,Γ1

). (4.58)

Combining (4.55), (4.57) and (4.58), we obtain the error estimate (4.53).

Remark 4.1 In order to obtain the optimal error estimation in Vh, we should bal-
ance the finite element grids in Ωi, i = 1,2 and boundary element grids in Γ1 such
that the fine mesh size hi, i = 1,3 satisfy hε1

1 ≈ hε2
2 ≈ h3.

5. Numerical examples

In this section, we give some numerical results to illustrate the theoretical results
obtained in the paper. For numerical testing we consider the circular domain Ω with
radius R and its exterior unbounded domain Ωc =R2\(Ω

⋃
∂Ω). Γ is the boundary

of Ω. First, we consider the linear case.

Example 1 Let p(t) = 1 and the exact solution of (2.1–2.2) is

Figure 3: The finite element triangulation of Ω

u(r,θ) = r2 sin2θ and uc(r,θ) =
3cosθ −15sinθ

r
(5.59)
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where (r,θ) is a polar coordinate. Substituting u,uc, p into the interface condition
(2.4), we can compute u0 and t0

u0 = r2 sin2θ |r=R−
3cosθ −15sinθ

r
|r=R, (5.60)

t0 = 2r sin2θ |r=R +
3cosθ −15sinθ

r2 |r=R. (5.61)

Now, we make a triangulation in Ω whose number of elements is NEM, associ-
ated with N nodes on Γ(see Fig3.), then independently, we divide Γ into M equal
segmental arcs. In this test we use piecewise linear finite element in Ω and take
θn = θ = 0.5 and initial guess λ 0 = 0.0. The numerical solution uh is compared
with the true solution u with respect to L2-error and H1-error, respectively, in the
tables (1-3).

Table 1: R = 2.0, N = M

N M NEM || u−uh ||0 ratio || u−uh ||1 ratio || u−uh ||∞ ratio
16 16 80 2.8399×10−1 — 2.1525 5.8073×10−2 —
32 32 288 9.2896×10−2 3.057 1.2166 1.769 1.5007×10−2 3.870
64 64 1088 2.7165×10−2 3.420 0.6562 1.854 4.8327×10−3 3.105
128 128 4224 7.3936×10−3 3.674 0.3423 1.917 1.3898×10−3 3.477

Table 2: R = 2.0,N = 2M

N M NEM || u−uh ||0 ratio || u−uh ||1 ratio || u−uh ||∞ ratio
16 8 80 3.2077×10−1 — 2.2460 2.2291×10−1 —
32 16 288 9.3626×10−2 3.426 1.2212 1.839 3.0557×10−2 7.295
64 32 1088 2.7230×10−2 3.438 0.6564 1.860 6.6575×10−3 4.898
128 64 4224 7.3968×10−3 3.681 0.3423 1.918 1.5977×10−3 4.167

We observe that the energy error is of order h and the error in the L2-norm is of
order h2.

Example 2 The exact solution is given by

u(x,y) = xy(1.0− x)(1.0− y) and uc(x,y) =
x

x2 + y2 , (5.62)
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Table 3: R = 2.0, N = 3M

N M NEM || u−uh ||0 ratio || u−uh ||1 ratio || u−uh ||∞ ratio
18 6 90 6.1633×10−1 — 2.8566 6.0748×10−1 —
36 12 324 1.1322×10−1 5.443 1.3059 2.187 1.1865×10−1 5.120
72 24 1224 2.8019×10−2 4.041 0.6627 1.971 2.6890×10−2 4.412
144 48 4752 7.2256×10−3 3.878 0.3388 1.956 6.4238×10−3 4.186

with

f (x,y) = 2(x+ y− x2− y2). (5.63)

Then we compute u0 and t0

u0(θ) =
(

1
2

sin2θ(1− r sinθ)(1− r cosθ)− cosθ

r

)
|r=R, (5.64)

t0 =
(

r sin2θ − 3
2

r2 sin2θ(cosθ + sinθ)+ r3 sin2 2θ +
cosθ

r2

)
|r=R. (5.65)

In Table (4-5) order h for the energy norm and the order h2 for the L2-norm can be
observed.

Table 4: R = 2.0,N = 2M

N M NEM || u−uh ||0 ratio || u−uh ||1 ratio || u−uh ||∞ ratio
16 8 80 4.2707 — 7.3896 1.4566 —
32 16 288 1.3731 3.110 3.7343 1.979 0.4619 3.153
64 32 1088 0.4142 3.315 1.9386 1.926 0.1403 3.292
128 64 4224 0.1203 3.443 0.9990 1.941 0.0405 3.464

Table 5: R = 2.0,N = 3M

N M NEM || u−uh ||0 ratio || u−uh ||1 ratio || u−uh ||∞ ratio
18 6 90 3.5583 — 6.7260 1.3582 —
36 12 324 1.1443 3.110 3.5378 1.901 0.4054 3.350
72 24 1224 0.3451 3.316 1.8689 1.893 0.1215 3.337
144 48 4752 0.0999 3.454 0.9695 1.928 0.0348 3.491
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Example 3 For nonlinear cases, let p(t) = 2+ 1
1+t , t > 0. Then we have

2≤ p(t)≤ 3, 2≤ p(t)+ t p′(t) = 2+
1

(1+ t)2 ≤ 3. (5.66)

Submitting p(t) to Eq.(2.1), we obtain

−2∆u−div
(

∇u
1+ |∇u|

= f (x,y)
)

. (5.67)

If we set the solution

u1(x,y) =
1
2
(x2 + y2), in Ω, (5.68)

uc(x,y) =
x

x2 + y2 , in Ωc, (5.69)

and

f (x,y) =−4− 1

1+
√

x2 + y2
− 1

(1+
√

x2 + y2)2
, (5.70)

then, we have

u0(θ)|Γ =
1
2

R2− cosθ

R
, t0(θ)|Γ = R+

cosθ

R2 . (5.71)

Table 6: R = 1.0,N = 3M

N M NEM || u−uh ||0 ratio || u−uh ||1 ratio
18 6 90 1.4761×10−1 — 0.3645
36 12 324 5.0936×10−2 2.898 0.1507 2.419
72 24 1088 1.6586×10−2 3.071 0.0713 2.114
144 48 4224 5.0892×10−3 3.259 0.0353 2.020
288 96 18720 1.3157×10−3 3.868 0.0177 1.994

The numerical solution uh is compared with the true solution u with respect to L2-
error and the energy error, respectively, in Table (6). We can observe that the error
of L2-norm is of order h2 and the energy error is of order h.

Acknowledgement: The authors would like to thank Prof. Qiya Hu for many
constructive comments. The first author was supported by the Fundamental Re-
search Funds for the Central Universities of China 860360.



328 Copyright © 2011 Tech Science Press CMES, vol.73, no.3, pp.311-329, 2011

References

Belgacem, F. B.; Maday, Y. (1999): The mortar finite element method with
Lagrange multipliers. Numer. Math., vol. 84, pp. 173–197.

C. Bernardi, Y. M.; Patera, A. (1994): A new nonconforming approach to do-
main decomposition:the mortar element method. In:Nonlinear partial differential
equations and their applications.College de France Seminar,Longman Sci. Tech.,
Harlow, vol. Vol. XI (Paris, 1989-1991), pp. 13–51.

Feng, K.; Yu, D. (1983): Canonical integral equations of elliptic boundary value
problems and their numerical solutions. Proceeding of China-France symposium
on the Finite Element Method (1982), Science Press, Beijing, pp. 211–252.

Han, H. D. (1990): A new class of variational formulations for the coupling of
finite element and boundary element methods. J. Comp. Math., vol. 8, pp. 223–
232.

Hsiao, G. (1988): The coupling of bem and fem - a brief review. Boundary
Element X 1, vol. 0, pp. 431–446.

Hu, Q. (2005): Numerical integrations and unit resolution multipliers for domain
decoposition methods with nonmatching grids. Computing, vol. 74, pp. 101–129.

Hu, Q.; Yu, D. (2001): A solution method for a certain nonlinear interface
problem in unbounded domains. Computing, vol. 67, pp. 119–140.

Hu, Q.; Yu, D. (2001): Solving singularity problems in unbounded domains by
couplings of natural bem and composite grid fem. Appl. Numer. Math., vol. 37,
pp. 127–143.

Ju’e Yang, Q. H.; Yu, D. (2005): Domain decomposition with non-matching
grids for coupling of FEM and natural BEM. J.Syst.Sci. Complex, vol. 18, pp.
529–542.

Liu, D. J.; Yu, D. H. (2008): The coupling method of natural boundary ele-
ment and mixed finite element for stationary n-s equation in unbounded domains.
CMES-Computer Modeling in Engneering & Sciences, vol. 37:3, pp. 305–330.

Mund, P.; Stephan, E. P. (1999): An adaptive two-level method for the coupling
of nonlinear fem-bem equations. SIAM J. Numer. Anal., vol. 36, pp. 1001–1021.

Wohlmuth, B. I. (2000): A mortar finite element method using dual spaces for
the Lagrange multiplier. SIAM J. Numer. Anal., vol. 38, pp. 989–1012.

Yu, D. (1983): Coupling canonical boundary element method with FEM to solve
harmonic problem over cracked domain. J. Comp. Math., vol. 1:3, pp. 195–202.



The Coupling FEM and Natural BEM 329

Yu, D. (1992): The coupling of natural BEM and FEM for Stokes problem on
unbounded domain. Numer. Math. and Appl., vol. 14:4, pp. 111–120.

Yu, D. (1993): Mathematical Theory of Natural Boundary Element Method.
Science Press, Beijing, vol. 0, pp. 0.

Yu, D. (1995): A domain decomposition method based on the natural boundary
reduction over unbounded domain. J. of Numer. Math. and Appl., vol. 17:1, pp.
95–105.

Yu, D. (1996): Discretization of non-overlapping domain decomposition method
for unbounded domains and its covergence. Math. Numer. Sinica, vol. 18:3, pp.
328–336.

Yu, D. (2002): Natural Boundary Integral Method and Its Applications. Science
Press/Kluwer Academic Publishers, vol. 0, pp. 0.

Yu, D. H.; Huang, H. Y. (2008): The artificial boundary method for a nonlinear
interface problem on unbounded domain. CMES-Computer Modeling in Engneer-
ing & Sciences, vol. 35:3, pp. 227–252.




