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Reliability-Based Multiobjective Design Optimization
under Interval Uncertainty
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Abstract: This paper studies the reliability-based multiobjective optimization
by using a new interval strategy to model uncertain parameters. A new satisfac-
tion degree of interval, which is significantly extended from [0, 1] to [–∞, +∞],
is introduced into the non-probabilistic reliability-based optimization. Based on
a predefined satisfaction degree level, the uncertain constraints can be effectively
transformed into deterministic ones. The interval number programming method is
applied to change each uncertain objective function to a deterministic two-objective
optimization. So in this way the uncertain multiobjective optimization problem is
transformed into a deterministic optimization problem and a reliability-based multi-
objective optimization is then established. For sophisticated engineering problems,
the objectives and constraints are modeled by using the response surface (RS) ap-
proximation method to improve the optimization efficiency. Thus the reliability-
based multiobjective optimization is combined with the RS approximation models
to form an approximation optimization problem. For the multiobjective optimiza-
tion, the Pareto sets can be obtained with different satisfactory degree levels. Two
numerical examples and one real-world crashworthiness design for vehicle frontal
structure are presented to demonstrate the effectiveness of the proposed approach.
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1 Introduction

Most real-world problems often involve multiple conflicting objectives, where im-
proving one objective may sacrifice the performance of one or more of other ob-
jectives. For this reason, multiobjective optimization plays an important role in
many real-world optimization applications. It can be found that most traditional
multiobjective optimization methods [e.g. Marler and Arora (2004); Liu and Fran-
gopol (2004); Luo, Yang and Chen (2006); Lin, Luo and Tong (2010); Liao,
Li, Yang, Zhang and Li (2008)] have been deterministically-based, in which pa-
rameters involved are given some definite values. However, uncertainties are in-
evitably involved in loading conditions, material properties, geometric dimension,
and manufacturing precision in many real-life engineering problems [Schuëller and
Jensen (2008)]. An optimized deterministic design without considering uncertain-
ties might be unreliable and in the worst case scenario may lead to catastrophic
failure of the design. For this reason, to obtain a reliable design the effects of
the various uncertainty factors should be taken into account and reliability-based
design optimization (RBDO) will be of particular significance.

The most common approaches to study various uncertainties in reliability-based
multiobjective optimization (RBMO) problems are probabilistic-based methods [S-
chuëller and Jensen (2008)]. For instance, Sinha (2007) presented a methodol-
ogy for RMO, which was performed using the approximate moment and reliabil-
ity index approaches. Nariman-zadeh, Jamali and Hajiloo (2007) proposed a RBO
method for the Pareto optimum of proportional integral derivative (PID) controllers
for systems with probabilistic uncertainty. A two-stage approach was also proposed
by Li, Liao and Coitc (2009) for solving RMO problems. One common feature
of the abovementioned reliability analysis and design adopts the probabilistic ap-
proach.

However, in practical multi-objective optimization, the probabilistic methods have
shortcomings. Especially, the complete probabilistic information may not be pre-
cisely known. The evaluation of the probabilistic characteristics of system re-
sponses can present some significant mathematical and numerical difficulties be-
cause of extra computational cost. So it is difficult to specify precise probabil-
ity distribution function for uncertain parameters in multi-objective problems, be-
cause in most cases only limited uncertain information is available. It is noted
that even small derivations of probability distributions may result in unacceptable
errors [Ben-Haim and Elishakoff (1990)] in probabilistic methods. In such cases,
non-probabilistic methods [Moens and Vandepitte (2005); Möller and Beer (2008)],
such as the convex model including interval [e.g. Jiang, Han and Liu (2007a); Li
and Azarm (2008); Gao, Song and Tin-Loi (2009)] and ellipsoid [e.g. Pantelides
and Ganzerli (1998); Luo, Kang and Luo (2009); Kang and Luo (2009)] methods
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have been developed as beneficial supplements to the conventional probabilistic
methods. By the way, the fuzzy set theory is also applied to structural optimization
problems considering system uncertainties [e.g. Luo, Chen and Yang (2006); Luo,
Yang and Chen (2006)].

Ben-Haim (1994) and Elishakoff (1995) should be the first few researchers who
initiated the concept of non-probabilistic reliability design. The anti-optimization
process was developed by Lombardi, and etc. (1995) for composite structures, and
then by Barbieri, Cinquini and Lombardi (1997) for structural shape optimization
of trusses. Pantelides and Ganzerli (1998) applied the non-probabilistic ellipsoidal
convex model for two different objectives involving weight and displacement min-
imizations. Later, Ganzerli and Pantelides (2000) proposed a superposition method
to determine the structural responses subjected to bounded load uncertainties. Qiu
and Elishakoff (1998) also presented the anti-optimization for the structures with
large uncertain-but-nonrandom parameters by the interval analysis. Jiang, Chen
and Xu (2007) developed a semi-analytical approach for calculating reliability in-
dex based on the interval models. Recently, Kang and his coworkers extended
the convex ellipsoid model to linear and nonlinear topology optimization problems
[Luo, Kang and Luo (2009); Kang and Luo (2009; 2010)]. In particular, the interval
model is experiencing popularity due to its conceptual simplicity and many other
merits [Elishakoff (1995); Qiu and Elishakoff (1998); Jiang, Han and Liu (2008a);
Gao, Song and Tin-Loi (2009)]. Interval model bounds all possible values of an
uncertain parameter in a convex set without the requirement of knowing precise
probability distribution. The interval bounds for an uncertain parameter can be eas-
ily determined compared to the identity of a precise probability distribution. The
interval model has been applied to many different optimization problems involving
uncertain-but-bounded parameter variations [e.g. Qiu and Elishakoff (1998); Jiang,
Han and Liu (2007a)].

It is noted that most of the convex model based non-probabilistic optimizations
have been carried out by using the worst-case criterion, which is relatively conser-
vative and can make the treatment of constraints over strict. For this reason, Jiang
Han and Liu (2007a) proposed a satisfaction degree of interval to transform the un-
certain constraints into deterministic ones. The restricting degree of the uncertain
constraints can be relaxed to a certain extent according to specific problem. The
range of the values is limited within the scope of [0, 1] rather than the entire real
number field. A new satisfactory degree based on the interval order was presented
[Jiang, and et al. (2010)], through which the value range is extended from [0, 1] to
[–∞, +∞]. In this way, the range of the comparing values is extended to the whole
real number space, which made it possible to compare any pairs of intervals on the
real number field. In particular it can be used to express the degree of how much
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better an interval is over another. We will further extend this approach [Jiang, and et
al. (2010)] to the reliability-based multiobjective optimization for both overlapped
and completely separated intervals. More details will be given in the subsequent
Section of this paper for the integrity of this paper.

The other key issue is that the abovementioned non-probabilistic reliability-based
optimization problems are mainly involved in single objective designs. To date,
there still lack of detailed study to investigate the reliability-based multiobjective
optimization, which is in general more complicated than the single objective coun-
terpart. To take the advantage of the simplest approaches most multiobjective opti-
mization schemes are to aggregate these different objectives into an equivalent sin-
gle function in terms of different formulations, e.g. weighted linear average. How-
ever, the complex nature of multiobjective optimization may not always guarantee
the feasibility of formulating a single cost function [Marler and Arora (2004)]. For
example, for some advanced multiobjective optimization problems, the weighted
average scheme sometimes may not work properly to find all Pareto solution points
for non-convex Pareto front, though this is generally not a major concern in many
practical engineering designs. For this reason, it is important to develop more ef-
fective algorithms for reliability-based multiobjective optimization problems.

This paper aims to explore the reliability-based multiobjective optimization prob-
lem on the basis of a new satisfaction degree of interval. The remaining portion
of the paper is organized as follow. In Section 2, a new satisfaction degree of
interval is introduced. In Section 3, Limit state function based on satisfactory
degree of interval is introduced. In Section 4, non-probabilistic reliability-based
multiobjective optimization is formulated and implemented. The surrogate mod-
els are constructed for design objectives and constraints for engineering problems,
thus reliability-based multiobjective approximation optimization is implemented in
Section 5. Two numerical examples and one practical crashworthiness problem are
used to illustrate the proposed method in Section 6. And finally some conclusions
are obtained in Section 7.

2 Satisfaction degree of interval

The satisfaction degree of the interval represents the possibility whether one inter-
val is greater or smaller than another, and in other words, it can be used to compare
different intervals. In general, there will be six representative position relations be-
tween CI and DI (Fig. 1). Thus, three possible satisfaction degrees of interval were
proposed [Facchinetti, Ricci and Muzzioli (1998); Liu and Da (1999); Xu and Da
2003)]:
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Figure 1: Six representative position relations of two intervals

Relation 1:

p(CI ≤ DI) = min
{

max
{

DR−CL

2Cw +2Dw ,0
}

,1
}

(1)

Relation 2:

p(CI ≤ DI) =
max

{
0,2Cw +2Dw−max

{
CR−DL,0

}}
2Cw +2Dw (2)

Relation 3:

p(CI ≤ DI) =
min

{
2Cw +2Dw,max

{
DR−CL,0

}}
2Cw +2Dw (3)

Actually, the above three relations have been proven to be equivalent in represent-
ing the satisfaction degree of intervals [Xu and Da (2003)]. p(CI ≤ DI) has the
following properties:

0≤ p(CI ≤ DI)≤ 1;
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p(CI ≤ DI) = 1⇔CR ≤ DL⇒CI ≤ DI;

p(CI ≤ DI) = 0⇔CL ≥ DR⇒CI ≥ DI;

p(CI ≤ DI)+ p(CI ≤ DI) = 1;

p(CI ≤ DI) = 0.5⇔CL +CR = DL +DR.

To a certain extent, the satisfaction degree of interval is of the probability implica-
tion for ranking the interval numbers.

In the abovementioned method, there are some limitations to describe the possi-
bility degree of the interval. The possibility degree of interval can work well only
for the cases when the intervals are partially or fully overlapped (Cases 2-5 in Fig.
1). If two intervals are separate (Case 1 and Case 6 in Fig. 1), the same value 0
or 1 will be given for the above satisfaction degree of interval regardless of their
relative positions. That is, the conventional [0, 1] possible degree of intervals can-
not represent the exact reliability information of two different intervals. Further,
the two bound points are generally non-differentiable. However, in practical engi-
neering problems, different relative positions of parameter intervals generally show
different reliabilities of structure or system. There exist two inflection points of 0
and 1 for the abovementioned possibility degree of interval, and it will lead to
non-differentiability for the concerned functions. To overcome these problems, a
new satisfactory degree of interval can be formulated as follows [Jiang, and et al.
(2010)]:

p(CI ≤ DI) =
DR−CL

2Cw +2Dw (4)

In Eq. (4), the value of p(CI ≤ DI) allows to relax the interval range from [0, 1] to
[−∞,+∞]. In this way, the interval methods can be used for the reliability analysis
of practical engineering problems. Based on this new satisfactory of interval, an
effective mathematical tool can be used for calculating engineering reliability. It
can be seen that the major limitation has been eliminated in this new satisfaction
degree of interval.
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When interval DI is degenerated into a real number D, Eq. (4) can be rewritten:

p(CI ≤ D) =
D−CL

2Cw (5)

As a result,p(CI ≤ DI) has the following properties:

−∞≤ p(CI ≤ DI)≤+∞;

p(CI ≤ DI) ≥ 1⇔CR ≤ DL⇒CI ≤ DI,namely, on the real line, CIis completely
on the left of DI;

p(CI ≤ DI) ≤ 0⇔CL ≥ DR⇒CI ≥ DI,namely, on the real line, CIis completely
on the right of DI;

If p(CI ≤ DI) = q, then p(CI ≥ DI) = 1−q,where q ∈ [−∞,+∞];

p(CI ≤ DI) = 0.5⇔CL +CR = DL +DR.

Note that the application of the satisfactory degree of interval to all position re-
lations of CI and DI in Fig. 1 will play a crucial role in the following interval
reliability analysis.

3 Limit state function based on satisfactory degree of interval

Define the state function that represents the working state as:

M = g(a) = g(a1,a2, ...aq) (6)

When a is an uncertain vector to be modeled in terms of interval vector, the state
function is represents as:

MI = g(aI) (7)

In the probability optimization, the constraints are generally made to satisfy a cer-
tain predetermined confidence level. Similarly, the state function in Eq. (7) satisfied
with a certain satisfaction degree level:

p(MI
j ≤ BI

j)≥ η j, MI = [gL
j (x),gR

j (x)], BI
j = [vL

j ,v
R
j ], j = 1,2, ...,m, (8)

where η j is a predetermined satisfaction degree level of the jth constraint. BI
j

denotes the allowable interval number of the jth constraint. MI
j is the interval of
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the jth constraint at x due to the uncertainty, and gL
i (x) and gR

i (x) are the lower and
upper bounds of this interval, respectively as,

gL
j (x) = min

a∈Γ
g j(x,a),gR

j (x) = max
a∈Γ

g j(x,a), j = 1,2, · · · ,m, (9)

Γ = {a|aL ≤ a≤ aR}

The satisfaction degree p(MI
j ≤ BI

j) can be calculated as per Eq. (4). Through Eq.
(9), the optimization method can be used to obtain the interval of the jth constraint.
η j can be adjusted to control the feasible domain of x. When η j is becoming
larger, the inequality constraints Eq. (8) are restricted more strictly and the feasi-
ble domain of x become smaller. For η j > 1, a leftmost interval of constraints is
apart from the allowable interval. It reflects a better case of reliability than other
cases. For η j = 1, the interval of constraints just separates the allowable interval.
It requires the constraints to be satisfied for all the possible combinations of the
uncertain parameters, which is actually the worst-case criterion adopted in the lit-
erature [Lombardi, and et al. (1995); Barbieri, Cinquini and Lombardi (1997); Qiu
and Elishakoff (1998)]. For 0 < η j < 1, the interval of constraints is partially over-
lapped the allowable interval. When η j is 0, Eq. (8) is absolutely satisfied and it is
actually an unconstraint treatment. η j < 0 is added to define a negative satisfactory
degree level. Obviously, a greater η j indicates a greater extent of parameter varia-
tion. Different η j values reflect different cases of constraints according to different
reliability criteria, in which the worst case stands for a special case of the method.

4 Reliability-based multiobjective optimization

The reliability-based multiobjective optimization problem can be generally formu-
lated as:

min
x
{ f1(x,a), f2(x,a), · · · , fk(x,a)}

s.t p(MI
j ≤ BI

j)≥ η j, j = 1,2, · · · ,m, (10)

a ∈ aI = [aL,aR],ai ∈ aI
i = [aL

i ≤ ai ≤ aR
i ], i = 1,2, ...,q,

xl ≤ x≤ xu
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where MI = [gL
j (x),gR

j (x)] = [min
a∈Γ

g j(x,a),max
a∈Γ

g j(x,a)].and BI
j = [vL

j ,v
R
j ]

where j = 1,2, · · · ,m and i = 1,2, · · · ,k. fi and g j are the objective and constraint
functions, respectively. x is an n-dimensional design vector, and xl and xu denote
the lower and upper bounds of x, respectively. a denotes a q-dimensional uncertain
vector and mis the total number of constraints. p(MI

j ≤ BI
j) denotes the satisfac-

tory degree associated with the performance constraints of MI
j ≤ BI

j, and η j is the
predefined satisfactory degree level of the jth state function.

In literature (e.g. Jiang, Han and Liu 2008b), an order relation “≤mw” was adopted
to treat the objective functions in terms of interval parameters. Thus it is expected
to find an optimal vector for generating an objective interval, which has not only the
smallest midpoint but also the smallest radius for minimization problems. Here the
uncertain objective functions in Eq. (10) can be transformed into a deterministic
optimization problem by also using the order relation ≤mw:

min
x

[m( fi(x,a)),w( fi(x,a))]

m( fi(x,a)) = 1
2( f L

i (x)+ f R
i (x))

w( fi(x,a)) = 1
2( f R

i (x)− f L
i (x))

i = 1,2, · · · ,k,
(11)

where m and w represent the midpoint and radius of interval, respectively. At a spe-
cific x, the bounds of the objective functions caused by uncertainty can be obtained
as

f L
i (x) = min

a∈Γ
fi(x,a),

f R(x) = min
a∈Γ

fi(x,a),

i = 1,2, · · · ,k
Γ =

{
a
∣∣aL

i ≤ ai ≤ aR
i , i = 1,2, ...,q

} (12)

Thus the uncertain vector a is eliminated and the deterministic objective functions
are formulated.

Based on the linearly weighted scheme, these two objective functions in Eq. (11)
can be formulated as a assessment function fdi as

(13)

where 0.0 ≤ β ≤ 1.0 is a weighting factor and different values are used to mea-
sure the different weights of the objective functions. ξ denotes a factor, making
m( f (x,a)) + ξ and w( f (x,a)) + ξ non-negative. ϕ and ψ are the normalization
factors of these two objectives.



48 Copyright © 2011 Tech Science Press CMES, vol.74, no.1, pp.39-64, 2011

Through the above treatments, the reliability-based multiobjective optimization
problem (10) can be transformed into the following deterministic multiobjective
optimization problem:

min
x
{ fd1(x,a), fd2(x,a), ... fdk(x,a)}

s.t p(MI ≤ BI)≥ η j, j = 1,2, · · · ,m,

ca ∈ aI = aI
i = [aL

i ≤ ai ≤ aR
i ], i = 1,2, ...,q (14)

xl ≤ x≤ xr,

where i, i = 1,2, · · · ,k,

5 Reliability-based multi-objective optimization based on a surrogate model

To formulate the assessment functions in optimization process in some real-word
engineering problems efficiently, a surrogate model is adopted to replace sophisti-
cated simulation model. As such, the optimization is performed at a lower compu-
tational cost using such approximation as:

min
x

{
f̃1(x,a), f̃2(x,a), · · · , f̃k(x,a)

}
s.t p(M̃I

j ≤ BI
j)≥ η j, j = 1,2, · · · ,m, (15)

a ∈ aI = [aL,aR],

ai ∈ aI
i = [aL

i ≤ ai ≤ aR
i ], i = 1,2, ...,q

xl ≤ x≤ xu

where M̃I = [g̃L
j (x), g̃R

j (x)] = [min
a∈Γ

g̃ j(x,a),max
a∈Γ

g̃ j(x,a)] and BI
j = [vL

j ,v
R
j ]
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where Γ and g̃ j denote the surrogate models of the ith objective function and the
jth constraint, respectively, and they are both some forms of explicit functions with
respect to x and a. Then through the interval programming method given in section
4, Eq. (15) can be formulated as a following deterministic optimization problem
like Eq. (14):

min
x

{
f̃d1(x,a), f̃d2(x,a), ... f̃dk(x,a)

}
s.t p(M̃I

j ≤ BI
j)≥ η j, j = 1,2, · · · ,m,

a ∈ aI = [aL,aR],ai ∈ aI
i = [aL

i ≤ ai ≤ aR
i ], i = 1,2, ...,q (16)

xl ≤ x≤ xu

where f̃di presents the assessment function based on the surrogate models. The
quadratic polynomial response surface methodology (RSM) technique [Draper and
Smith (1998)] is employed herein to create the surrogate models for objective func-
tions and constraints.

To generate the surrogate model, a number of sample points are needed to repre-
sent the functional space properly. It has been showed that the selection of sample
points is very important yet challenging from the modeling accuracy and efficiency
perspectives. In this paper, the Design of Experiments (DOE) is used to sample the
points for constructing the surrogate models. More specifically, the Latin Hyper-
cube Sampling (LHD) scheme [Morris and Mitchell (1995)] is adopted to generate
the points over the design and uncertain spaces. LHD, to a considerable extent,
can ensure a well-representative distribution of points over the design and uncer-
tain spaces of variables via regular intervals to maximize the minimum distance
between points.

To further clarify the numerical procedure, Fig. 2 shows an optimization flowchart
of the present method. Obviously, this is a typical nesting optimization problem.
In uncertain space and design domain, a set of sampling points are generated by
LHD. After inputting the sample points into the actual simulation models, the sam-
ples can be obtained to construct the surrogate models of the objective functions
and constraints, respectively. As a result, the optimization can be performed based
on these surrogate models. To do so, the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [Deb (2001); Deb, and et al. (2002)] and sequential quadratic
programming (SQP) [Boggs and Tolle (1995)] are used as the outer layer and inner
layer optimization solvers, respectively. The outer optimizer is used to optimize
the design vector x, and the inner optimizer is used to compute the bounds of the
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Figure 2: Flowchart of the present method nesting optimization based on the actual
simulation models

objective functions and constraints induced by the uncertainty. Thus the Pareto set
of Eq. (16) can be obtained with prescribed satisfactory degree levels.

6 Numerical examples and practical problem

6.1 Numerical example 1

The first numerical example serves as a benchmark numerical example to demon-
strate the proposed method:

min
x

f1(x,a) = a1(x1 + x2−7.5)2 +a2
2(x2− x1 +3)2/4

f2(x,a) = a2
1(x1−1)2/4+a3

2(x2−4)2/2
(17)
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s.t.

g1(x,a) = a2
1(x1−2)3/2+a2x2−2.5≤ [0,0.3]

g2(x,a) = a3
1x2 +a2

2x1−3.85−8a2
2(x2− x1 +0.65)2 ≤ [0,0.3]

0≤ x1 ≤ 5,0≤ x2 ≤ 3
a1 ∈ [0.9,1.1],a2 ∈ [0.9,1.1]

The parameters in NSGA-II are specified as Table 1. β , ξ , ϕ and ψ are set as 0.5,
0, 0 and 0, respectively.

Table 1: Details of NSGA-II specific parameters used

GA parameter name Value
Population size 50
Number of generation 200
Probability of crossover 0.9
Distribution index for crossover 20
Distribution index for mutation 20

As shown in Fig. 3, the Pareto set under different satisfactory degree levels can be
obtained. It can be seen that the Pareto set shifts and the range varies with different
satisfactory degrees. The results of the minimum fd1 and fd2 are listed in Table
2. It can be found that the minimum values of fd1 and fd2 increase along with
the increase of the satisfactory degree levels. This is because a higher satisfactory
degree level results in a smaller feasible zone, thereby leading to a worse result
of the objectives. From Table 2, it can be found that for η=0.6, the interval of
the constraint 1 is partially overlapped with the corresponding allowable interval.
For η = 1.5, the interval of the first constraint is completely separated with the
corresponding allowable intervals. Generally speaking, the satisfactory degree of
interval η only equals 1, and cannot work well for this case. In conclusion, when
η<1, the interval of constraints has overlapped each other. But for η ≥ 1, constraint
interval has apart from the allowable intervals, which indicates a better reliability
of the constraints. In other words, a greater satisfactory degree level indicates a
better reliability. The iteration history is given in Fig. 4, from which we can see
that the initial 30 to 50 iterations can only be used to find a portion of the solutions.
Most solution points can be obtained after 100 iterations, and the whole Pareto
solution points can be obtained around 200 iteration. So the Pareto solutions are
sequentially converged after 200 iterations.
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Table 2: Computation results under different satisfactory degree levels

1
,

2
  

only Min 

1df  or 

Min 2df  

Optimal 
design 
vector 

Interval 

of the 

objective 1 

Interval of 

the 

objective 2

Interval of 

the 

constraint 1

Interval of 

the 

constraint2

Satisfactory 

degree 

of interval

3.933 
(3.045,  

1.983) 

[6.267, 

7.866] 

[2.331, 

3.976] 

[-0.255, 

0.370] 

[-1.044, 

0.821] 
0.60,0.62 

0.6,0.6 

0.333 
(0.999,  

3.000) 

[16.088, 

21.039] 

[0.365, 

0.666] 

[-0.405, 

0.395] 

[-68.437,

-44.557] 
0.64,2.84 

4.305 
(2.9905,  

1.8965) 

[6.881, 

8.609] 

[2.415, 

4.143] 

[-0.399, 

0.174] 

[-1.323, 

0.384] 
0.80,0.80 

0.8,0.8 

0.335 
(0.883,  

3.000) 

[17.076, 

22.310] 

[0.367, 

0.670] 

[-0.643, 

0.236] 

[-74.702,

0.236] 
0.80,2.86 

4.674 
(2.942,  

1.813) 

[7.491, 

9.348] 

[2.507, 

4.323] 

[-0.530, 

0] 

[-1.630, 

-0.094] 
1.00,1.05 

1.0,1.0 

0.343 
(0.745,  

3.000) 

[18.280, 

23.860] 

[0.378, 

0.685] 

[-0.995, 

0] 

[-82.435,

-53.928] 
1.00,2.87 

5.042 
(2.907,  

1.718) 

[8.103, 

10.083] 

[2.635, 

4.567] 

[-0.652, 

-0.159] 

[-2.130, 

-0.865] 
1.20,1.55 

1.2,1.2 

0.356 
(0.610,  

3.000) 

[19.501, 

25.432] 

[0.395, 

0.712] 

[-1.425, 

-0.288] 

[-90.378,

-59.245] 
1.20,2.88 

5.583 
(2.871,  

1.570) 

[9.006, 

11.166] 

[2.861, 

4.989] 

[-0.819, 

-0.373] 

[-3.334, 

-2.181] 
1.50,2.50 

1.5,1.5 

0.387 
(0.400,  

3.000) 

[21.483, 

27.982] 

[0.438, 

0.775] 

[-2.280, 

-0.860] 

[-103.446,

-67.993] 
1.50,2.90 
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6.2 Numerical example 2

The second example further tests the method proposed with the following two ob-
jectives and constraints:

min
x

f1(x,a) = 2+a2
1(x1−2)2 +(2a2

2−a1)(x2−2)2

f2(x,a) = 9(2a3
2−a1)x1−a2

2(x2−1)2

s.t.g1(x,a) = a3
2x2

1 +a2
1x2

2 ≤ [215,235]
g2(x,a) = a2

1x1−3a2
2x2 +25≤ [0,0.3]

(18)

a1 ∈ [0.9,1.1], a2 ∈ [0.9,1.1]

As shown in Fig. 5, it can be clearly seen that the ‘span’ of Pareto fronts with larger
satisfactory degree level is much smaller than those with a smaller value in this nu-
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Table 3: Computation results under different satisfactory degree levels

Min 1df  

only 
1
,

2
  

Min 2df  

only 

Optimal 

design 

vector 

Interval 

of the 

objective 1 

Interval of 

the 

objective 2

Interval of 

the 

constraint 1

Interval of 

the 

constraint2

Satisfactory 

degree 

of interval

41.799 
(-2.718,  

8.435) 

[49.826, 

83.598] 

[-112.194,

-50.847] 

[63.021, 

95.93] 

[-8.909, 

2.301] 
3.25,0.80 

1.8,0.8 

-43.990 
(-2.401 

11.000) 

[68.491, 

143.548] 

[-163.438,

-87.980] 

[103.995, 

156.7452]

[-18.197,

-3.917] 
1.80,1.27 

51.907 
(-1.656, 

9.737) 

[49.297,103.

813] 

[-119.960,

-65.527] 

[78.794, 

118.367] 

[-12.349,

-0.002] 
2.622,1.000

1.8,1.0 

-44.546 
(-1.421, 

11.300) 

[61.126,142.

922] 

[-152.031,-

89.092] 

[104.887,15

7.172] 

[-17.735,-

3.608] 
1.80,1.25 

65.292 
(-3.419, 

10.303) 

[73.381,130.

584] 

[-161.714,

77.740] 

[94.511,144

.012] 

[-16.5382,

-2.807] 
2.021,1.2 

1.8,1.2 

-42.719 
(-3.255, 

10.824) 

[75.908,142.

7202] 

[-171.037,-

85.438] 

[106.622,15  

5.8648] 

[-18.230,-

3.939] 
1.81,1.27 
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merical example. The optimization results under the different satisfaction degree
levels are listed in Tables 3. Obviously, the minimum value of fd1 increases with
the increase of the satisfactory degree level value. This is understandable because
the increase of the satisfactory degree level leads to a much safer and conserva-
tive design. The minimum fd2 does not seem to exactly follow up such a pattern.
This may be the result when the constraint dominates the objective function [Sinha
(2007)]. For the case of η1 = 1.8 and η2 = 0.8, the interval of the second constraint
is partially overlapped with the corresponding allowable interval. However, for the
cases with η1 = 1.8, η2 = 1.0 and η1 = 1.8,η2 = 1.2, the interval of constraints
apart from the allowable interval, which indicates a better reliability.

6.3 Practical problem

The bumper is a key energy absorption part for the vehicles frontal crash. It is a
very important design issue to optimize the bumper structure to improve the crash-
worthiness performance of vehicles. In this section, the optimization of the bumper
impacting onto a rigid wall with the initial velocity of 13.6m/s is considered (Fig.
6). The time duration of the impacting is 18ms. The crashworthiness of bumper
structure is commonly represented in terms of the deformation mode, the energy
absorption and peak acceleration, and etc, which can determine the overall crash-
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Figure 3: The Pareto optimal fronts with different satisfactory degree levels
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Figure 4: The plot of the iteration history

ing performance of the vehicle [Jiang, and et al. (2007b); Hou, and et al. (2008);
Sun, and et al. (2010)]. In addition, the lightweight of vehicle should be taken
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Figure 5: The Pareto optimal fronts with different satisfactory degree levels

 

Figure 6: A bumper impacting the rigid wall

into account in the design process as well. Therefore, Maximum internal energy
Ed and the weight of the bumper are used as the objective functions. The peak
deceleration is treated as a constraint. As shown in Fig. 7, the sheet metal thick-
ness of the structure is chosen as the design variables. The nominal values of Yield
stress σs, Young’s Modulus E, and Poisson’s ratio ν are 167.1MPa, 207000MPa
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Figure 7: The finite model of the bumper

and 0.3, respectively. Due to the manufacturing and measurement errors, Yield
stress σs, Young’s Modulus E, and Poisson’s ratio ν are considered as the uncer-
tain parameters, and their uncertainty levels are 10% off from their normal values:
σs ∈ [150.39MPa,183.81MPa], E ∈ [186300MPa,227700MPa], ν ∈ [0.27,0.33].
As a result, the reliability-based multiobjective optimization can be formulated as:

min
t1,t2,t3

f1(t1, t2, t3) = W

f2(t1, t2, t3,σs,E,ν) =−Ed

s.t.

Acc(t1, t2, t3,σs,E,ν)≤ [500m / s2,550m / s2] (19)

σs ∈ [438.93MPa,536.47MPa]

E ∈ [186300MPa,227700MPa]
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µ ∈ [0.27,0.33]

1mm≤ t1, t2, t3 ≤ 3mm

The finite element simulation for the crashworthiness process is carried out us-
ing the commercial software LS-DYNA. The structure comprises 13343 nodes and
13551 (mostly shell) elements. A concentrated mass 677.6kg is attached to the end
of the bumper in order to supply enough energy for crashing. Fig. 7 shows the orig-
inal FE model. A possible deformation of the bumper is shown in Fig. 8. A single
simulation takes about 15 min with four processors computer in this problem.

 

Figure 8: A typical deformation the finite element model

Initially, 60 sample points are selected through LHD to construct RS surrogate
models for the objectives and constraints both in the design domain and uncertainty
space. The surrogate model of weight W is a linear function of design variable t,
but the surrogate models of Ed and Acc are nonlinear functions with respect to
t, σs, E, and ν . According to the classical RSM theory, the larger the values of
R2 and R2

ad j, the better the model accuracy [Xiang, Wang, Fan and Fang (2006);
Fang, Rais-Rohani, Liu and Horstemeyer (2005)]. The regression analysis results
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Figure 9: Pareto optimal front points with different satisfactory degree levels

Table 4: Results of regression analysis

R2 R2
ad j Multiple R

W 1.0000 1.0000 1.0000
Ed 0.9993 0.9987 0.9997
Acc 0.9521 0.9118 0.9758

are given in Table 4. Obviously, the surrogate models for the weight W , maximum
internal energy Ed and peak acceleration Acc exhibit a desirable accuracy.

Fig. 9 shows that the range and shape of the Pareto set varies for the different sat-
isfactory degrees. It is clear that the minimum energy access function increases as
the satisfactory degree increases. Similarly, this is because that a higher satisfactory
degree can lead to a smaller feasible zone. It can be found the assessment function
for−Ed increases when increasing the satisfactory degree levels, while the W is not
very sensitive to the different satisfactory degree levels. For η = 0.8, the obtained
interval of Acc is [368.2m / s2,545.3m / s2], which is partially overlapped with the
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Table 5: Summary of results for the thin-walled beam

1  

Min W  

Min dE  

Design vector 

( mm ) 

Interval of 

dE ( J ) 

Interval of Acc

( 2m/s ) 

Satisfactory 

degree 

of Acc 

5.66 (1.00,1.00,1.00) [-12103,-8375] [208.1,431.4] 1.25 

0.8  
42.176 10   (1.72,1.00,1.86) [-2.6670,-21764] [368.2,545.3] 0.80 

5.66 (1.00,1.00,1.00) [-12103,-8375] [208.1,431.4] 1.25 

1.0  
41.552 10   (1.39,1.00,1.43) [-19872,-15519] [299.1,500] 1.00 

5.66 (1.00,1.00,1.00) [-12103,-8375] [208.1,431.4] 1.25 

1.2  
41.179 10   (1.00,1.00,1.57) [-15462,-11795] [265.5,452.7] 1.20 

 

corresponding allowable interval [500m / s2,550m / s2]. However, for η = 1.2, the
obtained interval of Acc is [265.5m / s2,452.7m / s2], which is completely sepa-
rated from allowable interval [500m / s2,550m / s2]. So, this practical is also show
the evidence that a higher satisfactory degree level might result in a better reliability
in the multiobjective optimization designs.

7 Conclusion

This paper proposes a reliability-based multiobjective optimization in terms of a
new satisfaction degree of interval. For engineering optimization applications,
when the precise probabilistic information for the uncertain parameters is unavail-
able, the interval model is an alternative choice to describe the uncertainty conve-
niently and effectively. In reliability-based analysis, it is more appropriate to give a
close interval constraint for reliability than a precise real value. Satisfaction degree
of interval provides a general way to deal with the uncertain constraints. Most con-
ventional satisfactory degree methods work well for the overlapped interval, with
the interval values ranging from 0 to 1. This work introduces a new satisfactory de-
gree of interval into the reliability-based multiobjective optimization. Thus, a new
non-probabilistic reliability-based model is developed for multiobjective design op-
timization problem. Based on interval number programming, the reliability-based
multiobjective problem is transformed into deterministic optimization. For practi-
cal engineering problems, the surrogate modeling method is incorporated into the
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reliability-based multiobjective optimization for objectives and constraints to im-
prove the efficiency. Then, the Pareto set can be obtained with the different satisfac-
tory levels. Two numerical examples and one typical engineering structural design
are investigated to demonstrate the effectiveness of the current method. The signif-
icance of this study is the reliability-based multiobjective optimization works well
not only for overlapped intervals but also the completely separated intervals. Fur-
thermore, this study provides a possibility to apply the interval method to structural
optimization problems where the gradient-based sensitivity information is required.
Two problems are still remaining open for further investigation: (1) the reliability-
based multiobjective formulation is a double-loop nested optimization, and how to
improve its computational efficiency is an important topic for the future research,
(2) more effective interval uncertain methods, rather than the relaxation of interval
from [0, 1] to [-∞, +∞], to overcome the non-differentiability at the interval bounds
are still in demand for advanced structural optimization of continuum structures.
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