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Abstract: This paper aims to incorporate the node-based smoothed finite ele-
ment method (NS-FEM) into the extended finite element method (XFEM) to form
a novel numerical method (NS-XFEM) for analyzing fracture problems of 2D elas-
ticity. NS-FEM uses the strain smoothing technique over the smoothing domains
associated with nodes to compute the system stiffness matrix, which leads to the
line integrations using directly the shape function values along the boundaries of
the smoothing domains. As a result, we avoid integration of the stress singular-
ity at the crack tip. It is not necessary to divide elements cut by cracks when we
replace interior integration by boundary integration, simplifying integration of the
discontinuous approximation. The key advantage of the NS-XFEM is that it pro-
vides more accurate solutions compared to the XFEM-T3 element. We will show
for two numerical examples that the NS-XFEM significantly improves the results
in the energy norm and the stress intensity factors. For the examples studied, we
obtain super-convergent results.
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1 Introduction

The classical finite element method (FEM) is quite burdensome for modeling crack
growths because it is required to remesh and align the new mesh to the crack’s
topology. Several finite element techniques such as GFEM [Melenk and Babus̆ka
(1997); Strouboulis, Babus̆ka, and Copps (2000)] and XFEM [Belytschko and
Black (1999); Moes, Dolbow, and Belytschko (1999)] have been proposed to over-
come those difficulties. More recently, the meshfree method has been successful in
modeling static and dynamic fracture in 2-dimensions and 3-dimensions performed
in [Rabczuk and Belytschko (2004); Rabczuk and Areias (2006); Rabczuk and Eilb
(2006); Rabczuk and Belytschko (2007); Rabczuk and Bordas (2007); Rabczuk and
Samaniego (2008)].

For the problems with complex geometries, triangular or tetrahedral elements, are
usually preferred. However, FEM and XFEM based on such meshes suffer from
some difficulties:

• The XFEM based on triangular elements is too stiff.

• The XFEM requires sub-triangulation for integration increasing complexity.

• The XFEM requires the derivatives of the shape function and requires many
Gauss points for integrating the crack tip singularity.

We propose a new method to overcome those difficulties. The method is based on
the node-based smoothed finite element method (NS-FEM). Smoothing was first
used by [Chen, Wu, Yoon, and You (2000)] to stabilize nodal integration in mesh-
free method. By combining this strain smoothing technique with the finite element
methods, Liu et al. have formulated a family of smoothed FEM models named
SFEM [Liu, Nguyen, Dai, and Lam (2007); Nguyen-Thanh, Rabczuk, Nguyen-
Xuan, and Bordas (2008)], cell-based SFEM (CS-FEM) [Liu, Dai, and Nguyen
(2007); Dai, Liu, and Nguyen (2007a); Nguyen-Xuan, Bordas, and Nguyen-Dang
(2008); Bordas and Natarajan (2010); Canh, Nguyen-Xuan, Askes, Rabczuk, and
Nguyen-Vinh (2010)], node-based SFEM (NS-FEM) [Liu, Nguyen-Thoi, Nguyen-
Xuan, and Lam (2009); Nguyen-Thoi, Vu-Do, Rabczuk, and Nguyen-Xuan (2010);
Nguyen-Xuan, Rabczuk, Nguyen-Thanh, Nguyen-Thoi, and Bordas (2010)], edge-
based SFEM (ES-FEM) [Liu, Nguyen-Thoi, and Lam (2009)], face-based SFEM
(FS-FEM) [Nguyen-Thoi, Liu, Lam, and Zhang (2009), alpha-FEM Nguyen-Thanh,
Rabczuk, Nguyen-Xuan, and Bordas (2009, 2010)]. In all of these methods, smooth-
ing strain operations are performed over smoothing domains to compute the system
stiffness matrix.
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In NS-FEM, the system stiffness matrix is calculated by using strain smoothing
technique over the cells associated with nodes. As a result, line integration is used
along the edges of the smoothing cells instead of volume integration. Moreover, no
mapping is needed in the NS-FEM and only the shape functions themselves need
to be computed, not their derivatives. It was also shown that the results are less
sensitive for distorted elements.

In this paper, we propose a novel numerical method that exploits this special prop-
erty of the line integration in the NS-XFEM. The system stiffness matrix is com-
puted directly from the special basis shape functions along the boundaries of the
smoothing domains. The combination of the NS-FEM and the XFEM can alleviate
some of the following difficulties:

1. Simplify integration of discontinuous functions by transforming domain in-
tegration on Gauss points into boundary integration by using the divergence
theorem. Consequently, there is no need to integrate the 1/

√
r term.

2. The functions to be integrated remain non-polynomial, and optimized one-
dimensional integration techniques for these functions are promising routes
to increase the accuracy of XFEM.

3. Insensibility to mesh distortion.

4. No subtriangulation is needed for integration reducing complexity.

5. Inherit robustness and accuracy of the triangular NS-FEM.

The paper is outlined as follows. In the next section, we briefly present the basic
equations of the NS-FEM. The methodology for coupling NS-FEM and XFEM
will be explained in Section 3. Section 4 confirms the accuracy, efficiency and
convergence properties of the present method by benchmark problems taken from
linear elastic fracture mechanics. Finally, we end the manuscript with concluding
remarks and future work.

2 Brief on the node-based smoothed FEM (NS-FEM)

In NS-FEM, the domain is discretized using elements, as in the FEM. However,
instead of using the compatible strains, we utilize the "smoothed" strains over the
domain Ω divided into a set of smoothing domains Ns as shown in Figure 1 asso-
ciated with nodes bounded by Ωs

k, which satisfy the conditions Ω =
⋃Nn

k=1 Ωs
k and

Ωs
i ∩Ωs

j = /0, ∀ i 6= j, in which Nn is the total number of nodes in the element mesh.
In this case, Ns = Nn. The node-based smoothing domains are employed to smooth
the strain field and calculate the stiffness matrix. For the triangular elements, the
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smoothing domains Ωs
k associated with the node k are formed by connecting se-

quentially the mid-edge-point to the central points (centroids) of the surrounding
triangular elements of the node k, as illustrated in Figure 2.

Figure 1: Division of problem domain Ω into non-overlapping smoothing domains
Ωs

k for xk

Introducing the node-based smoothing operation, the compatible strain εεε = ∇suh
k

is smoothed over the cell Ωk associated with node k:

ε̄εεk =
∫
Ωs

k

εεε(x)Φk(x)dΩ =
∫
Ωs

k

∇suh(x)Φk(x)dΩ (1)

where Φk(x) is a given smoothing function that satisfies the following property∫
Ωk

s

Φk(x)dΩ = 1 (2)

Using a constant smoothing function

Φ =
{

1/As
k x ∈Ωs

k
0 x /∈Ωs

k
(3)

It can be shown that

ε̄εεk =
1
As

k

∫
Ωs

k

∇suh(x)dΩ =
1
As

k

∫
Γs

k

Lnuh(x)dΓ (4)
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Figure 2: Construction of node-based strain smoothing domains and support do-
main wi

where As
k =

∫
Ωs

k

dΩ is the area of the smoothing domain Ωs
k, Γs

k is the boundary of

the smoothing domain Ωs
k, and Ln is a matrix comprising of normal components,

and is expressed as:

Ln =

nx 0
0 ny

ny nx

 (5)

The discretized strain field ε̄εεk is computed through the so-called smoothed dis-
cretized gradient operator or smoothed strain displacement operator, B̄.

ε̄εεk = ∑
I∈ns

k

B̄I (xk) d̄I (6)

where d̄I are the unknown displacement coefficients defined at the nodes of the
finite element, ns

k is the set of nodes associated to the smoothing domain Ωs
k. The

smoothed element stiffness matrix for element e is computed by the sum of the
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contributions of the subcells

K̄IJ =
Ns

∑
k=1

K̄s
IJ,k =

Ns

∑
k=1

∫
Ωs

k

B̄T
I DB̄JdΩ =

Ns

∑
k=1

B̄T
I DB̄JAs

k (7)

where B̄I(xk) is the smoothed strain gradient matrix:

B̄I (xk) =

 b̄Ix (xk) 0
0 b̄Iy (xk)

b̄Iy (xk) b̄Ix (xk)

 (8)

with

b̄Ih (xk) =
1
As

k

∫
Γs

k

nh (x)NI (x)dΓ ; h = x, y (9)

Eq. (9) is now evaluated by line integration along the boundary Γs
k of the smooth-

ing domain Ωs
k. Only the shape function itself is needed to compute the strain dis-

placement matrix leading to simple computations for integration of discontinuous
functions in XFEM.

3 Nodal-based smoothed extended finite element method (NS-XFEM)

3.1 Displacement and Strain Field

XFEM is based on a local partition of unity. For the case of linear elastic frac-
ture mechanics (LEFM), two sets of enrichment functions are utilized: a Heavi-
side function to account for the jump across the crack faces and asymptotic branch
(near-tip) functions [Belytschko and Black (1999); Rabczuk and Wall (2006)]:

uh(x) = ∑
I∈Nns− f em

NI(x)dI︸ ︷︷ ︸
ustandard

+ ∑
J∈Nns−c

NJ(x)H(x)aJ + ∑
K∈Nns− f

NK(x)
4

∑
α=1

Φα(x)bα
K︸ ︷︷ ︸

uenr

(10)

where NI(x), NJ(x) and NK(x) are finite element shape functions whose support
domain is shown in Figure 2, while dI are nodal degrees of freedom associated
with node I , aJ and bK are additional nodal degrees of freedom corresponding to
the Heaviside function H(x) and the near-tip functions, {Φα}16α64, respectively.

Nodes in set Nns−c are such that their support is split by the crack and nodes in
set Nns− f belong to the smoothing domains that contain a crack tip. These nodes
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are enriched with the Heaviside and asymptotic branch function fields depicted
with squares and circles, respectively, in Figure 5. A set of nodes Nns− f em whose
support domain associated with a node of NS-FEM is illustrated in Figure 2.

Now we show how to create the support domain in NS-XFEM. Therefore, we de-
termine the node-based smoothing domains in which at least one x exists such that
NI(x) > 0, where NI(x) is the shape function associated with node I. The smoothing
domain corresponding to the inner node k, Ωs

k, is combined from six sub-domains
(sub-parts) of elements containing this node. Therefore, the domain Ωs

k, can be
considered to be the smoothing domain of seven nodes from six neighbouring ele-
ments: (1) one connectivity node of six neighbouring elements; (2) six remaining
points of neighbouring elements. These seven nodes are called the associated nodes
of smoothing domain Ωs

k. The same procedure is applied for the smoothing domain
associated with nodes located on the boundary of the domain. The shape of node-
based smoothing domains is illustrated in Figure 2 in which FGHMN, ABCDE
are associated nodes of smoothing domain Ωs

k and Ωs
m, respectively. The support

domain of node I is shown by the hatched region in Figure 2.

In NS-XFEM, Heaviside enriched degrees of freedom are added to nodes in Nns−c

whose support domain is split by the crack and tip enriched degrees of freedom
are added to nodes in set Nns− f whose support domain contains the crack tip.
These nodes are depicted by squares and circles, respectively, as shown in Fig-
ure 5. According to the chosen nodes, squared nodes are enriched by the step func-
tion whereas the circled nodes are enriched by the branch tip functions. In order
to keep the convergence rate as high as possible, a so called geometric enrichment
should be used that is independent from the discretization [Laborde, Pommier, Re-
nard, and Salaun (2005)]. The H(x) function is given by [Moes, Dolbow, and
Belytschko (1999); Rabczuk and Belytschko (2004)].

H(x) =
{

1 (x−x∗) ·n > 0
−1 otherwise

(11)

where x∗ is a point on the crack surface, see Figure 3

The near tip enrichment consist of functions which incorporate the radial and an-
gular behaviours of the two-dimensional asymptotic crack-tip displacement field
[Moes, Dolbow, and Belytschko (1999); Rabczuk and Bordas (2007); Bordas, Rabczuk,
Nguyen-Xuan, Nguyen-Vinh, Natarajan, Bog, Do-Minh, and Nguyen-Vinh (2008)]:

{Φα}16α64 =
√

r
{

sin
(

θ

2

)
,cos

(
θ

2

)
,sin(θ)sin

(
θ

2

)
,sin(θ)cos

(
θ

2

)}
(12)

where r and θ are polar coordinates in the local crack-tip coordinate system, see
Figure 4.
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Figure 3: Normal and tangential coordinates for a crack

Figure 4: Polar coordinate system associated with a crack tip

In order to keep the enrichment domain narrow, we use a shifting

uh(x) = ∑
I∈Nns− f em

NI(x)dI + ∑
J∈Nns−c

NJ(x)(H(x)−H(xJ))aJ

+ ∑
K∈Nns− f

NK(x)
4
∑

α=1
(Φα(x)−Φα(xK))bα

K

(13)

The shifting also circumvents problems due to blending for the Heaviside enrich-
ment but not for the tip enrichment.

Applying the node-based smoothing operation, the smoothed strain associated with
node k can be written as:

ε̄εεk = ∑
I∈Ns

k

B̄u
I (xk)d̄I + ∑

J∈Nns−c
B̄a

J(xk)(H(x)−H(xJ))aJ

+ ∑
k∈Nns− f

B̄b
K(xk)

4
∑

α=1
(Φα(x)−Φα(xK))bα

K

(14)

where Ns
k is the set of nodes associated with the smoothing domain Ωs

k, B̄u
I (xk) is the

smoothed strain gradient matrix for the standard NS-FEM part, and B̄a
I (xk), B̄b

I (xk)
correspond to the enriched parts of the smoothed strain gradient matrix associated
with the Heaviside and branch functions, respectively. These matrixes operations
can be written as follows:
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B̄r
I (xk) =

 b̄r
Ix(xk) 0

0 b̄r
Iy(xk)

b̄r
Iy(xk) b̄r

Ix(xk)

 r = u, a, b (15)

B̄u
I =

∫
Γs

k

1
As

k

 nxNI 0
0 nyNI

nyNI nxNI

dΓ

B̄a
I =

∫
Γs

k

1
As

k

 nx [NI (H(x)−H(xI))] 0
0 ny [NI (H(x)−H(xI))]

ny [NI (H(x)−H(xI))] nx [NI (H(x)−H(xI))]

dΓ

B̄b
I =

∫
Γs

k

1
As

k

 nx [NI(xm,n)(Φα(x)−Φα(xI))] 0
0 ny[NI(xm,n)(Φα(x)−Φα(xI))],y

ny[NI(xm,n)(Φα(x)−Φα(xI))],y nx[NI(xm,n)(Φα(x)−Φα(xI))],x

dΓ

(α = 1, 2, 3 and 4)
(16)

Using Gauss-Legendre integration along Γs
k, we obtain:

B̄u
I =

1
As

k



Nseg

∑
m=1

(
Ngau

∑
n=1

nx(xm,n)NI(xm,n)wm,n

)
0

0
Nseg

∑
m=1

(
Ngau

∑
n=1

ny(xm,n)NI(xm,n)wm,n

)
Nseg

∑
m=1

(
Ngau

∑
n=1

ny(xm,n)NI(xm,n)wm,n

)
Nseg

∑
m=1

(
Ngau

∑
n=1

nx(xm,n)NI(xm,n)wm,n

)



B̄a
I =

1
As

k

 M1 0
0 M2

M2 M1


in which

M1 =
Nseg

∑
m=1

(
Ngau

∑
n=1

nx(xm,n)NI(xm,n)×
×(H(xm,n)−H(xI))wm,n

)

M2 =
Nseg

∑
m=1

(
Ngau

∑
n=1

ny(xm,n)NI(xm,n)×
×(H(xm,n)−H(xI))wm,n

)
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B̄b
I =

1
As

k

 M3 0
0 M4

M4 M3

 (17)

in which

M3 =
Nseg

∑
m=1

(
Ngau

∑
n=1

nx(xm,n)NI(xm,n)×
×(Φα(b f xm,n)−Φα(xI))wm,n

)

M4 =
Nseg

∑
m=1

(
Ngau

∑
n=1

ny(xm,n)NI(xm,n)×
×(Φα(x)−Φα(xI))wm,n

)
(α = 1, 2, 3 and 4)

where Nneg is the number of segments of the boundary Γs
k, Ngau is the number of

Gauss points used in each segment, wm,n is the corresponding Gauss weights, nx, ny

are the outward unit normal components to each segment on the smoothing domain
boundary and xm,n is the n-th Gaussian point on the m-th segment of the boundary
Γs

k.

3.2 Weak form and discrete equation

The smoothed Galerkin weak form is given by:

Find uh ∈V,∀δuh ∈V0 such that∫
Ω

δ (ε̄εε(uh))TD(ε̄εε(uh))dΩ−
∫
Ω

(δuh)TbdΩ−
∫
Γ

(δuh)TtΓ dΓ = 0 (18)

with V = {u | u ∈ H1(Ω\Γc), u = ū on Γu, u discontinuous on Γc}
and V0 = {δu | δu ∈ H1(Ω\Γc), δu = 0 on Γu, δu discontinuous on Γc}
Substituting the trial and test function into Eq. (18), we finally obtain the well-
known equation:

K̄d̄ = f (19)

where f is the nodal force vector that is identical to that in the standard XFEM. The
smoothed enriched stiffness matrix K̄ for all sub-cells is computed by:

K̄IJ =
Ns

∑
k=1

K̄s
IJ,k

=
Ns

∑
k=1



∫
Ωs

k

(B̄u
I )

TDB̄u
JdΩ

∫
Ωs

k

(B̄u
I )

TDB̄a
JdΩ

∫
Ωs

k

(B̄u
I )

TDB̄b
JdΩ∫

Ωs
k

(B̄a
I )

TDB̄u
JdΩ

∫
Ωs

k

(B̄a
I )

TDB̄a
JdΩ

∫
Ωs

k

(B̄a
I )

TDB̄b
JdΩ∫

Ωs
k

(B̄b
I )

TDB̄u
JdΩ

∫
Ωs

k

(B̄b
I )

TDB̄a
JdΩ

∫
Ωs

k

(B̄b
I )

TDB̄b
JdΩ


(20)
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In NS-XFEM, the stiffness matrix in Eq. (20) can therefore be rewritten as:

K̄IJ =
Ns

∑
k=1

K̄s
IJ,k =

Ns

∑
k=1

 (B̄u
I )

TDB̄u
JAs

k (B̄u
I )

TDB̄a
JAs

k (B̄u
I )

TDB̄b
JAs

k

(B̄a
I )

TDB̄u
JAs

k (B̄a
I )

TDB̄a
JAs

k (B̄a
I )

TDB̄b
JAs

k

(B̄b
I )

TDB̄u
JAs

k (B̄b
I )

TDB̄a
JAs

k (B̄b
I )

TDB̄b
JAs

k

 (21)

3.3 Numerical integration

3.3.1 Numerical integration for the XFEM.

There are four types of elements used for numerical integration as mentioned in
[Bordas, Rabczuk, Nguyen-Xuan, Nguyen-Vinh, Natarajan, Bog, Do-Minh, and
Nguyen-Vinh (2008)]:

• Tip elements contain the crack tip. All nodes belonging to a tip element are
enriched with the branch functions, Eq. (12).

• Split elements are elements completely cut by the crack. Their nodes are enriched
with the step function, Eq. (11).

• Tip-blending elements are elements neighboring tip elements. Some of their
nodes are enriched with branch functions, while others are not enriched at
all.

• Split-blending elements are elements neighboring split elements. Some of their
nodes are enriched with the Heaviside function, while others are not en-
riched.

• Standard elements are elements that are in neither of the above categories. None
of their nodes are enriched.

Since the approximation differs from element to element, different integration pa-
rameters are used. For XFEM built on T3 elements, we chose the following Gauss
quadrature rules as [Bordas, Rabczuk, Nguyen-Xuan, Nguyen-Vinh, Natarajan,
Bog, Do-Minh, and Nguyen-Vinh (2008)]

1. Tip elements: 7 Gauss points for each sub-element.

2. Split elements: 1 Gauss points for each sub-element.

3. Tip-blending elements: 7 Gauss points.

4. Split-blending elements: 1 Gauss point.

5. Standard elements: 1 Gauss point.
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3.3.2 Numerical integration for the NS-XFEM.

There are five types of smoothing domains (sd) as shown in Figure 5:

Figure 5: Illustration of node-based smoothing domain (sd) and node categories in
NS-XFEM in term of the support domain of nodal shape function

• Tip smoothing domains contain a crack tip. All nodes are enriched with branch
functions.

• Split smoothing domains are completely cut by a crack surface, and their nodes
are enriched with the Heaviside function.

• In Tip-blending smoothing domains, one or more nodes are enriched with branch
functions, and others are not enriched at all.
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• Split-blending smoothing domains contain step enriched nodes and not enriched
nodes

• Standard smoothing domains are smoothing domains that are in none of the
above categories. None of their nodes are enriched.

(i) Split smoothing domains: To perform Gauss integration for split smoothing
domains, it is inevitable to divide them into several triangles and then use
the familiar quadrature rules. However, the complex interior integration can
be replaced by boundary integration which can be implemented on polyg-
onal boundaries of sub-domains [Bordas, Rabczuk, Nguyen-Xuan, Nguyen-
Vinh, Natarajan, Bog, Do-Minh, and Nguyen-Vinh (2008)]. One Gauss point
on each boundary segment for split smoothing domains is sufficient. The
scheme of partitioning the split smoothing domain is shown in Figure 6.

(ii) Split-blending smoothing domains: Partitioning of smoothing domains is not
necessary. One Gauss point on each boundary segment is sufficient.

(iii) Tip smoothing domains: Special care has to be taken. Simply splitting the
smoothing domains into sub-domains is not sufficient to guarantee accurate
results [Laborde, Pommier, Renard, and Salaun (2005)]. A higher integration
density should be used close to crack tip. We propose the following proce-
dure: (1) Splitting the smoothing domain into triangles as shown in Figure 7;
(2) Dividing triangle into nsc sub-cells (also triangles) following the rules
giving in Figure 8. Figure 7 shows the sub-cells after dividing sub-sd1 and
sub-sd3 with nsc = 3, e.g., sub-sd1 is split into sc1, sc2 and sc3; and sub-sd3
is split into sc4, sc5 and sc6; (3) The numerical integration is then performed
on boundaries of triangular cells.

When we perform boundary integration along the crack face over sub-cells
whose boundary segments coincide with the crack surface, so-called c-sub-
cells are used as illustrated in Figure 7. For example two c-sub-cells that
share a boundary segment along the crack surface 79 are used (sc3 and sc6).
Although the values of discontinuous function, H(x), or branch functions,
Φα(x) for both c-sub-cells are the same, the displacement between two sides
of crack has a jump and it is obviously not compatible with the above cal-
culations. A remedy for this problem is proposed in which we calculate the
values of the enrichment H(x) and branch functions, Φα(x) at the center
instead of Gauss points on the side of this sub-cell.

Numerical experiments [Chen, Rabczuk, Liu, Zeng, Kerfriden, and Bordas
(2010)] suggest that eight smoothing cells in a smoothing domain (nsc = 8),
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and five Gauss points on a segment of smoothing cells (nsc = 5) are sufficient.
This rule is also used in this paper.

(iv) Tip-blending smoothing domains: no partition is required, and we also use
eight smoothing cells in a smoothing domain with five Gauss points on each
boundary segment.

(v) Standard smoothing domains are computed as in NS-FEM.

Figure 6: Partitioning split smoothing domain into triangular sub-domains (trian-
gles)

3.4 Stress intensity factor

Fracture parameters such as mode I and mode II stress intensity factors (SIFs) are
determined using the domain form [Li, Shih, and Needleman (1985); Moran and
Shih (1987)] of the interaction integral [Yau, Wang, and Corten (1980)]. All the
finite elements within a radius of rd = rkhe from the crack-tip are selected. Here,
he is the crack-tip element size and rk is a scalar.
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Figure 7: Partitioning tip smoothing domain into triangular sub-domains(triangles)

4 Numerical results

4.1 Plate with edge-crack under tension

Consider a plate under uniaxial tension as shown in Figure 9. Plate’s dimension is
mm. The material parameters are Young’s modulus E = 3× 107Pa and Poisson’s
ratio ν = 0.3; plane strain conditions are assumed. The reference mode I SIF is
given by:

Kexact
I = F

(a
b

)
σ
√

aπ = 1.6118Pa
√

mm (22)

where a = 0.3 is the crack length, b is the plate width and F(a
b) is given by

F
(a

b

)
= 1.12−0.231

(a
b

)
+10.55

(a
b

)2
−21.72

(a
b

)3
+30.39

(a
b

)4
(23)

The strain energy and the error in the energy norm are defined as:

E(Ω) =
1
2

∫
Ω

εεε
T DεεεdΩ (24)
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Figure 8: Division of a sub-smoothing domain into sub-smoothing cells (a)nsc =
1; (b)nsc = 2; (c)nsc = 3; (d)nsc = 4; (e)nsc = 6; (f)nsc = 8

Figure 9: Plate with edge crack under tension
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ee =

∣∣∣∣∣∣
Enum

(Ω) −Ere f
(Ω)

Ere f
(Ω)

∣∣∣∣∣∣
1/2

(25)

ek =

∣∣∣∣∣Knum
si f −Kre f

si f

Kre f
si f

∣∣∣∣∣
1/2

×100%, si f = I, II (26)

where the superscript "ref" denotes the exact or reference solution, and "num" de-
notes the numerical solution.
We subsequently consider the following NS-XFEM formulations:
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Figure 10: Strain energy for the plate with edge crack under tension

• NS-XFEM(4t) with Heaviside enrichment and tip enrichment Φ, Eq. (12).

• NS-XFEM(1t) with Heaviside enrichment and branch enrichment Φ =
√

r sin θ

2
(the last three terms in Eq. (12) are omitted Rabczuk and Zi (2007)).

• NS-XFEM(0t) with only Heaviside enrichment but without branch tip enrich-
ment.

The results of the NS-XFEM are compared with those of the ES-XFEM [Liu, Chen,
Nguyen-Thoi, Zeng, and Zhang (2010)] and the XFEM-T3 (the "standard" XFEM
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Figure 11: The convergence in the energy norm vs. h (mesh size) for the plate with
edge crack under tension
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Figure 12: The convergence in the stress intensity factor KI vs. h (mesh size) for
the plate with edge crack under tension
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formulation) with full tip enrichment. Both, ES-XFEM and XFEM-T3, employ
the Heaviside enrichment and the full tip enrichment of Eq. (12). Figure 10 shows
that the strain energy of NS-XFEM(4t) and NS-XFEM(1t) models is closer to the
reference value compared to the ES-XFEM. The NS-XFEM(0t) results in an upper-
bound solution. We note that the tip enriched NS-XFEM formulations does not
result in an upper bound solution. The convergence rates in terms of the strain
energy norm and SIF KI for different numerical methods are depicted in Figure 11
and Figure 12. The NS-XFEM (4t) achieves super-convergent results and is more
accurate than both ES-XFEM and XFEM-T3. The NS-XFEM (1t) almost produces
the same results as the ES-XFEM.

4.2 Plate with edge-crack under shear

Figure 13: Plate with edge crack under shear

In this example, we consider the edge crack geometry subjected to a shear load as
shown in Figure 13. The material parameters are Young’s modulus E = 3×107Pa
and Poisson’s ratio ν = 0.25. The exact stress intensity factors for this load case
are given [Yau, Wang, and Corten (1980)] by

KI = 34.0Pa
√

mm;KII = 4.55Pa
√

mm (27)
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Figure 14: Strain energy for plate with edge crack under shear
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Figure 15: The convergence in the energy norm vs. h (mesh size) for plate with
edge crack under shear



A Node-Based Smoothed eXtended Finite Element Method 351

−0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Log
10

(h)

Lo
g 10

(e
k)

 

 
NS−XFEM(4t) R=0.85
NS−XFEM(1t) R=0.67
NS−XFEM(0t) R=0.36
ES−XFEM R=0.34
XFEM−T3 R=0.58

Figure 16: The convergence in the stress intensity factor KI vs. h (mesh size) for
plate with edge crack under shear
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Figure 17: The convergence in the stress intensity factor KII vs. h (mesh size) for
plate with edge crack under shear
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The results from Figure 14 to Figure 17 show that the NS-XFEM (1t) and NS-
XFEM (4t) results are more accurate than those of ES-XFEM and XFEM-T3. NS-
XFEM(4t) maintains superconvergent solutions and the NS-XFEM(0t) produces an
upper bound solution in the strain energy.

5 Conclusions

We presented a novel numerical method called NS-XFEM that combines NS-FEM
and XFEM for analysis of two-dimensional linear elastic fracture problems. Some
benchmarks examples were performed and we computed the convergence rate in
terms of strain energy and stress intensity factor. The results of NS-XFEM were
then compared to those of ES-XFEM and the standard XFEM-T3. It was shown
that the NS-XFEM can produce superconvergent solutions. The present method
also simplifies the integration of discontinuous approximation by transforming in-
terior integration into boundary integration. More importantly, no derivatives of
shape functions are needed to compute the stiffness matrix. As a result, the integra-
tion of singular functions is avoided when the Westergaard solution is inserted into
the approximation.

Future applications of NS-XFEM may include complex problem such as the fail-
ure of concrete under large deformations, multiple crack initiation and propagation
[Rabczuk, Zi, Bordas, and Nguyen-Xuan (2008)] and branching in 3D [Rabczuk
and Bordas (2007); Bordas, Rabczuk, and Zi (2008)].This will be studied in the
future.
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