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Abstract: The multiple-relaxation-time lattice Boltzmann method for micro-scale
flows (MRT µ-flow LBM) is extensively evaluated in this study. Following the
study of Chai, Shi, Guo and Lu (2010), the diffusive bounce-back wall boundary
condition and the collision matrix are modeled. To determine the model param-
eters, the first-order, 1.5-order and second-order slip-flow models are discussed.
Since the mean free path of gas molecules is considered to be influenced by the
wall in micro flow systems, the effects of a correction function after Stops (1970)
are also evaluated. As the increase of the Knudsen number (Kn), it is necessary
to introduce the regularization procedure to remove oscillations from the results,
particularly for complex flows. The model combination thus includes the regular-
ization procedure as well. The model validation is firstly performed in canonical
force-driven Poiseuille flows at 0.01≤Kn≤10. Then, 2-D complex flows around
an obstacle such as a triangular- and a square-cylinder at Kn≈0.1 are discussed.
Finally, a flow in a 3-D bumpy wall channel at Kn=0.1 is considered. For the
2-D and 3-D flow cases, the two dimensional nine discrete velocity (D2Q9) and
the three dimensional 19 discrete velocity (D3Q19) models are applied, respec-
tively. To describe complex shapes of wall surfaces, a linear interpolation scheme
is applied to the diffusive bounce-back wall boundary condition. For providing
the reference data, simulations by the molecular dynamics (MD) method using the
Lennard-Jones potential are also performed for the obstacle and the bumpy channel
flows. It is confirmed that the near wall correction of the molecular mean free path
is important at Kn>1. With the regularization procedure, the MRT LBM reproduces
the reference data very satisfactorily irrespective of the order of the slip-flow model
incorporated.
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1 Introduction

It can be said that the lattice Boltzmann method (LBM) [e.g. McNamara and
Zanetti (1988); Higuera and Jimenez (1989)] has quickly established its status in
simulating fluid flows. One of the attractive features is that the LBM is particularly
flexible for simulating flows in complex geometries such as flows in porous mate-
rials [Keehm, Mukerji and Nur (2004); Niu, Munekata, Hyodo and Suga (2007);
Suga and Nishio (2009); Suga, Tanaka, Nishio and Murata (2009), etc.] since its
algorithm is simple for treating complex flow boundaries. In fact, the LBM is now
a standard approach for solving flows in engineering porous media such as those
for fuel cells and catalytic converters. Although the LBM is a method to simulate
Navier-Stokes flows, it is also possible to expand its applicability to flows in micro-
systems. There have been thus a lot of studies on the LBM for micro flows (µ-flow
LBM, hereafter).

When the representative scale H of the flow geometry is in a sub-micron meter
scale, since the mean free path λ of gas molecules under an atmospheric pres-
sure becomes 0.06µm, the Knudsen number, Kn=λ/H, reaches Kn> 10−2. Such a
condition is known as the slip-flow regime and can be found in nano/micro-electro-
mechanical systems. At this moderately high level of Kn, the continuum Navier-
Stokes equations are no longer applicable and the Boltzmann equation (BE) of
the gas kinetic theory is suitable for describing flow physics [e.g. Chapman and
Cowling (1970); Cercignani (1975); Karniadakis, Beskok and Aluru (2005)]. Be-
cause of its kinetic origin, it can be naturally considered that the LBM has potential
to be expanded for treating the finite Knudsen number flows. Nie, Doolen and
Chen (2002), Shen, Tian, Xie and Fan (2004), Zhang, Gu, Barber and Emerson
(2006) and Guo, Zhao, Shi (2006) showed promising results to describe the fi-
nite Kn flows by introducing Kn dependency into the relaxation parameter in the
Bhatnagar-Gross-Krook (BGK) model [Bhatnagar, Gross and Krook (1954)] of the
lattice Boltzmann equation. Succi (2002) and Sbragaglia and Succi (2005) dis-
cussed the specular-reflection and the slip-reflection effects for the wall boundary
condition of the slip flow regime, respectively. Toschi and Succi (2005) introduced
a virtual wall collision concept into the bounce-back and diffuse-scattering bound-
ary conditions of Ansumali and Karlin (2002). Zhang, Qin, and Emerson (2005)
applied a Maxwellian scattering kernel to the wall conditions with an accommoda-
tion coefficient.

Although most of the LBM studies, which were not only for micro flows but also for
Navier-Stokes flows, were based on the single relaxation-time (SRT) BGK model,
Pan, Luo and Miller (2006) reported that generally the multiple relaxation-time
(MRT) model [d’Humieres, Ginzburg, Krafczyk, Lallemand and Luo (2002)] was
more stable and superior to the BGK model. They showed that the SRT model had
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the viscosity dependency of flows in complex porous media while the MRT im-
proved it. (Indeed, our study on nano-mesh flows by the SRTµ-flow LBM [Suga,
Takenaka, Kinjo and Hyodo (2011)] indicated that the SRT suffered from the un-
desirable viscosity dependency to predict the permeability in the slip and transi-
tional flow regimes.) Accordingly, Guo, Zheng and Shi (2008) discussed the MRT
method with the combination of the bounce-back and the specular reflection wall
boundary condition of Succi (2002) for micro flows. In the context of the MRT
LBM, Verhaeghe, Luo and Blanpain (2009) tested a diffusive bounce-back model
for fully diffusive stationary walls. In our previous report [Suga and Ito (2010)], the
above µ-flow MRT models by Guo, Zheng and Shi (2008) and Verhaeghe, Luo and
Blanpain (2009) were evaluated in Poiseuille flows and a square cylinder flow along
with the SRT µ-flow LBM. It was cofirmed that although there were still margins to
improve, the MRT model was indeed superior to the SRT model and the diffusive
bounce-back boundary condition was better than the combined bounce-back and
specular-reflection boundary condition around a stagnation point.

Very recently, Chai, Shi, Guo and Lu (2010) considered that a possible way to
improve the diffusive bounce-back boundary condition was keeping consistency
with a higher order slip-flow condition of the modified Reynolds equation of tri-
bology. They thus discussed the second-order slip-flow condition of Hadjicon-
stantinou (2003) to determine the model coefficients. Although they reported that
capturing the Klinkenberg effect [Klinkenberg (1941)] was successful, the model
performance was not sufficiently evaluated against benchmark data. Therefore, the
present study extensively evaluates the effects of using several slip-flow conditions
in conjunction with the other sub-models for micro flows such as the correction
of the molecular mean free path and the regularization procedure. The chosen test
flow cases are canonical force-driven Poiseuille flows and channel flows with an ob-
stacle inserted. The inserted obstacle is a triangular-cylinder or a square-cylinder
[Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)]. (They are referred to
as the triangular- and square-cylinder flows, respectively.) Finally, as the most
complicated three-dimensional (3-D) test case, a flow through a 3-D bumpy wall
channel, where hemisphere bump matrices are formed, is also considered. This
case is referred to as the bumpy channel flow. For 2-D and 3-D flow cases, the two
dimensional nine discrete velocity (D2Q9) and the three dimensional 19 discrete
velocity (D3Q19) models are applied, respectively. In order to represent the shapes
of the triangular-cylinder and the bumps correctly, a linear interpolation scheme is
applied to the diffusive bounce-back boundary condition. To generate the reference
data for the obstacle flows and the bumpy channel flow, molecular dynamics (MD)
simulations [e.g. Koplik and Banavar (1995); Haile(1997)] are performed in the
present study.
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2 The MRT µ-flow Lattice Boltzmann Method

Although one should refer to some of the original papers for the detailed derivation
of the lattice Boltzmann equations and their modeling steps for applying to micro
flows, brief descriptions are given below.

2.1 Multiple relaxation time method

The lattice Boltzmann equation can be obtained by discretizing the velocity space
of the Boltzmann equation into a finite number of discrete velocities ξξξ α{α =
0,1, · · · ,Q− 1}. Although many techniques to discretize the velocity space have
been proposed, in the present study, as shown in Fig.1, the two-dimensional nine
velocity (D2Q9) and three-dimensional nineteen velocity (D3Q19) models are cho-
sen for 2-D and 3-D flows, respectively. They are the second-order accurate discrete
velocity models and easily applicable to complex flow geometries. From an engi-
neering view point, the third- or higher-order discrete velocity models are not prac-
tical since they require more than two lattice levels for the streaming. The MRT
LBM [d’Humieres, Ginzburg, Krafczyk, Lallemand and Luo (2002)] transforms
the distribution function f(x, t) at the lattice site x at time t in the velocity space
to the moment space by a transformation matrix M. Since the moments of the
distribution function correspond directly to flow quantities, the moment represen-
tation allows us to perform the relaxation processes with different relaxation-times
according to different time-scales of various physical processes. The evolution
equation is thus written as

1
δ t

[|f(x+ξαδ t, t +δ t)〉− |f(x, t)〉] =−M−1Ŝ [|m(x, t)〉− |meq(x, t)〉]+ |F〉 , (1)

where the bracketed vector such as |f〉 is |f〉 := ( f0, f1, · · · , fQ−1)
T and δ t is the time

step. The term F is an external body force:

F := (F0,F1, · · · ,FQ−1), Fα = 3ωαρ0
ξξξ α ·a

c2 , (2)

where a is the acceleration vector, c = δx/δ t, δx is the lattice space and ρ0 is the
mean density of the system which is set to be unity. In the D2Q9 and D3Q19
models, the discrete velocity vectors are respectively

ξξξ α =


(0,0), α = 0,

(±1,0),(0,±1), α = 1−4,

(±1,±1), α = 5−8,

(3)
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ξξξ α =


(0,0,0), α = 0,

(±1,0,0),(0,±1,0),(0,0,±1), α = 1−6,

(±1,±1,0),(±1,0,±1),(0,±1,±1), α = 7−18.

(4)

The weight parameters are

ωα =


4/9, α = 0,

1/9, α = 1−4,

1/36, α = 5−8,

(5)

4 

 

Since the moments of the distribution function correspond directly to flow quantities, the 
moment representation allows us to perform the relaxation processes with different 
relaxation-times according to different time-scales of various physical processes. The 
evolution equation is thus written as 
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Figure 1: Discrete velocity models; (a) two-dimensional nine velocity (D2Q9) model, 
(b) three-dimensional nineteen velocity (D3Q19) model. 

Figure 1: Discrete velocity models; (a) two-dimensional nine velocity (D2Q9)
model, (b) three-dimensional nineteen velocity (D3Q19) model.

ωα =


1/3, α = 0,

1/18, α = 1−6,

1/36, α = 7−18,

(6)

respectively for the D2Q9 and D3Q19 models.

The fluid macro density ρ , velocity u and the pressure p are respectively obtained
by applying the integral of microscopic velocity moment as

ρ =
Q−1

∑
α=0

fα , ρu =
Q−1

∑
α=0

fαξξξ α +
δ t
2

a, p = ρc2
s , (7)

where the sound speed cs =
√

RT is equal to
√

1/3 in the D2Q9 and D3Q19 mod-
els. Here, R and T are the ideal gas constant and temperature, respectively.
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The matrix M is a Q×Q matrix which linearly transforms the distribution function
to the velocity moment:|m〉= M · |f〉.
For the D2Q9 model, the transformation matrix is

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


. (8)

The collision matrix Ŝ is diagonal:

Ŝ = diag(s0,s1, · · · ,sQ−1). (9)

The moment components have physical significances:

|m〉= (m0,m1, · · · ,mQ−1)T = (ρ,e,ε, jx,qx, jy,qy, pxx, pxy)T , (10)

where the density ρ and the momentum j := ρu = ( jx, jy) are conserved moments.
The other six non-conserved moments, e, ε , q := (qx,qy), pxx and pxy are, respec-
tively, related to the energy, the energy square, the energy flux, the diagonal and
off-diagonal components of the stress tensor. The equilibria of the conserved mo-
ments are themselves and those of the non-conserved moments are products of the
conserved moments:

meq
0 = ρ, meq

1 = eeq = 3j · j−2ρ, meq
2 = ε

eq = ρ−3j · j, meq
3 = jx,m

eq
4 = qeq

x =− jx,

(11)

meq
5 = jy, meq

6 = qeq
y =− jy,m

eq
7 = peq

xx = j2
x − j2

y , meq
8 = peq

xy = jx jy. (12)
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For the D3Q19 model, the transformation matrix is

M =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


,

(13)

and the components of the corresponding moment are

|m〉= (ρ,e,ε, jx,qx, jy,qy, jz,qz,3pxx,3πxx, pww,πww, pxy, pyz, pxz,mx,my,mz)T ,

(14)

where mi and πii are the cubic- and fourth-order polynomials of the momentum,
respectively. Note that pww = pyy− pzz and πww = πyy−πzz. The equilibria of the
moments are the functions of the conserved moments and given as

meq
0 = ρ, meq

1 =−11ρ +
19
ρ0

( j2
x + j2

y + j2
z ),m

eq
2 = ωερ +

ωε j

ρ0
( j2

x + j2
y + j2

z ), (15)

meq
3,5,7 = jx,y,z,m

eq
4,6,8 =−2

3
jx,y,z,m

eq
9 =

1
ρ0

(2 j2
x − j2

y − j2
z ),m

eq
10 = ωxxmeq

9 , (16)

meq
11 =

1
ρ0

( j2
y − j2

z ), meq
12 = ωxxmeq

11,m
eq
13 =

1
ρ0

jx jy,m
eq
14 =

1
ρ0

jy jz, (17)

meq
15 =

1
ρ0

jz jx, meq
16,17,18 = 0. (18)

To recover the corresponding lattice BGK model, the parameters need to be ωε = 3,
ωxx =−1/2, ωε j =−11/2. However, d’Humieres, Ginzburg, Krafczyk, Lallemand
and Luo (2002) recommended their optimized parameters: ωε = 0, ωxx = 0, ωε j =
−475/63 through the linear analysis for stability of Lallemand and Luo (2000) and
thus those parameters are applied in this study.

For the D2Q9 model, the collision matrix is written as

Ŝ = diag(s0,s1, · · · ,sQ−1) = diag(sρ ,se,sε ,s j,sq,s j,sq,sν ,sν), (19)
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and for the D3Q19 model, it is

Ŝ = diag(sρ ,se,sε ,s j,sq,s j,sq,s j,sq,sν ,sπ ,sν ,sπ ,sν ,sν ,sν ,sm,sm,sm), (20)

where the subscript of the relaxation rates corresponds to the physical significance.
The kinetic viscosity ν = µ/ρ and the bulk viscosity ζ are given as

ν = c2
s

(
1
sν

− 1
2

)
δ t, (21)

ζ =
c2

s

2

(
1
se
− 1

2

)
δ t, (22)

where sν is the relaxation rate for the moments related to the stress and se is the
relaxation rate for the moment related to the energy. By the gas kinetic theory the
mean free path is

λ =
µ

p

√
πRT

2
, (23)

and thus with p = ρRT = ρc2
s Eq.(21) can be rewritten as

s−1
ν =

1
2

+
µ

pδ t
=

1
2

+

√
2
π

HKn
csδ t

. (24)

Although the relaxation time: τi = s−1
i is around 1.0, there are several recom-

mended combinations by the pioneering studies [Lallemand and Luo (2000); d’Hu-
mieres, Ginzburg, Krafczyk, Lallemand and Luo (2002); etc.]. The present study
thus follows some of those as sρ = s j = 1.0, se = 1.19, sε = 1.4,sπ = sε and
sm = 1.98. The relaxation rate sq is determined through the discussions of the
wall boundary condition for non-continuum gas flows.

2.2 Diffusive bounce-back wall boundary condition

The non-slip wall boundary conditions used in the continuum LBM are based on
perfect reflection, so the velocity and the temperature of a wall are not reflected into
the distribution of the reflected particles. However, from a microscopic viewpoint,
the wall boundary condition should include the physics on the wall because the
fluid and the wall molecules are interacted with each other. Therefore, the incident
particles are modeled to be reflected with the information of the Maxwell distribu-
tion function at the wall boundary. The modeled form called the diffuse scattering
boundary condition is written in the LBM frame as

fα(x, t) = ∑
′
α |(ξ ′α −uw) ·n| f ′α(x, t)

∑
′
α |(ξ ′α −uw) ·n| f ′eq

α (x, t)
f eq
α,w(x, t) := f D

α (x, t),
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if[
(ξ ′α −uw) ·n < 0; (ξξξ α −uw) ·n > 0

]
, (25)

where n is the unit wall normal vector,ξ ′α is the velocity of incident particles, f eq
α,w

is the wall equilibrium distribution function, and the subscripts w,α ′,α respectively
denote the wall and the directions of the incident and reflected particles.

The present study applies the diffusive bounce-back boundary condition that is the
combination of the above diffuse-scattering and bounce-back boundary conditions
for the wall boundary as

fα(x, t +δ t) = (1− r) fβ (x, t)+ r f D
α (x, t +δ t), (26)

where r is a probability coefficient taking r = 0.0− 1.0, the bounce-back vectors
are ξξξ β =−ξξξ α and f D

α is the diffuse scattering model given by Eq.(25). This model
turns into the diffuse scattering model when r⇒ 1, whilst it becomes the (non-slip)
bounce-back model with r = 0. With the analytical consideration of the slip-flow
described in section 2.3, the probability coefficient r can be determined.

2.3 Analytical consideration of the slip-flow by the diffusive bounce-back wall
boundary condition

2.3.1 Second-order slip-flow model

In a fully developed 2-D Poiseuille flow at the slip flow regime, by integrating the
momentum equation with the second order boundary condition

u|wall = C1λ
∂u
∂y

∣∣∣∣
wall
−C2λ

2 ∂ 2u
∂y2

∣∣∣∣
wall

, (27)

the velocity profile can be obtained as

u
Uc

= 4
y
H

(
1− y

H

)
+

Us

Uc
, (28)

where H is the channel height, Uc is the centerline velocity: Uc = aH2/(8ν), a is
the acceleration corresponding to the body force and Us is the slip velocity at the
wall:

Us/Uc = 4C1Kn+8C2Kn2. (29)

There have been many proposals for the coefficients C1 and C2 by the researchers.
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The MRT LBM with the diffusive bounce-back wall boundary condition describes
the velocity at near wall lattice node 2 as

u2 = A1u1 +A2δ ta, (30)

where u1 is the velocity at lattice node 1. When lattice nodes 1 and 2 are located at
δx/2 and 3δx/2 from the wall (the wall is situated at the half way between nodes
0 and 1), Chai, Shi, Guo and Lu (2010) derived the parameters A1 and A2 as

A1 =
3−2r + rτν

1− r + rτν

, A2 =
r(11/2−2τq−8τν +4τqτν)+4(τq + τν)−8τqτν −5

(2τν −1)(1− r + rτν)
,

(31)

where τν = s−1
ν and τq = s−1

q . Substituting Eq.(28) into Eq.(30) produces

Us/Uc =
4r

2− r

(
τν −

1
2

)
δx
H

+
16(τq−1/2)(τν −1/2)−3

3

(
δx
H

)2

,

=
4r

2− r

√
6
π

Kn+
2
π

16(τq−1/2)(τν −1/2)−3
(τν −1/2)2 Kn2.

(32)

Equations (29) and (32) should be the same, then we can obtain

r =
2C1√
6
π

+C1

, (33)

τq =
1
2

+
3+π(2τν −1)2C2

8(2τν −1)
. (34)

For this second-order slip-flow condition, Chai, Shi, Guo and Lu (2010) employs
the coefficients recommended by Hadjiconstantinou (2003): C1 = 1.11, C2 = 0.61.

2.3.2 1.5-order slip-flow model

Mitsuya (1993) derived the second-order slip velocity using the gas kinetic theory
[e.g. Bird (1994)] as

u|wall =
2
3

2−α

α
λ

∂u
∂y

∣∣∣∣
wall
− 1

2

(
2
3

λ

)2
∂ 2u
∂y2

∣∣∣∣
wall

, (35)

where α is the accommodation coefficient. Using the nonequilibrium molecular
velocity, Kennrd (1938) noted that the momentum transfer produced by the velocity
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gradient was nearly 15π/32 ≈ 3/2 times larger than that given by the classic gas
kinetic theory. Mitsuya (1993) thus multiplied the first term of Eq.(35) by 3/2.
When α = 1 for a fully diffusive wall, the equation becomes

u|wall = λ
∂u
∂y

∣∣∣∣
wall
− 2

9
λ

2 ∂ 2u
∂y2

∣∣∣∣
wall

. (36)

Although it is the second order, Mitsuya named Eq.(36) the 1.5-order slip-flow
model. This 1.5-order slip-flow model corresponds to Eq.(27) with C1 = 1.0, C2 =
2/9.

2.3.3 First-order slip-flow model

Verhaeghe, Luo and Blanpain (2009) applied only the first order terms of Eqs (29)
and (32) and their expression for r was

1− r =
3µ−KnHcρ0

3µ +KnHcρ0
, (37)

where c = δx/δ t. (With Eq.(23) and p = ρRT = ρc2
s = ρ/3, Eq.(33) can be rewrit-

ten as Eq.(37) when c =C1.) With this first order slip velocity condition, Verhaeghe,
Luo and Blanpain (2009) applied

sq =
8(2− sν)

8− sν

, (38)

following Ginzbourg and Adler (1994). (In Eq.(32) with r = 0, it is recognized that
this condition guarantees Us = 0 by the pure bounce-back boundary condition.)

2.4 Interpolated boundary condition

Peng and Luo (2008) concluded that the accuracy of the interpolated bounce-back
(IBB) boundary condition was better than that of the immersed-boundary method.
Although they chose the quadratic IBB, there wasn’t significant difference between
the quadratic and linear IBB in Pan, Luo and Miller (2006). Thus, in the present
study, the linear IBB is applied. Figs.2(a)-(c) illustrates the procedures of the lin-
ear IBB boundary condition of Pan, Luo and Miller (2006) in a one-dimensional
setting. As shown in Fig.2(a), in the case that the boundary xW is located at the
middle between nodes xA and xB, (q = |xA− xW |/|xA− xB| = 1/2), the particle at
node xA travels and collides with the wall at xW and reverses its momentum (the
collision process completes instantly), then travels back to xA. Thus, the incoming
distribution function is simply equal to the corresponding outgoing one with the
opposite momentum. This is so-called half-way bounce-back (HWBB) condition
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and accurate in this case. The IBB condition, thus, generalizes the HWBB con-
dition. When q < 1/2 as in Fig.2(b), the particle at xA should end up at xC after
the streaming-collision cycle. Likewise, the particle starting from xC ends up at xA

after the streaming-collision cycle. This is accomplished by interpolating the dis-
tribution function for xC before the streaming-collision process with the wall takes
place. Similarly, when q > 1/2, the incoming distribution function can be obtained
by using the outgoing one located at xC after the streaming-collision interaction
with the wall takes place and the distribution function values at nearby nodes xD

and xE as in Fig.2(c). Thus, following Pan, Luo and Miller (2006), the linear IBB
formulae for fL(xA, tn+1)= f̂R(xC, tn) may be written as

fL(xA, tn+1) =

{
(1−2q) fR(xA, tn+1)+2q f̂R(xA, tn), q < 1/2(

1− 1
2q

)
f̂L(xA, tn)+ 1

2q f̂R(xA, tn), q≥ 1/2
(39)

where f and f̂ respectively denote the post- and pre-collision states of the distri-
bution function. The subscripts L and R indicate left- and right-bound directions,
respectively.

In order to represent the curved surfaces, an interpolation scheme is also applied
to the diffuse scattering boundary condition which is named as the interpolated
diffuse scattering (IDS) boundary condition. As schematically shown in Fig.2(d),
the distribution functions can be interpolated as

fR(xW , tn+1) = q fR(xA, tn)+(1−q) fR(xD, tn), (40)

fL(xA, tn+1) = q fL(xW , tn)+(1−q) fL(xW , tn+1). (41)

Therefore, the interpolation method for the diffusive bounce-back boundary condi-
tion consists of the combination of the IBB and the IDS schemes.

2.5 Correction of the molecular mean free path

In microscale wall bounded geometries, the mean free path of the total molecules
in the system should be smaller than that in the unbounded systems due to the wall
effects. Stops (1970) then introduced a correction function Ψ(Kn) to the molecular
mean free path as.

λ
∗ = λΨ(Kn), (42)

where Kn is still the conventional Knudsen number without considering the wall
effects. However, as in our previous study [Suga, Takenaka, Ito, Kaneda, Kinjo and
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Figure 2:  Interpolated bounce-back and diffuse scattering boundary conditions; 
(a)-(c) linear IBB scheme, (d) linear IDS scheme. 
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(a)-(c) linear IBB scheme, (d) linear IDS scheme.

Hyodo (2010)], it can be defined using the local density to include local effects as

Kn∗ =
µ

ρH

√
π

2RT
. (43)

The function Ψ derived by Stops was very complicated and difficult for particular
applications, Guo, Zhao and Shi (2006) thus approximated Stops’ function by a
simple formula as

Ψ(x) =
2
π

arctan(
√

2x−3/4), (44)

where x = Kn∗. The functional behavior (Ψ decreases as Kn∗ increases) indicates
that some molecules will hit walls and their flight time may be shorter than the mean
free time defined in an unbounded system. Therefore, Eq.(24) may be corrected as

s−1
ν =

1
2

+

√
2
π

HKnΨ(Kn∗)
csδ t

. (45)

2.6 Regularization procedure

Generally speaking, the distribution function f has an aliasing error because it can-
not be entirely projected on to the Hermite space. Such an error is usually very
small, but it can be no longer neglected when the system is far from equilibrium
because of high Knudsen number effects. To resolve this problem, the regular-
ization procedure was introduced for improving numerical stability [Zhang, Shang
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and Chen (2006)]. The procedure is implemented as the following. First, the dis-
tribution function f is divided as

|f(x, t)〉= |feq(x, t)〉+
∣∣f′(x, t)

〉
, (46)

where f′ is the non-equilibrium part of the distribution. Second, it is necessary
to convert f′ to a new distribution f̃′ which lies within the subspace spanned by the
higher-order Hermite polynomials. Using the Hermite polynomials, the component
of f̃′ is expressed for the D2Q9 or D3Q19 model as

f̃ ′α = ωα

[
1

2c2
s

H(2)
(

ξξξ α

cs

)Q−1

∑
α=o

f ′αξαiξα j

]
, (47)

where, H(2)(x) is the second-order Hermite polynomial of a variable x. By replac-
ing f in the rewritten Eq.(1):

|f(x+ξξξ αδ t, t +δ t)〉= |f(x, t)〉−M−1ŜM [|f(x, t)〉− |feq(x, t)〉]δ t + |F〉δ t, (48)

with Eq.(46) after converting f′ of Eq.(46) to f̃′ by Eq.(47), one can obtain the
following form:

|f(x+ξξξ αδ t, t +δ t)〉= |feq(x, t)〉+
∣∣f̃′(x, t)

〉
−M−1ŜM

∣∣f̃′(x, t)
〉

δ t + |F〉δ t. (49)

This regularization process enforces the system to be confined within the second-
order Hermite moment space filtering out all the higher-order nonequilibrium con-
tributions from numerical lattice artifacts which contaminate the solutions.

3 Molecular Dynamics Method

In this study, a flow around a triangular prism situated in a nanochannel and a
bumpy channel flow are simulated by the MD method to generate reference data
for validating the LBMs.

MD simulations solve classical equations of the motions of Nmolecules interacting
via model potentials. Although several model potentials have been proposed, the
present study applies the simplest and the most frequently used Lennard-Jones 6-12
potential. The Lennard-Jones 6-12 potential is defined as

φ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
, (50)
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where r is the intermolecular distance, ε and σ are the well depth and the diam-
eter of the molecules. The earliest MD simulation for the properties of argon ap-
plied this model potential. In the system which is modeled by the Lennard-Jones
molecules only, the classical equation of motion can be rewritten as

d2r∗

dt∗2
=− ετ2

mσ2
∂φ ∗

∂ r∗
, (51)

where m, r∗ = r/σ , t∗ = t/τ(= t/
√

mσ2/ε) and φ ∗ = φ/ε are the mass, the nondi-
mensional length, time and energy, respectively. However, to make a physical inter-
pretation, it is sometimes expressed as finite values in terms of argon. In addition,
the nondimensional number density N∗(= Nσ3) and temperature T ∗(= kBT/ε) =
2.0 are used in the Lennard-Jones fluid. (Here kB is the Boltzmann constant.)

In order to enhance the computational efficiency of the interactions, the potential
effects beyond a cut off distance rc = 2.5σ − 5.5σ are normally truncated. In the
present study, rc = 3.0σ is applied.

3.1 Structure of wall molecules

In the case of fluid flows in a finite space surrounded by walls, the flow is governed
by the interaction between the fluid and wall molecules. Thus, it is inevitable to
evaluate the flow phenomena in terms of the intermolecular potential energy be-
tween the fluid and the wall which varies by the system structure and properties.
Thompson and Troian (1997) modeled the walls of the Couette flow by molecules
arranged on (111) planes of a face-centered cubic (fcc) lattice. Li (2009) discussed
the mechanism of friction-induced fluid heating in Poiseuille flows considering the
walls of four layers of molecules arranged on fcc lattice sites. Liu and Li (2009) dis-
cussed the fluid-wall interaction artificially changing the fluid-wall binding energy.
In our previous studies [Suga, Takenaka, Ito and Kaneda (2010); Suga, Takenaka,
Ito, Kaneda, Kinjo and Hyodo (2010)], in order to reduce the computational load,
the wall was simulated by an argon atom monolayer. By this wall model, obstacles
such as the square cylinder are represented by rolled mono-layers.

In this study, however, in order to consider the effects of the structure inside the
solid wall regions, the wall molecules are arranged on the fcc lattice and the wall
surfaces are formed by its (111) planes as shown in Fig.3. The distance between
the centers of neighboring molecules is set to σ . Each of the wall molecules is teth-
ered to fixed lattice site locations by harmonic springs with a large spring constant.
Since the present cut off distance is rc = 3.0σ , three layers of argon molecules are
considered to form the walls. With this situation, the fluid-wall interaction is arti-
ficially tuned by adjusting the well depth of the Lennard-Jones potential to be 0.75
(multiply Eq.(50) by 0.75). As shown in Fig.4, comparing the simulation results
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with those of the DSMC [Beskok and Karniadakis (1999))] of the fully diffusive
walls where the accommodation coefficient is α = 1, the present MD simulation
code well reproduces the flow filed at Kn = 0.06 - 0.22. Here, streamwise velocity
U is normalized by the bulk velocity Ub. (See Suga, Takenaka, Ito, Kaneda, Kinjo
and Hyodo (2010) for the way of obtaining the Kn in the MD simulation.)
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4 Results and Discussions

Simulations of canonical force-driven Poiseuille flows are firstly discussed and
then, triangular-cylinder flow and the square-cylinder flow are discussed. Finally,



On the Multiple-Relaxation-Time Micro-Flow Lattice Boltzmann Method for Complex Flows157

a 3-D bumpy channel flow is discussed comparing with the result of the presently
performed MD simulation.

4.1 Force-driven Poiseuille flows

Figure 5 compares the velocity profiles of plane Poiseuille channel flows at Kn=0.01-
10 with the data of the DSMC of Beskok and Karniadakis (1999). These velocity
profiles are normalized by the bulk velocity Ub. The 2-D uniform Cartesian lattice
of 100×100 is used for the simulations. This density of the lattice was confirmed to
be more than fine enough by our previous study [Niu, Hyodo, Munekata and Suga
(2007)]. The number of iterations of the LBM simulations is 1,000-5,000 and the
results are fully converged. (For the lower Kn case, the larger iteration times are
required.) The compared LBMs are the MRT LBMs by the first-order, 1.5-order
and the second-order slip-flow models.

All the velocity profiles are accurate enough at Kn≤ 0.1 and there is almost no dif-
ference between the models compared. However, as in our previous study [Suga,
Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)], it is recognizable that the near
wall profiles at Kn≥ 1 are not very accurate by the D2Q9 model. (The difference
between the predictions and the reference data is up to 20% at the wall at Kn=10.)
This tendency is confirmed in Fig.6(a) which compares the slip and centerline ve-
locities: Us and Uc. Although each agreement is not good enough, the profiles of
Us and Uc by the first-order slip-flow model correspond best to the reference data
[Karniadakis, Beskok and Aluru (2005); Ohwada, Sone and Aoki (1989)] and those
by the second-order slip-flow model are the worst among the profiles at Kn> 0.1.
However, as shown in Fig.6(b), for the mass flow rate:

Q =
H

∑
y=0

ρU(y)/(ρaH2/cs), (52)

the 1.5-order slip-flow model leads to the best agreement among the slip-flow mod-
els. Interestingly, each profile shown in Fig.6(b) corresponds well to the analyti-
cally obtained distributions plotted in figure 4 of Mitsuya (1993).

Only the different points in the model terms are the values of the probability coef-
ficient r and the relaxation time τq for the energy flux. By Eq.(33), the probability
coefficient is fixed as r = 0.84,0.84 or 0.89 by the first-order, 1.5-order or second-
order slip-flow model, respectively. The relaxation time τq varies a lot depending
on the Knudsen number. At Kn=0.01, τq = 0.64,0.88 or 1.29 whilst it is 0.50,
239.26 or 655.96 at Kn=10 by the first-order, 1.5-order or second-order slip-flow
model, respectively, when the channel height is divided into 99 lattice spaces. Con-
sequently, at Kn�0.1, the difference in the values of r or τq is not significantly large
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and this results in the nearly the same results of the flow characteristics. However,
at Kn»1, the difference in the values of τq becomes very large and accordingly it
affects the predicted behavior such as the flow rate shown in Fig.6(b).

In order to assess the merits of the correction of the molecular mean free path
λ ∗ = λΨ, Figs. 7 and 8 compare the results of the MRT µ-flow LBMs incorpo-
rated with the slip-flow models and the correction: λ ∗ = λΨ. (The notation +Ψ

means that Eq.(45) is used instead of Eq.(24).) By comparing Fig.7 with Fig.5, it
is readily recognizable that improvement is obvious for the prediction at Kn=1 and
10. Indeed, the discrepancy between the velocity by the first-order slip-flow model
and the reference data reduces to 5% at the wall. This is also confirmed in Fig.8(a)
which indicates general improvement of the prediction at Kn>0.1. The improve-
ment by the correction of the molecular mean free path is more obviously seen in
the flow rate profiles shown in Fig.8(b). By comparing Figs.6(b) and 8(b), it is
recognizable that the correction of the mean free path reduces the flow rate error of
each slip-flow model. In particular, the error reduces from 75% to 15% at Kn=10
in the 1.5-order slip-flow model.

Figure 9 indicates the effects of the regularization procedure. Although the general
predictive tendencies in Figs.9(a) and (c) are similar to those shown in Figs.5(d)
and 6(a), interestingly, with the regularization procedure, all the slip-flow models
produce nearly the same flow characteristics even at Kn>1. This means that with
the regularization, the order of the slip-flow model may not be very important.
Since the regularization filters out higher-order numerical lattice artifacts and sys-
tematically incorporates the higher-order moments, it can be considered that any
difference in the model equations caused by the presently evaluated slip-flow mod-
els is corrected along with the other higher-order artifacts implicitly included in
the MRT model. The improvement by the correction of the molecular mean free
path are also confirmed at Kn>1 as shown in Figs.9(b),(d) and (f). The higher the
Kn becomes, the more the correction of the molecular mean free path affects the
relaxation time near the wall. In the flow rates, however, by comparing Figs.9(e)
and (f), it is recognizable that the general tendencies are not changed very much.

Note that Zhang, Shang and Chen (2006) reported that after the regularization the
SRT BGK model with the D2Q9 produced results which were very close to the
exact Navier-Stokes theoretical curve up to a significantly high Kn. Their results
are far different from our results shown in Fig.9 since they used pure bounce-back
wall boundary condition. Indeed, their predicted slip velocities were very low and
nearly reaching to zero.
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Beskok and Aluru (2005), the linearized BE data are from Ohwada, Sone and Aoki 
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4.2 Triangular-cylinder and square-cylinder flows

As shown in Figs.10(a) and (b), flows in a nanochannel with a triangular-cylinder
or a square-cylinder placed in the center region are considered. Periodic boundary
condition is applied to the inlet and outlet boundaries and thus, the flow regime is
regarded as a part of an infinite cylinder array set in a nanochannel. The force is
applied to the x-direction only to drive the flow.

In Table 1, the computational conditions for the MD simulation are summarized.
The computational domains shown in Fig.11 have sizes of 21σ × 21σ × 17.32σ

and 30σ × 30σ × 20.78σ , respectively for the triangular-cylinder and the square-
cylinder flows. In the triangular-cylinder flow, 2,240 fluid molecules surrounded
by 3,080 wall molecules are simulated whereas in the square-cylinder flow, 5,376
fluid molecules surrounded by 5,232 wall molecules are simulated in the present
study. After the process described in Suga, Takenaka, Ito, Kaneda, Kinjo and Hy-
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Table 1: Computational conditions of the MD simulation for a flow around an
obstacle in a channel.

domain
size

fluid
molecules

wall
molecules

number
density

Kn

triangular-
cylinder flow

21σ ×21σ

×17.32σ
2240 3080 0.3076 0.15

square- cylin-
der flow

30σ ×30σ

×20.78σ
5376 5232 0.29936 0.11

odo (2010), the obtained Knudsen numbers from the MD simulation are Kn=0.15
and Kn=0.11, respectively in the triangular- and the square-cylinder flows. To ob-
tain reasonable flow statistics, 8 million time steps are required by the MD simu-
lations. (Note that although the flow geometry of the MD simulation is essentially
three dimensional, the statistic flow characteristics are two dimensional in these
flow cases. Thus, statistic averaging is performed in the spanwise direction to ob-
tain 2-D flow statistics by the MD simulation.)

The corresponding LBM simulations are thus carried out on the 2-D grids at the
corresponding Kn to those of the MD results. The grid sizes are 96×96 and 100×
100 for the triangular- and the square-cylinder flows, respectively. As described in
our previous study [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)], the
order of the grid size: 100×100 was confirmed to be enough for grid independent
solutions. The number of iterations of the LBM simulations is 2,000 and the results
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Figure 7: Effects of the correction of the molecular mean free path on velocity 
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rate. 
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4.2 Triangular-cylinder and square-cylinder flows 

As shown in Figs.10(a) and (b), flows in a nanochannel with a triangular-cylinder or a 
square-cylinder placed in the center region are considered. Periodic boundary condition is 
applied to the inlet and outlet boundaries and thus, the flow regime is regarded as a part 
of an infinite cylinder array set in a nanochannel. The force is applied to the x-direction 
only to drive the flow.  
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Figure 9: Effects of the regularization on the flow characteristics; (a) velocity profiles 
at Kn=10, (b) velocity profiles at Kn=10 along with the correction of the molecular 
mean free path, (c) slip and centerline velocities, (d) slip and centerline velocities 
along with the correction of the molecular mean free path, (e) flow rates, (f) flow rate 
along with the correction of the molecular mean free path. 

Figure 9: Effects of the regularization on the flow characteristics; (a) velocity pro-
files at Kn=10, (b) velocity profiles at Kn=10 along with the correction of the
molecular mean free path, (c) slip and centerline velocities, (d) slip and center-
line velocities along with the correction of the molecular mean free path, (e) flow
rates, (f) flow rate along with the correction of the molecular mean free path.

are fully converged.

Figure 12 compares the velocity profiles in the triangular-cylinder flow. As clearly
seen in Fig.12(a), without the regularization procedure, although there are slight
discrepancies in the profiles by the different orders of the slip-flow models, all
the results show reasonable agreement with the MD simulation results. Indeed, it
can be observed that the discrepancy between the MRT LBM and the MD results
is up to 20% of Ub at the most difficult position to predict. Moreover, with the
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In Table 1, the computational conditions for the MD simulation are summarized. The 
computational domains shown in Fig.11 have sizes of 21 21 17.32    and 
30 30 20.78   , respectively for the triangular-cylinder and the square-cylinder flows. 
In the triangular-cylinder flow, 2,240 fluid molecules surrounded by 3,080 wall 
molecules are simulated whereas in the square-cylinder flow, 5,376 fluid molecules 
surrounded by 5,232 wall molecules are simulated in the present study. After the process 
described in Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010), the obtained 
Knudsen numbers from the MD simulation are Kn=0.15 and Kn=0.11, respectively in the 
triangular- and the square-cylinder flows. To obtain reasonable flow statistics, 8 million 
time steps are required by the MD simulations. (Note that although the flow geometry of 
the MD simulation is essentially three dimensional, the statistic flow characteristics are 
two dimensional in these flow cases. Thus, statistic averaging is performed in the 
spanwise direction to obtain 2-D flow statistics by the MD simulation.)   

Table 1:  Computational conditions of the MD simulation for a flow around an 
obstacle in a channel. 

  domain 
size 

fluid 
molecules 

wall 
molecules 

number 
density 

Kn 

triangular- 
cylinder 
flow 

21 21

17.32

 
 
 

2240 3080 0.3076 0.15 

square- 
cylinder 
flow 

30 30

20.78

 
 
 

5376 5232 0.29936 0.11 
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Figure 10: Flow field geometry; (a) triangular-cylinder flow, (b) square-cylinder 
flow. 

Figure 10: Flow field geometry; (a) triangular-cylinder flow, (b) square-cylinder
flow.
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The corresponding LBM simulations are thus carried out on the 2-D grids at the 
corresponding Kn to those of the MD results. The grid sizes are 96 96  and 100 100  for 
the triangular- and the square-cylinder flows, respectively. As described in our previous 
study [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)], the order of the grid size: 
100 100  was confirmed to be enough for grid independent solutions. The number of 
iterations of the LBM simulations is 2,000 and the results are fully converged. 

Figure 12 compares the velocity profiles in the triangular-cylinder flow. As clearly 
seen in Fig.12(a), without the regularization procedure, although there are slight 
discrepancies in the profiles by the different orders of the slip-flow models, all the results 
show reasonable agreement with the MD simulation results. Indeed, it can be observed 
that the discrepancy between the MRT LBM and the MD results is up to 20% of bU  at 
the most difficult position to predict. Moreover, with the higher-order slip-flow model, 
the slip velocity at the peak of the triangle tends to be oscillating as noticed in the profiles 
at / 0.5x H  . As reported by our previous study [Suga, Takenaka, Ito, Kaneda, Kinjo 
and Hyodo (2010)], such oscillations can be dealiased by introducing the regularization 
procedure. When the projection of the lattice Boltzmann equation into the Hermite space 
is considered, it is understood that the collision step introduces an error due to the fact 
that the distribution function does not automatically lie entirely within the Hermite space. 
In the case that the system is not far from equilibrium, such an error is small and 
ignorable [Zhang, Shang and Chen (2006)]. (Since the number of the distribution 
functions is normally greater than that of the flow variables, the set of unknowns can be 
considered as over-determined and thus non-equilibrium part of the distribution includes 
higher order moments in principle.) Indeed, with the regularization process, the 
oscillations and discontinuity in the profiles disappear as shown in Fig.12(b). 
Interestingly, all the slip-flow models produce virtually the same velocity profiles as in 
Figs.12(b) and (c). At this level of Kn, it is readily understandable after the discussions in  
the Poiseuille flows. 

The same tendency is also confirmed in the square-cylinder flow as shown in Fig.13. 
With the regularization procedure, all the slip-flow models produce almost the same 
velocity profiles and the agreement between the LBM and the MD results looks ideal. 
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Figure 11: Atomic 3-D views of obstacle flows in the MD simulations; (a) 
triangular-cylinder flow, (b) square-cylinder flow. 

Figure 11: Atomic 3-D views of obstacle flows in the MD simulations; (a)
triangular-cylinder flow, (b) square-cylinder flow.

higher-order slip-flow model, the slip velocity at the peak of the triangle tends to
be oscillating as noticed in the profiles at x/H = 0.5. As reported by our previous
study [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)], such oscillations
can be dealiased by introducing the regularization procedure. When the projection
of the lattice Boltzmann equation into the Hermite space is considered, it is under-
stood that the collision step introduces an error due to the fact that the distribution
function does not automatically lie entirely within the Hermite space. In the case
that the system is not far from equilibrium, such an error is small and ignorable
[Zhang, Shang and Chen (2006)]. (Since the number of the distribution functions
is normally greater than that of the flow variables, the set of unknowns can be
considered as over-determined and thus non-equilibrium part of the distribution in-
cludes higher order moments in principle.) Indeed, with the regularization process,
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the oscillations and discontinuity in the profiles disappear as shown in Fig.12(b).
Interestingly, all the slip-flow models produce virtually the same velocity profiles
as in Figs.12(b) and (c). At this level of Kn, it is readily understandable after the
discussions in the Poiseuille flows.

The same tendency is also confirmed in the square-cylinder flow as shown in Fig.13.
With the regularization procedure, all the slip-flow models produce almost the same
velocity profiles and the agreement between the LBM and the MD results looks
ideal. Therefore, in complex micro-flow geometries, the regularization process is
very effective for the MRT LBM to damp the oscillations even at Kn<1. Once
the regularization process is incorporated, the order of the slip-flow model, which
determines the probability coefficient of the diffusive bounce-back condition and
the relaxation time for the energy flux, is not very important. Since the considered
Knudsen numbers are under Kn=1, the correction of the molecular mean free path
does not change the results at all though it is not shown here.

4.3 3-D bumpy channel flow

Figure 14 shows the computational domain and schematic views of the 3-D bumpy
channel flow. As shown in Figs.14(a) and (b), matrices of hemisphere bumps are
placed on the top and bottom walls in a staggered fashion. The radius of the hemi-
sphere is R = 0.4H where H is the channel height and the pitch of the bumps.
Periodic boundary condition is applied to the streamwise (x) and spanwise (z) di-
rections. To drive the fluid, the force is applied to the x-direction only. This flow
field is considered to represent some features of the catalytic layer of a fuel cell.

Table 2: Computational conditions of the MD simulation for a flow through a
bumpy wall channel.

domain size fluid molecules wall molecules number density Kn
20σ ×20σ ×20.78σ 1656 5162 0.2684 0.1

In Table 2, the computational conditions for the MD simulation are summarized.
The computational domain shown in Fig.14(c) is 20σ ×20σ ×20.78σ , and 1,656
fluid molecules surrounded by 5,162 wall molecules are simulated. The estimated
Knudsen number is Kn=0.1. To obtain reasonable flow statistics, 30 million time
steps are required.

The corresponding LBM simulations are carried out on the 3-D grids at the cor-
responding Knudsen number Kn=0.1. The grid size used is 100× 100× 100. As
confirmed by our previous study [Suga, Takenaka, Kinjo and Hyodo (2011)], the
grid sizes of 100×100×100 is enough for grid independent solutions in a complex



On the Multiple-Relaxation-Time Micro-Flow Lattice Boltzmann Method for Complex Flows165

22 

 

Therefore, in complex micro-flow geometries, the regularization process is very effective 
for the MRT LBM to damp the oscillations even at Kn<1. Once the regularization 
process is incorporated, the order of the slip-flow model, which determines the 
probability coefficient of the diffusive bounce-back condition and the relaxation time for 
the energy flux, is not very important. Since the considered Knudsen numbers are under 
Kn=1, the correction of the molecular mean free path does not change the results at all 
though it is not shown here. 
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Figure 12: Comparison of velocity profiles around a triangular-cylinder in a 
nanochannel at Kn=0.15; (a) streamwise velocity component profiles without the 
regularization process, (b) streamwise velocity component with the regularization 
process, (c) vertical velocity component with the regularization process. 

Figure 12: Comparison of velocity profiles around a triangular-cylinder in a
nanochannel at Kn=0.15; (a) streamwise velocity component profiles without the
regularization process, (b) streamwise velocity component with the regularization
process, (c) vertical velocity component with the regularization process.

3-D flow geometry at Kn≈0.1. The number of iterations of the LBM simulations
is more than 4,000 and the results are fully converged.

Figure 15 compares velocity profiles at the symmetry plane: z/H = 0.5 (Fig.15(a))
and an off-center plane: z/H = 0.25 (Figs.15(b)-(d)). As discussed in the 2-D test
flow cases, with the regularization procedure, it is clearly seen that all the slip-
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4.3 3-D bumpy channel flow 

Figure 14 shows the computational domain and schematic views of the 3-D bumpy 
channel flow. As shown in Figs.14(a) and (b), matrices of hemisphere bumps are placed 
on the top and bottom walls in a staggered fashion. The radius of the hemisphere is 

0.4R H  where H  is the channel height and the pitch of the bumps. Periodic boundary 
condition is applied to the streamwise ( x ) and spanwise ( z ) directions. To drive the fluid, 
the force is applied to the x-direction only. This flow field is considered to represent some 
features of the catalytic layer of a fuel cell.  
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Kn=0.11

Kn=0.11
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Figure 13: Comparison of velocity profiles with the regularization process around 
a square-cylinder in a nanochannel at Kn=0.11; (a) streamwise velocity 
component, (b) vertical velocity component. 

Figure 13: Comparison of velocity profiles with the regularization process around a
square-cylinder in a nanochannel at Kn=0.11; (a) streamwise velocity component,
(b) vertical velocity component.
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In Table 2, the computational conditions for the MD simulation are summarized. The 
computational domain shown in Fig.14(c) is 20 20 20.78   , and 1,656 fluid 
molecules surrounded by 5,162 wall molecules are simulated. The estimated Knudsen 
number is Kn=0.1. To obtain reasonable flow statistics, 30 million time steps are required. 

The corresponding LBM simulations are carried out on the 3-D grids at the 
corresponding Knudsen number Kn=0.1. The grid size used is 100 100 100  . As 
confirmed by our previous study [Suga, Takenaka, Kinjo and Hyodo (2011)], the grid 
sizes of 100 100 100   is enough for grid independent solutions in a complex 3-D flow 
geometry at Kn  0.1. The number of iterations of the LBM simulations is more than 
4,000 and the results are fully converged. 

Figure 15 compares velocity profiles at the symmetry plane: / 0.5z H   (Fig.15(a)) and 
an off-center plane: / 0.25z H   (Figs.15(b)-(d)). As discussed in the 2-D test flow cases, 
with the regularization procedure, it is clearly seen that all the slip-flow models show the 
same predictive tendency. Generally, the agreement between the MRT LBM and the MD 
simulation results is very satisfactory. The maximum discrepancy between the results is 
indeed up to 15% of the bulk velocity bU . Since without the regularization procedure, the 
solution of the MRT LBM by the first-order slip-flow model shows oscillations in the 
entire flow field, the regularization process does improve the solution stability. However, 
unlike in the 2-D flows, even with the regularization, somehow kinky profiles still can be 
seen near walls at some sections such as /x H  0.1 and 0.9 in the symmetry plane 
(Fig.15(a)). Also weak oscillations appear near the bottom wall at /x H  0.3 and 0.7 in 
the plane of / 0.25z H   (Figs.15(b)-(d)).  

Table 2:  Computational conditions of the MD simulation for a flow through a 
bumpy wall channel. 

domain size fluid 
molecules 

wall 
molecules 

number 
density 

Kn 

20 20 20.78    1656 5162 0.2684 0.1 
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Figure 14: Computational domain of a 3-D bumpy wall channel flow; (a) plane 
view of the computational domain, (b) schematic view of the flow field, (c) atomic 
3-D view of the flow field in the MD simulation. 

Figure 14: Computational domain of a 3-D bumpy wall channel flow; (a) plane
view of the computational domain, (b) schematic view of the flow field, (c) atomic
3-D view of the flow field in the MD simulation.
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flow models show the same predictive tendency. Generally, the agreement between
the MRT LBM and the MD simulation results is very satisfactory. The maximum
discrepancy between the results is indeed up to 15% of the bulk velocity Ub. Since
without the regularization procedure, the solution of the MRT LBM by the first-
order slip-flow model shows oscillations in the entire flow field, the regularization
process does improve the solution stability. However, unlike in the 2-D flows,
even with the regularization, somehow kinky profiles still can be seen near walls at
some sections such as x/H =0.1 and 0.9 in the symmetry plane (Fig.15(a)). Also
weak oscillations appear near the bottom wall at x/H =0.3 and 0.7 in the plane of
z/H = 0.25 (Figs.15(b)-(d)).

Since the flow field and characteristics are much more complicated than those of the
2-D test flows, it may not be easy to damp such near-wall kinks or oscillations by
the regularization procedure even at Kn=0.1. However, it is worth re-considering
the linear interpolation scheme for the diffusive bounce-back boundary condition
used in the present study because its accuracy of the curvature representation is
only in the first order.

5 Conclusions

In the present study, the MRT µ-flow LBM is extensively discussed through its
evaluation in several test flows such as 2-D force-driven Poiseuille flows at 0.01≤Kn≤10,
flows in a nanochannel with a triangular-cylinder and a square-cylinder placed in
the center region at Kn≈ 0.1, and a 3-D flow through a bumpy wall channel at
Kn=0.1. The main frame of the MRT µ-flow LBM consists of the multiple relax-
ation time LBM with the second-order D2Q9 or D3Q19 discrete velocity model
and the diffusive bounce-back wall boundary condition. The probability coefficient
of the diffusive bounce-back condition and the relaxation time for the energy flux
are obtained by the slip-flow model in the modified Reynolds equation of tribol-
ogy. In the Poiseuille flows at Kn>1, the set of coefficients obtained by referring
to the 1.5-order slip-flow model leads better flow rates than those by the first- and
second-order models. The near wall correction of the molecular mean free path
improves the results particularly at Kn>1. The regularization procedure to remove
the aliasing error generally improves the prediction. For the 2-D and 3-D com-
plex flows the regularization procedure is essential to stabilize the solution results.
With the regularization procedure, the coefficients by the first- to second-order slip-
flow models hardly affect the simulation results. Since the regularization filters out
higher-order numerical lattice artifacts and systematically incorporates the higher-
order moments, it is considered that any difference caused by the slip-flow model
is corrected along with the other higher-order artifacts implicitly included in the
MRT model. The results of the MRT µ-flow LBM with the regularization proce-
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Figure 15: Comparison of velocity profiles with the regularization procedure in a
3-D bumpy channel at Kn=0.1; (a) streamwise velocity component at z/H = 0.5,
(b) streamwise velocity component at z/H = 0.25, (c) vertical velocity component
at z/H = 0.25, (d) spanwise velocity component at z/H = 0.25.
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dure hence agree very well with the reference data of the 2-D cylinder flows and
the 3-D bumpy channel flow at Kn≈0.1. It is concluded that introducing the regu-
larization procedure is very effective for simulating micro flows by the MRT LBM
even with the second order discrete velocity models.
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