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Darcy-Stokes Equations with Finite Difference and
Natural Boundary Element Coupling Method
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Abstract: Numerical method is applied to investigate the Darcy-Stokes equa-
tions, which is governing the steady incompressible Stokes flow past a circular
cavity in a porous medium. The free fluid flow is modeled by the incompress-
ible Stokes equations, and the flow in the porous medium is imposed by Darcy
equations. Based on domain decomposition method with D-N alternating iteration
algorithm, the coupling method of finite difference method and natural boundary
element method is studied for the coupling Darcy-Stokes equations under a cer-
tain pressure difference. The numerical results indicate that the finite difference
and natural boundary element coupling method is efficient and convenient for the
Darcy-Stokes problem of the steady-state parallel flow with a void space.

Keywords: Darcy-Stokes, domain decomposition, D-N alternating iteration, cou-
pling method.

1 Introduction

The combination of viscous incompressible flow and porous media flow occurs in
many physical and engineering applications [Urquiza, Dri, Garon and Delfour(2008);
Deng and Martinez(2005); Tan and Takashi (2005); Keh and Lu(2005)]. The
problem is difficult to resolve because the underlying phenomena is diverse and
the interactions between coupled flow systems are complex [Kanschat and Riv-
ière(2010); Rui and Zhang(2009); Chen, Gunzburger and Wang(2010); Correa
and Loula (2009)]. Correspondingly, it’s tough to acquire the analytical solu-
tions [Cai, Mu and Xu(2009); Boubendir and Tlupova(2009); Chidyagwai and
Rivière(2009)]. The low Reynolds number flow over a porous spherical shell was
analyzed [Jones(1973)]. In this model, Stokes equations were imposed within and
without the spherical shell, and the Darcy’s law was considered in the shell re-
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gion. The analytical expressions of velocities, pressures and resultant forces of the
spherical shell are educed in above three regions with the separation of variables
technique. If the thickness of the spherical shell is infinitely thin, it can be treated
as a membrane. Consequently, it was considered as the simple model for the infil-
tration of blood leukocytes [Zeng and Wu(1989)]. In this case, above three regions
were simplified to two regions, and the transmembrane normal velocity depended
on the pressure difference of the fluid within and without the spherical shell. On the
interface of the porous medium and free flow, the normal velocity and the pressure
were continuous. If the Permeability coefficient was small, the tangential veloc-
ity can also be regarded as continuity, and the non-slip condition is tenable. On
the contrary, if the Permeability coefficient was large, the slip condition for the
tangential velocity should be proposed.

On the other hand, the cavity often exists in an unbounded porous medium. The
void space can change the flow field of groundwater seepage, and the Seepage
velocity is difficult to calculate accurately. Thus, it is important to find a the-
ory to study the flow field with a borehole in the porous medium. Fortunately,
the viscous flows past a cavity in a porous medium were studied by some schol-
ars. Two-dimensional viscous flow past a circular cavity in a porous medium was
studied with Series method by Japanese scholar [Raja Sekhar and Sano(2001)],
the calculation method of which was complex. In this paper, the coupling of the
incompressible Stokes equations and Darcy equations are considered. The free
fluid flow is modeled by the incompressible Stokes equations, and the flow in
the porous medium is imposed by Darcy equations. Simultaneous, the model is
coupled with the appropriate interface conditions. The coupling method of finite
difference method and natural boundary element method [Yu(1993)] is applied to
investigate the Darcy-Stokes equations, which is based on domain decomposition
method with the Dirichlet-Neumann(D-N) alternating iteration algorithm.

2 Governing equations and boundary conditions

A two-dimensional coupling Darcy-Stokes problem is considered. A cavity exists
in an unbounded homogeneous porous medium, and the cavity radius is R. The
fluid flows along x -axis from infinity with velocity U∞ under the pressure difference
∆h. The flow far away from the void space is undisturbed, which can be considered
as parallel flow. Suppose the entrance pressure is he, and the exit pressure is hw.
Thereby, he− hw = ∆h. The geometry model and boundary conditions are shown
in Fig.1.

As to the steady-state parallel flow without void space, the pressure distribution is
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Figure 1: Void in porous media

linear along flow direction.

h(x) = he− (he−hw)
x
L

(1)

where h(x) is the pressure at arbitrary point of x -axis.

The Darcy’ law is applied to represent non-inertial and incompressible flows in
porous media with small porosity, where r > R. Thus, the pressure h is satisfied
with the following equation.

−K
µ

∇
2h = 0 (2)

where K is the permeability coefficient, µ is the dynamic viscosity. The Stokes
equations is used for the void space, where r < R.{

∇ ·u = 0
−µ∆u+ ∇p = 0

(3)

On the interface of the circular void space and the porous medium, the velocities
and the pressure are continuous, the transmission conditions of which are proposed
as follows.

ur = vr

uθ = vθ

p = h

(4)

where ur,uθ , p represent the radial velocity, tangential velocity and pressure of the
free flow in cavity; vr,vθ ,h are the radial velocity, tangential velocity and pressure
of the flow in the porous medium.
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3 Finite difference and natural boundary integral coupling method

3.1 Dimensionless form of the problem

Apply the variables to dimensionless firstly.

(x̄, r̄) =
(x,r)

R
, ū =

u
U∞

, p̄ = p/(µ
U∞

R
), K̄ = K/R2 (5)

Correspondingly, the governing equations in porous medium can be expressed as
follows.

∇
2
h = 0 (6)

Similarly, the dimensionless form of Stokes flow in the void space can be obtained.{
∇ ·u = 0
−∆u+ ∇p = 0

(7)

For convenience, the superscript symbol will be dropped hereafter.

The flow far away from the void space is undisturbed, thus the finite circular region
is divided from the unbounded porous medium. The cavity radius R = 1, the ex-
ternal diameter of porous medium R1 = 3, the entrance pressure he = 10, the exit
pressure hw = 0, the specific geometry model and boundary conditions are given in
Fig.2.

 

Figure 2: Geometric model and boundary conditions
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3.2 Domain decomposition method

Divide the whole domain into two non-intersecting bounded subdomains Ω1 and
Ω2. The boundary of cavity is the artificial boundary Γ. The fan shaped grid is used
to mesh Ω1 in polar coordinates. Then, the finite difference method is applied to
resolve the Darcy’ law in domain Ω1. Thus, the pressure at arbitrary node can be
attained. According to the relationship of velocity and pressure, the radial velocity
and tangential velocity on the artificial boundary would be acquired. Afterwards,
based on Newton-Cotes numerical integration formula, utilize the velocity value
on artificial boundary and calculate in domain Ω2 with natural boundary element
method. Remarkably, the initial pressure value should be given before iterating,
and the new value on the artificial boundary can be obtained with finite difference
method in domain Ω1. Finally, the natural boundary element method is applied in
domain Ω2 and the new pressure value will be educed again. Iterate in turn, the
results will be achieved with rational precision. The detailed alternating iteration
algorithm is given as the following steps.

First, choose the initial value of pressure λ 0 on the artificial boundary.

Second, apply the finite difference method to investigate the Darcy’s equation based
on the pressure boundary condition, and the pressure λ i can be found. Then utilize
the relationships between the pressure and velocities to calculate the velocities in
domain Ω1. The corresponding problems are given as follows.

∇2h = 0 in Ω1

hi = u0 on Γ1

hi = λ i on Γ′

Third, impose the natural boundary element method to calculate in domain Ω2 ac-
cording to the velocities on the artificial boundary Γ. The corresponding equations
are given as follows.
−µ∆u+ ∇p = 0 in Ω2

ui
r =−K

µ

∂hi

∂n on Γ′

ui
θ

=−K
µ

1
r

∂hi

∂θ
on Γ′

Accordingly, the pressure λ i+1 can be obtained.

Fourth, let λ i = λ i+1. Go to next step if the pressure on the boundary Γ is satisfied
with the object. Otherwise, go to the second step;

Then, calculate the pressure and velocities.



178 Copyright © 2011 Tech Science Press CMES, vol.75, no.3, pp.173-188, 2011

3.3 Arithmetic design

3.3.1 Application of finite difference method in domain Ω1

In order to get the pressure at arbitrary node in the porous medium, the partial
differential equation for seepage flow ∇2h = 0 should be transformed into differ-
ence equation in polar coordinate system. The strategy for mesh grid allocation
is to use a fan shaped grid with m nodes in the θ -direction and n nodes in the r
-direction. Each node is defined by the couple ( i, j ) in the circular ring domain,
and i = 0,1, · · · ,m, j = 0,1, · · · ,n. Additionally, the radial step length is ∆r, the
tangential step length is ∆θ . According to the Taylor formula of two variables
function, the terms equal to or greater than quintic term can be neglected when the
step length ∆r and ∆θ are small enough. Therefore, the difference equation can be
acquired.(

4r2
o∆θ 2

∆r2 +4
)

h0−
(

2r2
o∆θ 2

∆r2 +
r0∆θ 2

∆r

)
h1−2h2

−
(

2r2
o∆θ 2

∆r2 − r0∆θ 2

∆r

)
h3−2h4 = 0

(8)

where h = h(r,θ); r0 = R + ri, j = R + j∆r. Let h0 = hi, j, the functions of h1 to
h4 can be expressed by the nodes similarly. Thus, the difference equation(8)can be
expressed as follows.(

4(R+ j∆r)2∆θ 2

∆r2 +4
)

hi, j−
(

2(R+ j∆r)2∆θ 2

∆r2 +
(R+ j∆r)∆θ 2

∆r

)
×hi, j+1−2hi+1, j−

(
2(R+ j∆r)2∆θ 2

∆r2 − (R+ j∆r)∆θ 2

∆r

)
hi, j−1−2hi−1, j = 0

(9)

Accordingly, hi, j can be calculated.

hi, j =
2(R+ j∆r)2∆θ 2 +(R+ j∆r)∆θ 2∆r

4(R+ j∆r)2∆θ 2 +4∆r2 hi, j+1

+
2∆r2

4(R+ j∆r)2∆θ 2 +4∆r2 hi+1, j +
2(R+ j∆r)2∆θ 2− (R+ j∆r)∆θ 2∆r

4(R+ j∆r)2∆θ 2 +4∆r2 hi, j−1

+
2∆r2

4(R+ j∆r)2∆θ 2 +4∆r2 2hi−1, j

(10)

Conveniently, let m =36 and n =20. Suppose the initial pressure on the artificial
boundary is λ 0, then the boundary condition is hi,0 = λ 0, i = 0,1, · · · ,36.



Darcy-Stokes Equations 179

The pressure and velocities far away from the void space are undisturbed and sat-
isfied with the characteristics of parallel flow, thus the pressure on the external
boundary Γ1 can be obtained according to Eq.1.

hi,20 = he− (he−hw)
R1 +R1 cos(i ·∆θ)

2R1
, i = 0,1, · · · ,20 (11)

Utilizing the inside and outside of the pressure boundary conditions, the pressure
value in domain Ω1 can be calculated. Then, based on the relationship between the
pressure and velocities,

ur =−K
µ

∂h
∂y

(12)

uθ =−K
µ

1
r

∂h
∂θ

(13)

Then the radial and tangential velocities can be attained preparing for the calcula-
tion of domain Ω2.

3.3.2 Application of natural boundary element method in domain Ω2

Based on the Fourier series method or the Green function method, the pressure
boundary integral formula of Stokes equations can be educed as equation with nat-
ural boundary element method [Peng, Dong, Cao and Zhao(2008)].

h(r,θ) =−2µ

r
{[cosθ(r

∂

∂ r
P(r,θ))− sinθ

∂

∂θ
P(r,θ)]∗ur(R,θ)

+ [sin(θ)(r
∂

∂ r
P(r,θ))+ cosθ

∂

∂θ
P(r,θ)]∗uθ (R,θ)}+ 1

2πππ

∫ 2πππ

0
h(R,θ)dθ (14)

ur(r,θ) = {cosθP(r,θ)+
R2− r2

2r2 [cosθ(r
∂

∂ r
P(r,θ))− sinθ

∂

∂θ
P(r,θ)]

− R2− r2

2πππRr
}∗ur(R,θ)+{sinθP(r,θ)+

R2− r2

2r2 [sinθ(r
∂

∂ r
P(r,θ))

+ cosθ
∂

∂θ
P(r,θ)]}∗uθ (R,θ) (15)

uθ (r,θ) = {−sinθP(r,θ)+
R2− r2

2r2 [sinθ(r
∂

∂ r
P(r,θ))

+ cosθ
∂

∂θ
P(r,θ)]}∗ur(R,θ)+{cosθP(r,θ)

− R2− r2

2r2 [cosθ(r
∂

∂ r
P(r,θ))− sinθ

∂

∂θ
P(r,θ)]+

R2− r2

2πππRr
}∗uθ (R,θ) (16)
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where P(r,θ) = R2−r2

2πππ[R2+r2−2rRcosθ ] , ur(R,θ) is the radial velocity on the artificial
boundary, uθ (R,θ) is the tangential velocity on the artificial boundary, and * is
the convolution integral. Thus, the distribution in domain Ω2 can be resolved with
Eq.14.

As can be known from the facts mentioned above, the radial and tangential veloci-
ties on the artificial boundary Γ are calculated with finite difference method, which
are discrete values. Therefore, Newton-Cotes numerical integration formula is used
and the first term of integral formula(14) is analyzed as follows in detail.

As P(r,θ) = R2−r2

2πππ[R2+r2−2rRcosθ ] , the derivative with respect to two variables r and θ

can be obtained.

Pθ (r,θ) =
∂P(r,θ)

∂θ
=

−R · r(R2− r2)
πππ[R2 + r2−2rRcosθ ]2

sinθ (17)

Pr(r,θ) =
∂P(r,θ)

∂ r
=

−r
πππ[R2 + r2−2rRcosθ ]

−1
2

R2− r2

πππ[R2 + r2−2rRcosθ ]2
(2r−2Rcosθ) (18)

Accordingly, the first term of integral equation(14) can be expressed as follows.

f (r,θ) =−2
r

cosθ(r
∂

∂ r
P(r,θ))∗ur(R,θ)

=−2η

r

∫ 2πππ

0
r cos(θ −θ

′){ −r
πππ[R2 + r2−2rRcos(θ −θ ′)]

− 1
2

R2− r2

πππ[R2 + r2−2rRcos(θ −θ ′)]2

× [2r−2Rcos(θ −θ
′)]}ur(R,θ ′)dθ

′

(19)

Newton-Cotes numerical integration formula(19) will be applied to calculate the
integral formula of Eq.18.

C =
b−a

90
[7 f (x0)+32 f (x1)+12 f (x2)+32 f (x3)+7 f (x4)] (20)

where xk = a + kh (k = 0,1,2,3,4), [a,b] is the integral interval, h = b−a
4 , C is the

integral result.

Use a fan shaped grid with 36 nodes in the θ -direction and 10 nodes in the r
-direction, and let n and N represent the step length in the θ -direction and the r -
direction respectively. Thus, the ranges of the step index i and j are i = 0,1, · · · ,36,
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j = 0,1, · · · ,10. Eq.19 can be acquired by the sum of function values at five discrete
points according to Newton- cotes formula(20). Five values 0,πππ/2,πππ,3πππ/2,2πππ are
chosen for the corresponding radian θ . It is easy to known that the functions f (x0)
to f (x4) of the Newton-cotes equation can be shown as follows.

fi, j(0) = cos(i ·n−0) · ( j ·N)

×{ − j ·N
πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−0)]

− 1
2
· (R2− j ·N)2

πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−0)]2

× [2 j ·N−2Rcos(i ·n−0)]}ur0,0

(21)

fi, j(1) = cos(i ·n−πππ/2) · ( j ·N)

×{ − j ·N
πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−πππ/2)]

− 1
2
· (R2− j ·N)2

πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−πππ/2)]2

× [2 j ·N−2Rcos(i ·n−πππ/2)]}ur9,0

(22)

fi, j(2) = cos(i ·n−πππ) · ( j ·N)

×{ − j ·N
πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−πππ)]

− 1
2
· (R2− j ·N)2

πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−πππ)]2

× [2 j ·N−2Rcos(i ·n−πππ)]}ur18,0

(23)

fi, j(3) =cos(i ·n−3πππ/2) · ( j ·N)

×{ − j ·N
πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−3πππ/2)]

− 1
2
· (R2− j ·N)2

πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−3πππ/2)]2

× [2 j ·N−2Rcos(i ·n−3πππ/2)]}ur27,0

(24)
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fi, j(4) =cos(i ·n−2πππ) · ( j ·N)

×{ − j ·N
πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−2πππ)]

− 1
2
· (R2− j ·N)2

πππ[R2 +( j ·N)2−2R( j ·N)cos(i ·n−2πππ)]2

× [2 j ·N−2Rcos(i ·n−2πππ)]}ur0,0

(25)

Thereby, the integral formula (19) is updated.

fi, j =−2
2πππ−0

90
(7 fi, j(0)+32 fi, j(1)

+12 fi, j(2)+32 fi, j(3)+7 fi, j(4))
(26)

Similarly, the numerical integral of Eq.14 can be calculated, and the pressure distri-
bution in domain Ω2 is resolved. Then, assign the pressure on the artificial bound-
ary Γ to the initial pressure value λ 0, and iterate in turn, the results will be resolved
accurately. When iteration steps are over 70000, the convergence solutions can be
obtained.

The velocity distribution in domain Ω2 can be achieved directly by the relationship
between the pressure and velocities after obtaining the pressure on the artificial
boundary Γ, which needs no iterating in order to reduce the computational time.
Then, the fitting functions of velocities on the artificial boundary Γ can be derived
by the discrete values. Finally, the velocity distributions is obtained by the velocity
boundary integral formula (15) and (16) in the circular domain Ω2.

4 Results and Analysis

The velocity distributions in the porous medium and void space are studied as fol-
lows with different permeability coefficient.

4.1 Permeability coefficient K = 0.05

The curve of horizontal velocities vx along x -direction and y -direction are given in
Fig.3 and Fig.4.

It is observed from Fig.3, the horizontal velocity is gradually decreasing with the
increase of the distance from the center, and transferring to the porous medium
relative smoothly. The highest horizontal velocity reaches at the center, and it is 2.5
times as much as the undisturbed. As can be seen from figure Fig.4, the horizontal
velocity is rapidly diminishing with the raise of the distance from the center, and
increasing slowly to the undisturbed velocity in order to fill the continuity condition
on the artificial boundary.
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Figure 3: Relationship between vx and x− direction
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Figure 4: Relationship between vx and y− direction

4.2 Permeability coefficient K = 0.1

The curve of horizontal velocities vx along x -direction and y -direction are shown
in Fig.5 and Fig.6.

The curve of Fig.5 and Fig.6 are similar with the first case. By Comparison, the
magnification of the highest value reduces appreciably, and it is 2.25 times as much
as the undisturbed horizontal velocity.

4.3 Permeability coefficient K = 0.8

The curve of horizontal velocities vx along x -direction and y -direction are shown in
Fig.7 and Fig.8. The curve of this case is similar with above two cases. Differently,
the magnification of the highest value reduces more, and it is 2 times as much as
the undisturbed horizontal velocity. The transmission from the porous medium to
the free flow is more smoothing.
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Figure 5: Relationship between vx and x− direction
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Figure 8: Relationship between vx and y− direction

The velocity vector distribution can also be obtained by the finite difference and
natural boundary element coupling method. The velocity vector distributions in the
porous medium and the cavity are given in Fig.9 and Fig.10.

 
Figure 9: Velocity in the porous media

 
Figure 10: Velocity in the cavity

The results of above cases in this paper are according to reference [Raja Sekhar
and Sano(2001)]. In order to validate the coupling method of natural boundary
element method and finite difference method, the velocity vector distribution is
analyzed as Fig.11 when the radius of the cavity R→ 0. It shows that the velocity
vectors are parallel to x axis from the high pressure to the low pressure as reference
[Kong(1999)].
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Figure 11: Velocity in the porous media without cavity

5 Conclusions

1. Based on domain decomposition method with the D-N alternating iteration al-
gorithm, the coupling method of finite difference method and natural boundary
element method is convenient and efficient to investigate the Darcy-Stokes equa-
tions.

2. As to the steady-state parallel flow with a void space, the velocity is increasing
with the permeability coefficient under the same pressure difference.

3. The horizontal velocity is gradually decreasing with the increase of the distance
from the center, and transferring to the porous medium relative smoothly on the
artificial boundary in x direction.

4. The horizontal velocity is rapidly decreasing with the raise of the distance from
the center, and increasing slowly to the undisturbed velocity in order to fill the
continuity condition on the artificial boundary.
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