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A Cell Method Model for Sintered Alloys

Francesca Cosmi'

Abstract: In industrial applications, microstructure inhomogeneities can derive
from the manufacturing process and the final mechanical properties of the mate-
rial depend on the resulting, complex, structural pattern of the constituents. In this
paper, Cell Method plane models in the elastic and plastic fields are presented and
applied to predict the behaviour of four sintered alloys, where the spatial arrange-
ment of voids within the base material contributes to determine the mechanical
behaviour. Unlike the Finite Elements and other methods, the Cell Method is a
numerical method based on a direct discrete formulation of equilibrium equations,
so that no differential formulation is needed in order to write the balance equations.
One of the consequences of the Cell Method direct discrete approach is that no re-
striction is imposed by differentiability conditions so that the characteristic length
of the elementary cell in the discretization can be of the same order of magnitude of
the heterogeneities of the structure. Therefore, the Cell Method appears to be par-
ticularly suitable to assess the mechanical behaviour of heterogeneous materials.
The results of the computations show a very good agreement with the experimental
data of the sintered alloys examined.

Keywords: Numerical methods, Cell Method, sintered alloys, mechanical prop-
erties.

1 Introduction

A wide class of materials exhibits a complex structure at the micro-scale. The
spatial arrangement of the constituents determines the local mechanical properties
which in turn influence the final resistance of the whole specimen. This is true
for numerous materials, ranging from biological tissues such as, for example, tra-
becular bone, to materials employed in industrial applications, sintered alloys and
composites among them. In the latter case, microstructure heterogeneities either
can derive from the manufacturing process or be added on purpose.
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In all these instances, the final mechanical properties depend on the resulting phase
pattern within the matrix. For example, porosity content and distribution strongly
affect the mechanical properties by reducing the effective section and inducing
stress concentrations in sintered alloys, which are obtained by joining together
small particles of metal by applying heat at temperatures below the melting point.
The outcome is a reduction of strength and ductility with respect to the wrought
material, as shown for example in Fig. 1).
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Figure 1: Tensile behavior of AISI316L steel and of two sintered alloys obtained
from AISI316L powder.

The macroscopic direct numerical simulation of a microscopically heterogeneous
engineering structure is virtually impossible. The numerical models used for com-
putational material testing compute the average material properties on a statistically
representative volume of the material (RVE). This homogenization process yields
results that can in turn be used in macro-scale models (Fig.2).

Analytical models usually have a simple formulation but are based on parameters
that do not have a clear physical meaning and must be calibrated by experimental
tests. They cannot anticipate the behavior of a complex structure material and
cannot be used to decide a micro-structure in order to meet predetermined macro-
structural requirements.

In alternative, numerical models can be developed, so that simulations can antici-
pate the mechanical behavior of materials with a complex structure, accelerating the
optimization process of high performance new materials. The development of nu-
merical models results in an important reduction of experimental tests and project
development costs. Several homogenization numerical models based on the use of
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Figure 2: Estimate of effective properties for structural computations.

finite element method can be found in literature. They are essentially based on two
approaches: the first generates a mesh in which the elements sides overlap with the
internal interfaces of the material, while the second allows the possibility of discon-
tinuities within a single element [Cannillo and Carter (2000), Zohdi and Wriggers
(200D)].

For plane problems, the FEM approaches usually employ triangular or quadrilat-
eral elements, often arranged in a periodic structure. The regularity of the re-
sulting arrangement can be avoided by using alternative tessellation patterns, as
in the Voronoi Cell Finite Element Method (VCFEM). These methods can be re-
garded as alternative FEM formulations and have been applied for computing the
micro-structural properties of several types of materials [Ghosh and Mukhopad-
hyay (1991), Ghosh (2004), Grujicic and Zhang (1998)] and extended to include
fracture models [Chao, Bai and Ghosh (2007)].

In this work, an entirely different approach is followed and plane models based
on the Cell Method (CM) are applied to predict the mechanical behaviour of four
sintered alloys in the elastic and plastic fields. The computations results show a
very good agreement with experimental data.

2 Cell Method

The Cell Method is a recently developed numerical method, first introduced in
[Tonti (2001)]. It has now been applied successfully in several fields ranging
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through mechanics of structures, biomechanics, diffusion, dynamics, etc [Alotto,
Gruosso, Moro and Repetto (2008) , Codecasa and Trevisan (2006), Cosmi (2011),
Cosmi (2009), Cosmi and Dreossi (2007a), Cosmi and Dreossi (2007b), Cosmi
and Hoglievina (2010), Cosmi, Steimberg, Dreossi and Mazzoleni (2009), Ferretti
(2009), Ferretti, Casadio and Di Leo (2008), Heshmatzadeh and Bridges (2007),
Straface, Troisi and Gagliardi (2006), Taddei, Pani, Zovatto,Tonti and Viceconti
(2008), Zovatto and Nicolini (2007), Zovatto and Nicolini (2006)].

In general, the results obtained with the Cell Method are similar to the Finite El-
ements Method ones, but the two approaches are considerably different. Numeri-
cal methods like Finite Elements, Finite Difference, Boundary and Finite Volumes
Methods all obtain the balance laws by introducing differential relations among the
variables of the approximated field. All these methods require a two-step process:
first, a differentiation to write the appropriate balance equations, then, a discretiza-
tion of the equilibrium, differential, equations in order to solve the system. Thus,
different discretization methods can lead to different sets of algebraic equations for
the same mesh.

The Cell Method stems from the consideration that the geometrical information is
lost in this two-step process and that, due to differentiation, part of the physics of
the problem somehow vanishes in the formulation of the numerical problem. For
example, derivability requirements impose restrictions on the field equations that
are not related to the physics of the problem. The Cell Method, on the contrary,
is based on a direct discrete formulation of the field laws and can be applied when
variables cannot be differentiated, i.e. when the displacement field undergoes large
variations or the heterogeneities dimensions are of the same order of magnitude
as the mesh size. Since the focus of this work is on its applications, only a very
brief description of the method, from an engineering point of view, is given in the
following. The interested reader will find a detailed description of the Cell Method
foundation and implementation in [Tonti and Zarantonello, (2009) and (2010)].

With the Cell Method, two geometrical complexes are used (Fig.3):

the primal cells, to which the configuration variables such as strain tensor, dis-
placements, velocity are linked in the nodes;

the dual cells, which are the regions of influence of the nodes and on which the
source variables, like stress tensor, forces, momenta, act. In this work, the barycen-
tric complex associated with the primal cells was used.

2.1 Elastic field

Assuming a linear interpolation of the displacement field within the primal cells,
strain components { €}, and stress components {0 }. are uniform within the primal
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Figure 3: An example of possible primal cells and the corresponding region of
influence in node £.

cell c:
{e}. =Bl {u}. (D
{o}. = [D].{e}, 2

where {u}. collects the nodal displacements, [D]. represents the linear elastic con-
stitutive law of the material and [B]. describes the strain-displacement differential
operator, fully similar to that of the Finite Element Method (FEM). However, the
similarities with the FEM end here. In fact, the CM equilibrium equations are
written directly in a discrete form for each region of influence, by adding up the
contributions as outlined in Fig.4.
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Figure 4: Balance equations framework.

An example of the forces on the sides of the influence region of node 4 in the cell ¢
is shown in Fig.5.

For all the nodes of a primal cell ¢, the expression for the forces on the dual cell
sides after some simple manipulation becomes {7}, = —tA.[B]! [D].[B], {u},
where A, is the area and 7 is the thickness of the primal cell. The static balance of
the influence region of node % can be then written as

{T} +{F} =0 3)
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Figure 5: Forces on the sides of the region of influence of node #in the cell c.

where {T;,} collects the forces on the sides and { F;,} the volume and external forces
of the dual cell. Combining eq. 3 for all the influence regions, a linear system is
obtained and can be rewritten as

{F} = —{T} = [K]{u}. @

It must be pointed out that, while it appears to be formally similar to that of FEM,
the solving system has been obtained without using a differential formulation in or-
der to write the equilibrium condition. Results indicate that accuracy, convergence
rate and computing times are comparable (and sometimes even better than) with
FEM [Cosmi (2001), (2005), (2008)]. Solution is directly obtained in the nodes
with no extrapolation from super-convergent points and there is no locking, which
greatly improves local stress evaluation in high gradient regions such as stress con-
centrations or hot spots.

2.2 Plastic field

Beyond the elastic point, in order to take into account the progressive damage accu-
mulation that ductile materials exhibit when loaded, implementation of non-linear
constitutive relationships is needed. An elastic-perfectly plastic incremental model
for CM has been developed and discussed in [Nappi, Rajgelj and Zaccaria (2001)]
and applied in [Cosmi (2004)]. For a more realistic simulation of real materials, in
this work the model has been modified to include an elastic-plastic behaviour with
linear hardening of the type shown for example in Fig.6.

For a plane state, the expression for the cell stress components now becomes {o'},. =
D). [{e}, —{A}.] + [H]c{A}., where {4}, collects the inelastic strain compo-
nents, uniform inside the primal cell consistently with the approximation used in
the elastic field, and [H], represents the linear constitutive law approximating the
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Figure 6: Example of uniaxial elastic-plastic constitutive law with hardening.

material behaviour in the second part of the stress-strain diagram. The load his-
tory is divided into a convenient number of finite steps. Displacements and internal
stresses are known at the beginning of each step. The fundamental equation (4) in
incremental terms now reads

{AF} = [K]{Au} —[L]{AX} )

where [L]{AA} collects the plastic strain equivalent forces. The condition {AA} =
0 is assumed at the first step and the system (5) is solved for {Au}, so that also the
stress components { ¢ }. and the deviatoric strain components {s}. can be computed
in each primal cell. In this work, the Von Mises yield condition was assumed and
the radius of the yield locus was used to update {AA }. The process is repeated until
convergence is obtained, then a new step is considered.

Again, it can be noted that the Cell Method derives from a direct discrete formula-
tion of physical laws. As a consequence, there are no limitations due to conditions
of differentiability and the characteristic length of heterogeneities can be the same
order of magnitude as the mesh size or the constitutive matrix can vary from one
cell to the neighbor. These characteristics have been exploited in the application
described in the following section.
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3 Application: sintered alloys

The outcome of the simulations were compared with the corresponding experimen-
tal compression test results available in literature [Bertini, Fontanari and Straffellini
(1998)]. Two different commercial powder materials were processed to attain two
different residual porosity levels each. Alloys Al and A2 were obtained from the
pure iron NC100.24 commercial powder at a residual porosity level respectively of
13.4% (A1) and 9.8 % (A2), and the austenitic stainless steel AISI316L powder was
processed to obtain alloy B1 with a 14.5 % and B2 with 12.04 % residual porosity
levels. Given the variability of these materials, all experimental data published had
been obtained as the average of 5 tests.

The mechanical properties of the constituent cells in the simulations were coherent
with those of the corresponding powder materials and are reported in Table 1.

Table 1: Powder materials properties.

NC100.24 | AISI316L

E. elastic modulus in the first part of the | 207 197
stress/strain diagram (GPa)

Ry, yield stress (MPa) 180 275

H, tangential modulus in the second part of the | 2 3
stress/strain diagram (GPa)

V., Poisson’s ratio in the elastic field 0.3 0.3

Vv, Poisson’s ratio in the plastic field 0.5 0.5

For each model, a total of 1498 cells was used. The residual porosity was obtained
by randomly distributing an adequate number n of "empty" cells among the cells of
the constituent, as shown in Fig.7.

Empty cells are characterized by exhibiting a null stiffness. It can happen that a
node is completely surrounded by empty cells, so that the stiffness of its influence
region is totally null. In this case, the node displacement is set to null, thus avoiding
singularity problems in the global stiffness matrix of the solving system. Since the
contribution of this node to the elements of the local stiffness matrices is null by
definition, this assumption does not alter the forces or the displacements in the
system.

Similarly to the case of real alloys, porosity was made change slightly in a random
way from one simulation to the other. Coherently with the experimental tests, the
simulation results were computed as the average of 5 runs. The average number of
empty cells in the model was 202 (% 20) for alloy Al, 147 (£ 13) for A2, 216 (+
9) for Bland 180 (4 17) for B2.
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Figure 7: The mesh used in the simulations (left) and the empty cells (black) ran-
dom distribution among the constituent cells (white) in one of the simulations of

alloy Al.

3.1 Elastic field

The effective elastic moduli, Ecy, computed in the simulations, were compared
with the experimental compressive Young moduli, Eg, available in literature. The

results are shown in Table 2.

Table 2: Results in the elastic field.

Alloy Al | A2 | B1 | B2
E; (GPa) | 150 | 168 | 140 | 150
Ecy (GPa) | 161 | 175 | 152 | 160
Error T% | 4% | 8% | 6%

In all cases, the results obtained in the simulations indicate a very good agreement
with experimental data. The percentual difference between the experimental and
the numerical values remained well below 10%, which is considered the normal
range of variability for these materials.

A plot of Ecys vs. porosity is shown in Fig.8. The values of the correlation co-
efficient for each data set are also reported in the same graph. It can be seen that
porosity alone is not sufficient to account for all of Young’s modulus variations
although a general trend is present, confirming the effect of the microstructural ar-
rangement of the component on the effective mechanical properties. As expected,
for higher values of n/N, the variations in the spatial arrangement of the voids are
more evident and this effect is more marked.
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Figure 8: Computed effective elastic moduli E¢y (GPa) vs. porosity.

3.2 Plastic field

The mechanical behaviour of the modeled alloys has been simulated also beyond
the elastic field, assuming a constitutive model with hardening for the ferrous cells.
In the plastic region, the yield stress, the Poisson’s ratio and the elastic modulus
in the second part of the stress/strain diagram were assumed coherent with those
of the corresponding wrought material and are reported in Table 1. Again, the
simulations results refer to the average of the 5 runs. As an example, Fig.9 depicts
the progressive plasticization at three different steps in one of the simulations (the
model of Alloy Al shown in Fig.7). Computing time was a couple of hours on a
Intel Core™ i7 2.67 GHz based notebook.

The stress/strain plots obtained during the simulations of the four alloys are com-
pared in Fig. 10 with the corresponding experimental diagrams. In general, it can
be said that the simulation results reproduce well the compressive behaviour ob-
tained in the experimental tests. In particular, the stress/strain plots of experimen-
tal data for these alloys show a discontinuity in the region of yielding, particularly
interesting for industrial applications, and this behavior is well reproduced in the
simulations, where the slope changes at yield.

The mechanical behavior of sintered alloys in the plastic field is often represented
by Hollomon’s equation, which is not suitable in the elastic region and is not able
to reproduce for the above-mentioned discontinuity. For comparison, Hollomon’s
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Figure 9: Progressive plasticization in a simulation (model of alloy A1 shown in
Fig.7). The plasticized cells appear grey. The cells still in the elastic field are shown
white, the void cells black.

equation is also plotted in Fig. 10, using the parameters given in [Bertini, Fontanari
and Straffellini (1998)] that best fit the experimental data for the alloys.

It can be pointed out that analytical formulations such as Hollomon’s equation can-
not be used to predict the alloy behavior at a material design stage. In fact exper-
imental tests are needed in order to tune the parameters involved, which have no
physical meaning and can be therefore set only a posteriori. On the contrary, the
Cell Method numerical simulations, based only on physical parameters such as the
mechanical properties of the base material and the residual porosity levels, were
able to predict the behavior of the sintered alloys with very good accuracy.

4 Conclusions

A numerical model suitable for the assessment of the mechanical behavior of sin-
tered alloys has been presented in this work. The model takes into account the
heterogeneities of the structure due to porosity and the consequent stress concentra-
tions and is based on the application of the Cell Method, a numerical method that is
particularly suitable for heterogeneous materials. The development of plane mod-
els in the elastic and plastic field, also introduced in the paper, allowed to predict
the behaviour of four sintered alloys, obtained from two different base materials at
different porosity levels in a very good agreement with experimental data.
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