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An Iterative Algorithm for Solving a System of Nonlinear
Algebraic Equations, F(x) = 0, Using the System of ODEs

with an Optimum α in ẋ = λ [αF+(1−α)BTF];
Bi j = ∂Fi/∂x j
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Abstract: In this paper we solve a system of nonlinear algebraic equations
(NAEs) of a vector-form: F(x) = 0. Based-on an invariant manifold defined in
the space of (x, t) in terms of the residual-norm of the vector F(x), we derive a sys-
tem of nonlinear ordinary differential equations (ODEs) with a fictitious time-like
variable t as an independent variable: ẋ = λ [αF+(1−α)BTF], where λ and α are
scalars and Bi j = ∂Fi/∂x j. From this set of nonlinear ODEs, we derive a purely
iterative algorithm for finding the solution vector x, without having to invert the
Jacobian (tangent stiffness matrix) B. Here, we introduce three new concepts of
attracting set, bifurcation and optimal combination, which are controlled by two
parameters γ and α . Because we have derived all the related quantities explicitly in
terms of F and its differentials, the attracting set, and an optimal α can be derived
exactly. When γ changes from zero to a positive value the present algorithms un-
dergo a Hopf bifurcation, such that the convergence speed is much faster than that
by using γ = 0. Moreover, when the optimal α is used we can further accelerate the
convergence speed several times. Some numerical examples are used to validate the
performance of the present algorithms, which reveal a very fast convergence rate
in finding the solution, and which display great efficiencies and accuracies than
achieved before.
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1 Introduction

In this paper we develop a simple and novel iterative method to solve a system of
nonlinear algebraic equations (NAEs): Fi(x1, . . . ,xn) = 0, i = 1, . . . ,n, or in their
vector-form:

F(x) = 0. (1)

Different strategies may be used to solve Eq. (1) for x, such as by introducing a
fictitious time-like variable t in Eq. (1), and converting it to an initial value problem.
Thus, one may obtain the solution x of Eq. (1) as the steady state solution of the
following system of nonlinear ODEs:

ẋ =−F(x), or ẋ = F(x), (2)

which in general will lead to a divergence of the solution. Ramm (2007) has pro-
posed such a lazy-bone method, and Deuflhard (2004) a continuation method for
solving the second equation in Eq. (2), and called it a pseudo-transient continuation
method. Nevertheless, they always lead to the wrong solution of F(x) = 0.

Hirsch and Smale (1979) have derived a so-called continuous Newton method, gov-
erned by the following nonlinear ODEs:

ẋ(t) =−B−1(x)F(x), (3)

where B is the Jacobian matrix with its i j-component being given by Bi j = ∂Fi/∂x j.
It can be seen that the ODEs in Eq. (3) are quite difficult to compute, because they
involve an inverse matrix B−1. Usually it is not in practical to derive a closed-form
solution of Eq. (3); hence a numerical scheme, such as the Euler method, should be
employed to integrate Eq. (3).

In order to eliminate the need for inverting the Jacobian matrix in the iteration
procedure, Liu and Atluri (2008) have proposed an alternate first-order system of
nonlinear ODEs:

ẋ =− ν

q(t)
F(x), (4)

where ν is a nonzero constant and q(t) may in general be a monotonically increas-
ing function of t. In their approach, the term ν/q(t) plays the major role of being
a stabilizing controller to help one obtain a solution even for a bad initial guess of
the solution, and speed up the convergence. Liu and his coworkers showed that
high performance can be achieved by using the above Fictitious Time Integration
Method (FTIM) together with the group-preserving scheme [Liu (2001); Liu (2008,
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2009a, 2009b, 2009c); Liu and Chang (2009)]. In spite of its success, the FTIM has
only a local convergence, and the solutions depend on different viscous damping
coefficients being used for different equations in the same problem. Atluri, Liu and
Kuo (2009) have combined the above two methods, and proposed a modification of
the Newton method, which does not need the inversion of Bi j.

To remedy the shortcoming of the vector homotopy method as initiated by Davi-
denko (1953), Liu, Yeih, Kuo and Atluri (2009) have proposed a scalar homotopy
method with the following evolution equation for x:

ẋ =−
∂h
∂ t

‖ ∂h
∂x‖2

∂h
∂x

, (5)

where

h(x, t) =
1
2
[t‖F(x)‖2− (1− t)‖x‖2], (6)

∂h
∂ t

=
1
2
[‖F(x)‖2 +‖x‖2], (7)

∂h
∂x

= tBTF− (1− t)x. (8)

Ku, Yeih and Liu (2010) combined this idea with an exponentially decaying scalar
homotopy function, and developed a manifold-based exponentially convergent al-
gorithm (MBECA):

ẋ =− ν

(1+ t)m
‖F‖2

‖BTF‖2 BTF. (9)

As pointed out by Liu and Atluri (2011), two major drawbacks appeared in the
MBECA: irregular bursts and flattened behavior appear in the trajectory of the
residual-error.

For the development of stable and convergent numerical algotithms for solving
NAEs, it is of utmost importance to build a framework to define the evolution
equations on a suitable manifold. Liu, Yeih, Kuo and Atluri (2009) were the first
to construct a manifold based on a scalar homotopy function, and a method based
on the concept of "normality" and "consistency condition" is derived for solving
the NAEs. Unfortunately, even such an algorithm is globally convergent, but its
convergence speed is terribly slow. Later, Ku, Yeih and Liu (2010) first constructed
a more relevant manifold model directly based on the Euclidean-norm ‖F‖ of the
residual vector of F(x) in Eq. (1).

Recently, Liu and Atluri (2011) pointed out the limitations of the ‖F‖-based algo-
rithms, and proposed three new algorithms which are purely iterative in nature. In
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this paper we introduce a novel and very simple iterative algorithm, which can be
easily implemented to solve NAEs. The present algorithm can overcome the many
drawbacks as observed in all the above algorithms.

The remainder of this paper is arranged as follows. In Section 2 we give a theoret-
ical basis of the present algorithm. We start from a continuous manifold defined in
terms of residual-norm, and arrive at a system of ODEs driven by a vector, which
is a combination of the vectors F and BTF, where B is the Jacobian. Section 3 is
devoted to deriving a scalar equation to keep the discretely iterative orbit on the
manifold, and then we propose two new concepts of bifurcation and optimization
to select the weighting factor and optimal parameter α , which automatically have a
convergent behavior of the residual-error curve. In Section 4 we give six numerical
examples to test the present algorithms with different weighting factors and combi-
nation parameters. Finally, the many advantages of the newly developed algorithms
are emphasized in Section 5.

2 New definition for an invariant manifold, and a new evolution equation for
ẋ, involving both F and BTF

For the nonlinear algebraic equations (NAEs) in Eq. (1), we can formulate a scalar
Newton homotopy function:

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2
‖F(x0)‖2 = 0, (10)

where, we let x be a function of a fictitious time-like variable t, and its initial value
is x(0) = x0.

We expect h(x, t) = 0 to be an invariant manifold in the space of (x, t) for a dynam-
ical system h(x(t), t) = 0 to be specified further. When Q > 0, the manifold defined
by Eq. (10) is continuous, and thus the following operation of differential carried
out on the manifold makes sense. As a "consistency condition", by taking the time
differential of Eq. (10) with respect to t and considering x = x(t), we have

1
2

Q̇(t)‖F(x)‖2 +Q(t)(BTF) · ẋ = 0. (11)

We suppose that the evolution of x is driven by a vector u:

ẋ = λu, (12)

where λ in general is a scalar function of t, and

u = αF+(1−α)BTF (13)
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is a suitable combination of the residual vector F as well as the gradient vector BTF,
and α is a parameter to be optimized below. As compared to Eqs. (4) and (9), the
vector field in Eq. (12) is a compromise between F and BTF as shown in Eq. (13).

Inserting Eq. (12) into Eq. (11) we can derive

ẋ =−q(t)
‖F‖2

FTv
u, (14)

where

A := BBT, (15)

v := Bu = v1 +αv2 = AF+α(B−A)F, (16)

q(t) :=
Q̇(t)

2Q(t)
. (17)

Hence, in our algorithm if Q(t) can be guaranteed to be a monotonically increasing
function of t, we may have an absolutely convergent property in solving the NAEs
in Eq. (1):

‖F(x)‖2 =
C

Q(t)
, (18)

where

C = ‖F(x0)‖2 (19)

is determined by the initial value x0. We do not need to specify the function Q(t)
a priori, but

√
C/Q(t) merely acts as a measure of the residual error of F in time.

Hence, we impose in our algorithm that Q(t) > 0 is a monotonically increasing
function of t. When t is large, the above equation will force the residual error
‖F(x)‖ to tend to zero, and meanwhile the solution of Eq. (1) is obtained approxi-
mately.

3 Dynamics of the present iterative algorithms

3.1 Discretizing, yet keeping x on the manifold

Now we discretize the foregoing continuous time dynamics embodied in Eq. (14)
into a discrete time dynamics:

x(t +∆t) = x(t)−β
‖F‖2

FTv
u, (20)
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where

β = q(t)∆t (21)

is the steplength. Eq. (20) is obtained from the ODEs in Eq. (14) by applying the
Euler scheme.

In order to keep x on the manifold defined by Eq. (18), we can consider the evolu-
tion of F along the path x(t) by

Ḟ = Bẋ =−q(t)
‖F‖2

FTv
v. (22)

Similarly we use the Euler scheme to integrate Eq. (22), obtaining

F(t +∆t) = F(t)−β
‖F‖2

FTv
v, (23)

Taking the square-norms of both the sides of Eq. (23) and using Eq. (18) we can
obtain

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖F‖2

(FTv)2 ‖v‖
2. (24)

Thus we can derive the following scalar equation:

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (25)

where

a0 :=
‖F‖2‖v‖2

(FTv)2 . (26)

As a result h(x, t) = 0, t ∈ {0,1,2, . . .} remains to be an invariant manifold in the
space of (x, t) for the discrete time dynamical system h(x(t), t) = 0, which will be
explored further in the next two sections. Liu and Atluri (2011) first derived the
formula (26) for a purely gradient-vector driven dynamical system.

3.2 A trial discrete dynamics

Now we specify the discrete time dynamics h(x(t), t) = 0, t ∈ {0,1,2, . . .}, through
specifying the discrete time dynamics of Q(t), t ∈ {0,1,2, . . .}. Note that discrete
time dynamics is an iterative dynamics, which in turn amounts to an iterative algo-
rithm.
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We first try the Euler scheme:

Q(t +∆t) = Q(t)+ Q̇(t)∆t. (27)

Then from Eq. (17) we have

β = q(t)∆t =
1
2
[R(t)−1], (28)

where the ratio R(t) is defined by

R(t) =
Q(t +∆t)

Q(t)
. (29)

As a requirement of Q̇(t) > 0, we need R(t) > 1.

Thus, through some manipulations, Eq. (25) becomes

a0R3(t)− (2a0 +4)R2(t)+(a0 +8)R(t)−4 = 0, (30)

which can be further written as

[R(t)−1]2[a0R(t)−4] = 0. (31)

Because R = 1 is a double root and does not satisfy R > 1, which is not the desired
one, we take

R(t) =
4
a0

=
4(FTv)2

‖F‖2‖v‖2 . (32)

By using Eq. (28), Eq. (20) can now be written as

x(t +∆t) = x(t)− 1
2
[R(t)−1]

‖F‖2

FTv
u. (33)

Notice, however, that this algorithm has an unfortunate drawback in that, when the
iterated a0 starts to approach to 4 before it grows up to a large value, the algorithm
stagnates at a point which is not necessarily a solution. We will avoid following
this kind of dynamics by developing a better dynamics as below. This indicates
that the present algorithm will face this fate to lose its dynamic force if we insist
the iterative orbit as being located on the manifold defined by Eq. (18).
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3.3 A better discrete dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖F(x(t +∆t))‖2

‖F(x(t))‖2 , (34)

which is an important quantity to assess the convergence property of numerical
algorithm for solving NAEs. If s can be guaranteed to be s < 1, then the residual
error ‖F‖ will be decreased step-by-step.

From Eqs. (25) and (34) we can obtain

a0β
2−2β +1− s = 0, (35)

where

a0 :=
‖F‖2‖v‖2

(FTv)2 ≥ 1, (36)

by using the Cauchy-Schwarz inequality:

FTv≤ ‖F‖‖v‖.

From Eq. (35), we can take the solution of β to be

β =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (37)

Let

1− (1− s)a0 = γ
2 ≥ 0, (38)

s = 1− 1− γ2

a0
. (39)

Thus, from Eq. (37) it follows that

β =
1− γ

a0
, (40)

and from Eqs. (20) and (26) we can obtain the following algorithm:

x(t +∆t) = x(t)−η
FTv
‖v‖2 u, (41)

where

η = 1− γ. (42)
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Here 0≤ γ < 1 is a weighting parameter. Later, in the numerical examples we will
explain that γ plays a major role for the bifurcation of discrete dynamics. Under
the above condition we can prove that the new algorithm satisfies

‖F(t +∆t)‖
‖F(t)‖

=
√

s < 1, (43)

which means that the residual error is absolutely decreased.

It is interesting that in the above algorithm no ∆t is required. Furthermore, the
property in Eq. (43) is very important, since it guarantees the new algorithm to be
absolutely convergent to the true solution.

3.4 Optimal value for α

The algorithm (41) does not specify how to choose the parameter α . One way is
that α is chosen by the user. Also we can determine a suitable α such that s defined
in Eq. (39) is minimized with respect to α , because a smaller s will lead to a faster
convergence as shown in Eq. (43).

Thus by inserting Eq. (36) for a0 into Eq. (39) we can write s as:

s = 1− (1− γ2)(F ·v)2

‖F‖2‖v‖2 , (44)

where v as defined by Eq. (16) includes a parameter α . Let ∂ s/∂α = 0, and through
some algebraic operations we can solve α by

α =
(v1 ·F)(v1 ·v2)− (v2 ·F)‖v1‖2

(v2 ·F)(v1 ·v2)− (v1 ·F)‖v2‖2 . (45)

Remark 1: For the usual three-dimensional vectors a, b, c ∈ R3, the following
formula is famous:

a× (b× c) = (a · c)b− (a ·b)c. (46)

Liu (2000a) has developed a Jordan algebra by extending the above formula to
vectors in n-dimension:

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn. (47)

Thus α in Eq. (45) can be expressed as

α =
[v1,v2,F] ·v1

[v2,v1,F] ·v2
. (48)
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The above parameter α can be called the optimal α , because it brings us a new
strategy to select the best orientation to search the solution of NAEs. Furthermore,
we have an explicit form to implement it into the numerical program, and thus it is
very time-saving for calculating it.

3.5 The present algorithm, driven by the vector u

Since the fictitious time variable is now discrete, t ∈ {0,1,2, . . .}, we let xk denote
the numerical value of x at the k-th step. Thus, we arrive at a purely iterative
algorithm through Eqs. (41) and (42):

xk+1 = xk− (1− γ)
FT

k vk

‖vk‖2 uk. (49)

Then, we devise the following algorithm:

(i) Select 0≤ γ < 1, and give an initial guess of x0.

(ii) For k = 0,1,2 . . . we repeat the following calculations:

vk
1 = AkFk, (50)

vk
2 = (Bk−Ak)Fk, (51)

αk =
[vk

1,v
k
2,Fk] ·vk

1

[vk
2,v

k
1,Fk] ·vk

2
, (optimal αk) (52)

uk = αkFk +(1−αk)BT
k Fk, (53)

vk = Bkuk, (54)

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (55)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii).

In summary, we have derived a thoroughly novel algorithm for solving NAEs.
While the parameter γ is chosen by the user and is problem-dependent, the param-
eter αk is exactly given by Eq. (52). Indeed these two parameters play the roles
of bifurcation parameter and optimization parameter, respectively. Up to here we
have successfully derived a drastically novel algorithm based on the bifurcation
and optimal parameter of αk, which without the help from the formula in Eq. (36),
we cannot achieve such a wonderful result. The influences of these two parameters
are analyzed below through several numerical examples.
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4 Numerical examples

4.1 Example 1: A finite difference method for solving a nonlinear ODE

In this example we apply the new algorithm involving the vector u of Eq. (13) to
solve the following boundary value problem:

u′′ =
3
2

u2, (56)

u(0) = 4, u(1) = 1. (57)

The exact solution is

u(x) =
4

(1+ x)2 . (58)

By introducing a finite difference discretization of u at the grid points we can obtain

Fi =
1

(∆x)2 (ui+1−2ui +ui−1)−
3
2

u2
i , i = 1, . . . ,n, (59)

u0 = 4, un+1 = 1, (60)

where ∆x = 1/(n+1) is the grid length.

First, we fix n = 39. Under a convergence criterion ε = 10−10, we find that the
algorithm with γ = 0 and α = 1 does not converge within 5000 steps. In Fig. 1 we
show a0, s and residual error with γ = 0 and α = 1. We explain the parameter γ in
Eq. (41). From Fig. 1(a) it can be seen that for the case with γ = 0, the values of
a0 tend to a constant and keep unchanged. By Eq. (26) it means that there exists an
attracting set for the iterative orbit of x described by the following manifold:

‖F‖2‖v‖2

(FTv)2 = Constant. (61)

This manifold is an attracting set, which is form invariant for all systems. The
constant might be different for different system, but its form is invariant. When the
iterative orbit approaches this attracting manifold, it is hard to reduce the residual
error as shown in Fig. 1(c), while s is near to 1 as shown in Fig. 1(b).

However, with the optimal α it can converge with 1182 steps as shown in Fig. 2 for
displaying a0, s, α and residual error. From Fig. 2(a) it can be seen that for the case
with γ = 0 even with optimal α , the value of a0 also tends to a constant and keeps
unchanged. It means that the attracting set is also existent for the present algorithm.
Because its value of a0 is smaller than that in Fig. 1(a) and thus a smaller s due to
Eq. (39), the present algorithm can converge much faster than the algoritm with a
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Figure 1: For example 1 using a finite difference approximation, by fixing γ=0 
showing a0, s and residual error calculated by the new algorithm with α=1. 

 
 
 
 
 

Figure 1: For example 1 using a finite difference approximation, by fixing γ = 0
showing a0, s and residual error calculated by the new algorithm with α = 1.

fixed α = 1 and γ = 0. As shown in Fig. 2(c) we can observe that the behavior of
α exhibits a beat oscillation within a narrow range from 0.9997 to 0.9999, which
near to 1.

In summary, when γ = 0 the attracting sets are existent, which cause a slow con-
vergence of the iterations. If the optimal value of α is used, it can reduce the values
of a0 and s, and thus increase the convergence speed.

By fixing γ = 0.15, in Fig. 3 we compare a0, s and residual errors for the two
cases with α = 1 and optimal α . While the first case is convergent with 794 steps,
the second case is convergent with 329 steps. Again, the algorithm with optimal
α can significiantly reduce the value of a0 as shwon in Fig. 3(a) by the red solid
line, which is smaller than that as shown by the blue dashed line for the algorithm
with a fixed α = 1. This effect is very important to accelerate the convergence of
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Figure 2: For example 1 using a finite difference approximation, by fixing γ=0 
showing a0, s, optimal α and residual error calculated by the new algorithm. 
 

Figure 2: For example 1 using a finite difference approximation, by fixing γ = 0
showing a0, s, optimal α and residual error calculated by the present algorithm.

the new algorithm. In Table 1 we compare the numbers of iterations of the above
algorithms with different γ and α . It can be seen that the bifurcation parameter γ is
first and then the optimization parameter α is second to cause a faster convergence
of iteration.

The new algorithms lead to accurate numerical solutions with maximum error being
smaller than 2.98×10−4 as shown in Fig. 4. In Fig. 5 we compare α for the cases
of γ = 0 and γ = 0.15. The patterns of these two algorithms are quite different.
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Figure 3: For example 1 using a finite difference approximation, by fixing γ = 0.15
comparing a0, s and residual errors calculated by the new algorithm with α = 1 and
optimal α .

Table 1: Comparison of numbers of iterations for example 1 with finite difference
approximation

Present algorithm γ = 0, γ = 0, γ = 0.15, γ = 0.15,
α = 1 optimal α α = 1 optimal α

No. of iterations over 5000 1182 794 329

From Fig. 5(b) we can observe that the intermittency happens for the case with
γ = 0.15.

Corresponding to the tendency to lead to a constant a0 with γ = 0, conversely, for
the case γ = 0.15, a0 is no longer tending to a constant as shown in Fig. 3(a) by
solid line. Because the iterative orbit is not attracted by a constant manifold, the
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Figure 4: For example 1 using a finite difference approximation, by fixing γ=0.15 
comparing numerical errors calculated by the new algorithm with α=1 and optimal
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Figure 4: For example 1 using a finite difference approximation, by fixing γ =
0.15 comparing numerical errors calculated by the new algorithm with α = 1 and
optimal α .

residual error as shown in Fig. 3(c) by a solid line can be reduced step-by-step very
fast, whereas s is frequently leaving the region near to 1 as shown in Fig. 3(b) by
a solid line. Thus we can observe that when γ varies from a zero value to a posi-
tive value, the iterative dynamics given by Eq. (41) undergoes a Hopf bifurcation
(tangent bifurcation), such as the ODEs behavior observed by Liu (2000b, 2007).
The original stable manifold existent for γ = 0 now becomes a ghost manifold for
γ = 0.15, and thus the orbit generated from the case γ = 0.15 cannot be attracted by
that manifold, and instead, leads to an irregularly jumping behavior of a0 as shown
in Fig. 3(a) by a solid line.
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Figure 5: For example 1 using a finite difference approximation, comparing optimal
α with respect to number of steps for (a) γ = 0, and (b) γ = 0.15.

4.2 Example 1: Polynomial Expansion

As suggested by Liu and Atluri (2009) we use the following modified polynomial
expansion to express the solution of Eq. (56):

u(x) =
n

∑
k=0

ak

(
x

R0

)k

. (62)

Due to the boundary condition u(0) = 4 we take a0 = 4, and the other coeffi-
cients are solved from a nonlinear algebraic equations system, obtained by inserting
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Figure 6: For example 1, using a polynomial expansion, comparing residual errors, s 
and a0  under different parameters. 
 

Figure 6: For example 1, using a polynomial expansion, comparing residual errors,
s and a0 under different parameters.

Eq. (62) into Eq. (56) and collocating at some points inside the domain.

With n = 10 and R0 = 1.5 we solve this problem by using the new algorithm for
three cases (a) γ = 0 and α = 0.001, (b) γ = 0.25 and α = 0.001, and (c) γ = 0.0995
and α being optimal. Under the convergence criterion ε = 0.1, the algorithm with
case (a) does not converge within 10000 steps, but the algorithm with case (b) can
converge within 4763 steps. More interestingly, if we use algorithm with case (c),
it can converge faster within 2975 steps. In Fig. 6 we compare residual errors, s
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Figure 7: For example 1, using a polynomial expansion, comparing numerical errors 

under different parameters. 
 

 

 

 

Figure 7: For example 1, using a polynomial expansion, comparing numerical er-
rors under different parameters.

and a0 for these three algorithms, and the numerical errors are compared in Fig. 7.
Obviously, the algorithm with case (c) can provide the most accurate numerical so-
lution. The data of α obtained from the algorithm with case (c) is shown in Fig. 8,
which displays a typical intermittent behavior.

4.3 Example 1: Differential Quadrature

According to the concept of Differential Quadrature (DQ), the first order derivative
of a differentiable function f (x) with respect to x at a point xi, is approximately
expressed as

f ′(xi) =
n

∑
j=1

ai j f (x j), (63)

where ai j is the weighting coefficient contributed from the j-th grid point to the first
order derivative at the i-th grid point. Similarly, in DQ the second order derivative



An Iterative Algorithm for Solving a System of Nonlinear Algebraic Equations 413

 

 

 

 

 

 
 
 
 
 

0 1000 2000 3000
Number of Steps

-60

-40

-20

0

20

40

α

 
 
Figure 8: For example 1, using a polynomial expansion, showing α with respect to 

number of steps, with a typical intermittency behavior. 

 
 
 

Figure 8: For example 1, using a polynomial expansion, showing α with respect to
number of steps, with a typical intermittency behavior.

at the i-th grid point is given by

f ′′(xi) =
n

∑
j=1

bi j f (x j), (64)

where bi j = ∑
n
k=1 aikak j is the weighting coefficient of the second order derivative.

In order to determine the weighting coefficients, the test functions were proposed
by Bellman, Kashef and Casti (1972). They used the polynomials as test functions
with orders from zero to n−1 when the number of grid points is n, that is,

g(xi) = xk−1
i , i = 1, . . . ,n, k = 1, . . . ,n. (65)

Then inserting the test functions g(x) = xk−1 for f (x) into Eq. (63) leads to a set
of linear algebraic equations with the Vandermonde matrix as a coefficient matrix.
The ill-posedness of Vandermonde system is stronger when the number of grid
points is larger. Usually, the solutions were not accurate when the number of grid
points was larger than 13 [Shu (2000)].
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Figure 9: For example 1, using differential quadrature, comparing residual errors, s 
and a0  under different parameters. 
 

 

Figure 9: For example 1, using differential quadrature, comparing residual errors,
s and a0 under different parameters.

We can employ the following test functions as an improvement:

g(xi) =
(

xi

R0

)k−1

, i = 1, . . . ,n, k = 1, . . . ,n. (66)

With a suitable choice of the constant R0, the resultant system is well-posed [Liu
and Atluri (2009)].

As an application we apply the DQ and the new algorithm to solve the problem in
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Figure 10: For example 1, using differential quadratue, comparing numerical errors 
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Figure 10: For example 1, using differential quadrature, comparing numerical er-
rors under different parameters.

Eqs. (56) and (57). By introducing the DQ of u′ and u′′ at the grid points we can
obtain

u′i =
n

∑
j=1

ai ju j, u′′i =
n

∑
j=1

bi ju j, (67)

where u′i = u′(xi), u′′i = u′′(xi), xi = (i−1)∆x with ∆x = 1/(n−1) the grid length,
and bi j = aikak j. Thus we have the following nonlinear algebraic equations for ui:

Fi =
n

∑
j=1

bi ju j−
3
2

u2
i = 0, (68)

u1 = 4, un = 1. (69)

Using the following parameters R0 = 1.5 and n = 30, we solve this problem by
using the new algorithm for two cases (a) γ = 0 and α optimized, (b) γ = 0.3 and
α optimized. Under the convergence criterion ε = 10−3, the algorithm with case
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Figure 11: For example 1, using differential quadratue, comparing optimized α

under different parameters.

(a) does not converge within 20000 steps, but the algorithm with case (b) can con-
verge within 11228 steps. In Fig. 9 we compare residual errors, s and a0 for these
two algorithms, and the numerical errors are compared in Fig. 10. When the al-
gorithm with case (b) can provide a very accurate solution with a maximum error
4.5×10−4, the algorithm with case (a) is poor. From Fig. 9(c) it can be seen that the
iterative orbit generated from the algorithm with γ = 0 will approach to a constant
manifold with its a0 being a constant, which causes the slowness of convergence
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Figure 12: For example 2, with optimized α and different γ, comparing residual 

errors, s andα. 

 

 

Figure 12: For example 2, with optimized α and different γ , comparing residual
errors, s and α .

of this algorithm with γ = 0. Thus when we choose a suitable γ > 0, the situation
is quite different that the convergence becomes fast. The data of α obtained from
these two algorithms are shown in Fig. 11. For the later case it displays a typical
intermittent behavior. Shen and Liu (2011) have calculated this problem by using
the scaling DQ with R0 = 1.5 together with the Fictitious Time Integration Method
proposed by Liu and Atluri (2008). However, in order to obtain the same accurate
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Figure 13: For example 2, with optimized α and different γ , comparing the iterative
paths with that of α = 0.
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Figure 14: For example 3, with optimized α and different γ , comparing residual
errors, a0 and α .
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Figure 15: For example 3, with optimized α and different γ, displaying the iterative 
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Figure 15: For example 3, with optimized α and different γ , displaying the iterative
paths for (a) the first solution, and (b) the second solution. a0 and α .
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solution, that algorithm requires 154225 steps.

4.4 Example 2

We revist the following two-variable nonlinear equation [Hirsch and Smale (1979)]:

F1(x,y) = x3−3xy2 +a1(2x2 + xy)+b1y2 + c1x+a2y = 0, (70)

F2(x,y) = 3x2y− y3−a1(4xy− y2)+b2x2 + c2 = 0, (71)

where a1 = 25, b1 = 1, c1 = 2, a2 = 3, b2 = 4 and c2 = 5.

This equation has been studied by Liu and Atluri (2008) by using the fictitious
time integration method (FTIM), and then by Liu, Yeih and Atluri (2010) by using
the multiple-solution fictitious time integration method (MSFTIM). Liu and Atluri
(2008) found three solutions by guessing three different initial values, and Liu, Yeih
and Atluri (2010) found four solutions.

Starting from an initial value of (x0,y0) = (10,10) we solved this problem under
two cases with (a) γ = 0.08 and optimal α , and (b) γ = 0 and optimal α under
a convergence criterion ε = 10−10. For the case (a) we find one root (x,y) =
(36.045402,36.807508) through 51 iterations with residual errors of (F1,F2) =
(−1.78×10−11,−2.18×10−11). Previously, Liu and Atluri (2008) have found this
root by using the fictitious time integration method (FTIM) through 1474 steps. For
the case (b) we found the fifth root (x,y) = (1.635972,13.847665) through 68 iter-
ations with residual errors of (F1,F2) = (−2.13×10−14,9.09×10−13). It is indeed
very near to an exact solution. If we fix α = 0 and γ = 0 we can also find this
root, but it spends 2466 steps. Conversely, when α = 0 and γ = 0.08 we can find
this root only through 262 steps. It can be seen that the present algorithm with
optimal α is very powerful to search the solution of nonlinear equations. For com-
parison purpose, we compare the iterative paths for the fifth root obtained by these
algorithms.

For these two cases we compare the residual errors, s and α in Fig. 12. The iterative
paths are shown in Fig. 13. It is interesting that for the algorithm with optimal α ,
the value of a0 attains its minmum a0 = 1 for all iterative steps, and thus s = 0.082

for case (a) and s = 0 for case (b). From the residual errors as shown in Fig. 12(a)
and the iterative paths as shown in Fig. 13 we can observe that the mechanism to
search solution has three stages: a mild convergence stage, an orientation adjusting
stage where residual error appearing to be a plateau, and then following a fast con-
vergence stage.



422 Copyright © 2011 Tech Science Press CMES, vol.73, no.4, pp.395-431, 2011

4.5 Example 3

We consider a singular case of B obtained from the following two nonlinear alge-
braic equations [Boggs (1971)]:

F1 = x2
1− x2 +1, (72)

F2 = x1− cos
(

π

2
x2

)
, (73)

B =

[
2x1 −1

1 π

2 sin
(

π

2 x2
) ] . (74)

Obviously, on the curve of πx1 sin(πx2/2)+ 1 = 0, B is singular, i.e., det(B) = 0.
They have closed-form solutions (−1,2) and (0,1).
As demonstrated by Boggs (1971), the Newton method does not converge to (0,1),
but rather it crosses the singular curve and converges to (−

√
2/2,3/2). Even under

a very stringent convergence criterion ε = 10−14, starting from the initial condition
(10,10) we can apply the present algorithm with γ = 0 to solve this problem within
32 iterations, and the results are shown in Fig. 14 for residual error, s = 0 due
to a0 = 1, and optimal α by solid lines. In the termination of iterative process
we found that the residual errors are F1 = 4.44× 10−16 and F2 = −1.55× 10−15.
It approaches to the true solution (−1,2) very accurately, whose iterative path is
shown in Fig. 15(a).

Starting from the initial condition (2,2) we can apply the present algorithm with
γ = 0.005 to solve this problem within 21 iterations, and the results are shown
in Fig. 14 for residual error, s = 0.0052 due to a0 = 1, and optimal α by dashed
lines. In the termination of iterative process we found that the residual errors are
F1 = 1.998×10−15 and F2 = 4.09×10−17. It approaches to the true solution (0,1)
very accurately, and the iterative path is shown in Fig. 15(b).

The accuracy and efficiency obtained in the present algorithms are much better than
those obtained by Boggs (1971), and Han and Han (2010).

4.6 Example 4

The following nonlinear diffusion reaction equation is considered:

∆u = 4u3(x2 + y2 +a2). (75)

The amobea-like domain is given by

ρ = exp(sinθ)sin2(2θ)+ exp(cosθ)cos2(2θ). (76)
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Figure 16: For example 4, with optimized α and different γ, comparing residual 

errors, a0 andα. 

Figure 16: For example 4, with optimized α and different γ , comparing residual
errors, a0 and α .
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Figure 17: For example 5, with different α and γ , comparing residual errors, a0 and
α .
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Figure 18: By applying the present algorithm to example 6 with a nonlinear backward 
heat conduction problem, showing (a) the residual error, (b) a0, and (c) optimal α. 
 

Figure 18: By applying the present algorithm to example 6 with a nonlinear back-
ward heat conduction problem, showing (a) the residual error, (b) a0, and (c) opti-
mal α .
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Figure 19: By applying the present algorithm to example 6 with a nonlinear backward 
heat conduction problem, showing the relative error of u over the plane of (x,t). 
 
 
 
 
 

Figure 19: By applying the present algorithm to example 6 with a nonlinear back-
ward heat conduction problem, showing the relative error of u over the plane of
(x, t).

The analytic solution

u(x,y) =
−1

x2 + y2−a2 (77)

is singular on the circle with a radius a.

Accoring to the suggestion by Liu and Atluri (2009) we can employ the following
modified polynomial expansion method to express the solution:

u(x,y) =
m+2−i

∑
j=1

m+1

∑
i=1

ci j

(
x

Rx

)i−1( y
Ry

) j−1

, (78)

where the coefficients ci j are to be determined, whose number is n = (m+2)(m+
1)/2. The highest order of the polynomials is m. Here we use a modified Pascal
triangle to expand the solution. Rx > 0 and Ry > 0 are characteristic lengths of the
plane domain we consider.
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We use the optimal vector driven method to solve this problem, where the initial
values of ci j are all set zeros. Let m = 10, Rx = 3 and Ry = 2, in Fig. 16 we compare
the curves of residual error, a0 and optimal α for two cases with γ = 0 and γ = 0.1.
Under the convergence criterion ε = 10−3, the algorithm with γ = 0 does not con-
verge over 1000 steps; conversely, the algorithm with γ = 0.1 converges within 303
steps. Both cases give rather accurate numerical results with the maximum error
1.02×10−3 for γ = 0, and 7.74×10−4 for γ = 0.1. It can be seen that the algorithm
with γ = 0.1 is convergent much fast and accurate than the algorithm with γ = 0.

4.7 Example 5

We consider a nonlinear heat conduction equation:

ut = k(x)uxx + k′(x)ux +u2 +H(x, t), (79)

k(x) = (x−3)2, H(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (80)

with a closed-form solution being u(x, t) = (x−3)2e−t .

By applying the new algorithms to solve the above equation in the domain of 0 ≤
x ≤ 1 and 0 ≤ t ≤ 1 we fix n1 = n2 = 15, which are numbers of nodal points in a
standard finite difference approximation of Eq. (79). Because a0 defined in Eq. (26)
is a very important factor of our new algorithms we show it in Fig. 17(b) for the
present algorithm with γ = 0, while the residual error is shown in Fig. 17(a), and α

is shown in Fig. 17(c) by the solid lines. Under a convergence criterion ε = 10−3

the present algorithm with γ = 0 can also converge with 208 steps, and attains
an accurate solution with the maximum error 4.67× 10−3. The optimal α varies
in a narrow band with the range from 0.9998 to 0.99984, and a0 approaches to
a constant, which reveals an attracting set for the iterative orbit. However, due
to the optimization of α , the value of a0 does not tend to a large value. For the
purpose of comparison we also plot the residual error curve obtained from γ = 0
and α = 1 in Fig. 17(a), whose corresponding a0 is much large than the a0 obtained
from the present algorithm and causes the very slow convergence of the algorithm
without considering the optimization of α . Indeed, it does not converge within
20000 steps. Under the same convergence criterion, the present algorithm with
γ = 0.15 converges much fast with only 68 steps. The residual error, a0 and α are
shown in Fig. 17 by the dashed lines. By employing γ = 0.15 the value of a0 does
not tend to a constant, and its value is smaller than the a0 obtained from the present
algorithm with γ = 0 and optimal α , which is the main reason to cause the fast
convergence of the present algorithm with γ = 0.15. Very interestingly, the optimal
α as shown in Fig. 17(c) by the dashed line is sometimes leaving from the narrow
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band formed by the algorithm with γ = 0 and optimal α . The numbers of iterations
are compared in Table 2. Amazingly, a large improvement can be obatined by using
the bifurcation parameter and optimization parameter, whose convergence speed
is faster about 300 times than the algorithm with γ = 0 and α = 1.

Table 2: Comparison of numbers of iterations for example 5

Present algorithm γ = 0, α = 1 γ = 0, optimal α γ = 0.15, optimal α

No. of iterations over 20000 208 68

4.8 Example 6: A nonlinear ill-posed problem

Now, we turn our attention to a nonlinear backward heat conduction problem of
Eq. (79), which is known to be a highly ill-posed nonlinear problem. In order to
test the stability of present algorithm we also add a relative noise in the final time
data at t f = 2 with intensity σ = 0.01. The boundary conditions and a final time
condition are available from the above solution of u(x, t) = (x−3)2e−t .

By applying the new algorithm to solve the above equation in the domain of 0 ≤
x≤ 1 and 0≤ t ≤ 2 we fix ∆x = 1/n1 and ∆t = 2/n2, where n1 = 14 and n2 = 10 are
numbers of nodal points in a standard finite difference approximation of Eq. (79):

k(xi)
ui+1, j−2ui, j +ui−1, j

(∆x)2 +k′(xi)
ui+1, j−ui−1, j

2∆x
+u2

i, j +H(xi, t j)−
ui, j+1−ui, j

∆t
= 0.

(81)

Because a0 defined in Eq. (26) is a very important factor of our new algorithm we
show it in Fig. 18(b) for the present algorithm with γ = 0.2, while the residual er-
ror is shown in Fig. 18(a), and α is shown in Fig. 18(c). The present algorithm is
convergent with 96 steps under the convergence criterion ε = 0.1, which attains an
accurate solution with the maximum error 1.07×10−2 as shown in Fig. 19.

5 Conclusions

A residual-norm based and optimization based algorithm, namely an Optimal Vec-
tor Driven Algorithm (OVDA), where ẋ = λu(α) with u = αF +(1−α)BTF the
driving vector involving an optimal value of α and Bi j = ∂Fi/∂x j, was established
in this paper to solve F = 0. Although we were starting from a continuous invari-
ant manifold based on the residual-norm and specifying a vector-driven ODEs to
govern the evolution of unknown variables, we were able to derive a final novel
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algorithm of purely iterative type without resorting to the fictitious time and its
stepsize:

xk+1 = xk−η
FT

k Bkuk

‖Bkuk‖2 uk, (82)

where

η = 1− γ, 0≤ γ < 1, (83)

and

uk = αkFk +(1−αk)BT
k Fk (84)

is an optimal vector involving an optimal parameter αk. The parameter γ is a very
important factor, which is a bifurcation parameter, enabling us to switch the slow
convergence to a new situation that the residual-error is quickly decreased. The op-
timal parameter αk was derived exactly in terms of a Jordan algebra, and thus it is
very time saving to implement the optimization technique into the numerical pro-
gram. We have proved that the present algorithm is convergent automatically, and it
is easy to implement, and without calculating the inversions of the Jacobian matri-
ces. It can solve a large system of nonlinear algebraic equations very quickly. Sev-
eral numerical examples of nonlinear equations, nonlinear ODEs, nonlinear PDEs
as well as a nonlinear ill-posed problem were tested to validate the efficiency and
accuracy of the present OVDA. Two mechanisms for improving the convergence
speed of the present algorithm were found. For some problems only the use of
the bifurcation parameter γ > 0, or only the use of the optimization parameter α

is already enough to accelerate the convergence speed. However, when both the
effects of bifurcation and optimization were used in all the tested problems, very
high efficiencies and high accuracies which were never seen before, were achieved
by the present algorithm.
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