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A Geometric Approach to Solve Fuzzy Linear Systems
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Abstract: In this paper, linear systems with a crisp real coefficient matrix and
with a vector of fuzzy triangular numbers on the right-hand side are studied. A new
method, which is based on the geometric representations of linear transformations,
is proposed to find solutions. The method uses the fact that a vector of fuzzy trian-
gular numbers forms a rectangular prism in n-dimensional space and that the image
of a parallelepiped is also a parallelepiped under a linear transformation. The sug-
gested method clarifies why in general case different approaches do not generate
solutions as fuzzy numbers. It is geometrically proved that if the coefficient ma-
trix is a generalized permutation matrix, then the solution of a fuzzy linear system
(FLS) is a vector of fuzzy numbers irrespective of the vector on the right-hand side.
The most important difference between this and previous papers on FLS is that the
solution is sought as a fuzzy set of vectors (with real components) rather than a
vector of fuzzy numbers. Each vector in the solution set solves the given FLS with
a certain possibility.
The suggested method can also be applied in the case when the right-hand side is
a vector of fuzzy numbers in parametric form. However, in this case, alpha-cuts of
the solution cannot be determined by geometric similarity and additional computa-
tions are needed.

Keywords: Fuzzy linear system, triangular fuzzy number, generalized permuta-
tion matrix.

1 Introduction

Fuzzy linear systems arise naturally in many application problems and in their so-
lutions, and have been studied by many researchers such as Peeva (1992), Friedman
et al (1998, 2000), Allahviranloo (2004, 2005), Asady et al (2005), Abbasbandy et
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al (2007), Nasseri and Khorramizadeh (2007), Ezzati (2008), Matinfar et al (2008,
2009).

The concept of a fuzzy number was introduced and developed by Chang and Zadeh
(1972), Zadeh (1975), Mizumoto and Tanaka (1976), Dubois and Prade (1978),
Nahmias (1978). Different approaches to the concept were suggested by Puri and
Ralescu (1986), Goetschell and Voxman (1985, 1986), Cong-Xin and Ming (1991,
1992), Friedman and Kandel (1999).

Friedman et al (1998) dealt with FLS with a crisp real coefficient matrix and with
a vector of fuzzy numbers in parametric form on the right-hand side. They solved
a 2n× 2n crisp linear system obtained from a given n× n FLS. Friedman et al
(2000) studied the dual system of FLS. Further studies concentrated on solution
methods. Allahviranloo (2005) and Matinfar et al (2008, 2009) applied the method
of Adomian decomposition, the method of Householder decomposition and the
Greville algorithm, respectively.

In this paper, we propose a geometric approach to FLS with a crisp real coeffi-
cient matrix and with a vector of triangular fuzzy numbers on the right-hand side.
Gasilov et al (2011) applied a similar approach to the initial value problem for fuzzy
linear systems of differential equations. In this approach, we study the geometric
object in n dimensional space corresponding to the given FLS. We show that a
vector of triangular fuzzy numbers represents a rectangular prism in n dimensional
space, and that the solutions are contained in an n dimensional parallelepiped, if the
coefficient matrix is invertible. Then we suggest an efficient algorithm to determine
this parallelepiped. We also give a method to check if a given vector is a solution
and to compute its possibility if it is.

In this paper, unlike earlier researches, we are not looking for solutions of FLS
in the form of a vector of fuzzy numbers. In our opinion, requiring the solution
to be a fuzzy number is more of a mathematical constraint rather than a natural
requirement in the problem. Instead, our solutions constitute a fuzzy set of vectors
of real numbers. Each vector in the solution set is a solution of the system with a
certain possibility.

The suggested geometric approach also explains why solutions obtained by means
of other methods are not usually vectors of fuzzy numbers. In addition, we give a
geometric proof of the theorem about the necessary and sufficient condition for the
existence of solution in the form of a vector of fuzzy numbers.

In fact, our approach holds for all kinds of fuzzy numbers; we choose the right-hand
side as a vector of triangular fuzzy numbers to simplify computations only.

This paper is comprised of 6 sections including the Introduction. Preliminaries are
given in Section 2. In Section 3, we define FLS and its solution. In Section 4, we
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apply a geometric approach to find the solution of FLS and present the main results.
In Section 5, we solve samples of FLS. In Section 6, we summarize the results.

2 Preliminaries

The most popular kind of fuzzy numbers is triangular fuzzy numbers. These num-
bers are denoted as ũ = (a,c,b) and their membership functions are defined as
follows:

µ(x) =

{
x−a
c−a , a≤ x≤ c
x−b
c−b , c≤ x≤ b

if c 6= a and c 6= b.

Remark: A crisp number a may be regarded as the triangular fuzzy number (a,a,a).
For a given possibility α ∈ [0, 1], the left and the right boundaries of α-cut of
a triangular fuzzy number ũ = (a,c,b) are given by uL(α) = a + α(c− a) and
uR(α) = b+α(c−b), respectively.

We denote u = a and ū = b to indicate the left and right bounds of ũ, respectively.

Definition 1. Let ũ = (a,c,b) be a triangular fuzzy number. The number ucr = c
is called to be the crisp part of ũ. The uncertainty of ũ, denoted by ũun, is the
triangular fuzzy number ũun = (a− c, 0, b− c).
By Definition 1: ũ = ucr + ũun.

In the definitions below, ũ = (a,c,b) and ṽ = (d, f ,e) are triangular fuzzy numbers.

Definition 2. ũ = ṽ if and only if a = d, c = f , b = e.

Definition 3. ũ+ ṽ = (a+d, c+ f , b+ e)
Definition 4. Multiplication of a triangular fuzzy number with a real number k is
defined as follows:

k ũ =

{
(ka,kc,kb), k ≥ 0
(kb,kc,ka), k < 0

Definition 5. ũ− ṽ = ũ+(−1)ṽ
Remark: In view of Definition 3 and 5: ũ− ṽ = (a− e, c− f , b−d).
Definition 6. Let D and F be two fuzzy sets in Rn. Let µD(x) and µF(x) be the
membership functions of D and F , respectively. If µD(x) = µF(x) whenever x∈ Rn,
then we say the fuzzy sets D and F are equal and we write D = F .
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3 Fuzzy Linear Systems and Their Solutions

Definition 7. Let ai j, (1 ≤ i, j ≤ n) be crisp numbers and f̃i = (li,mi,ri) be trian-
gular fuzzy numbers. The system

a11x1 +a12x2 + . . .+a1nxn = f̃1

a21x1 +a22x2 + . . .+a2nxn = f̃2
...
an1x1 +an2x2 + . . .+annxn = f̃n

(1)

is called a fuzzy linear system (FLS).

One can rewrite (1) as follows using matrix notation.

AX̃ = B̃ (2)

where A = [ai j] is an n× n crisp matrix and B̃ = ( f̃1, f̃2, . . . , f̃n)T is a vector of
triangular fuzzy numbers.

We will consider systems with nonsingular (invertible) matrices.

Let represent B̃ as sum of crisp part and uncertainty (with vertex at the origin):
B̃ = bcr + b̃, where bcr = (m1,m2, . . . ,mn)T and b̃ = (b̃1, b̃2, . . . , b̃n)T with b̃i =
(li−mi, 0, ri−mi) = (bi, 0, b̄i).
Note that the solution of the system (2) is in the form X̃ = xcr + x̃ (crisp solution
+ uncertainty), where xcr is the solution of Axcr = bcr and x̃ is the solution of
Ax̃ = b̃. The crisp solution is defined as xcr = A−1bcr. Consequently, the matter is
to determine the uncertainty x̃, i.e. to solve Ax̃ = b̃.

We will find the solution of the system (2) as a fuzzy set S of vectors.

Let us define the following set for the vector b̃.

Π = {v = (v1,v2, . . . ,vn)T ∈ Rn|bi ≤ vi ≤ b̄i}

This set represents an n dimensional rectangular prism (with origin inside) in Rn.
We write bcr + Π to denote the translation of this rectangular prism by the vector
bcr. Let w ∈ bcr + Π. If w = (w1,w2, ...,wn)T then li ≤ wi ≤ ri. Each wi has an
associated possibility αi. The number min

1≤ i≤ n
αi is defined to be the possibility of

the vector w in the set bcr +Π.

Definition 8. For an invertible matrix A, we define the set A−1Π as A−1Π =
{A−1v|v ∈Π}.
As it is known, geometric effect of a linear transformation T is the same as an
appropriate succession of shears, compressions, expansions and reflections [Anton
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and Rorres (2005)]. Therefore, under the linear transformation T (v) = A−1v, the
image of the prism Π, namely the set A−1Π, is an n dimensional parallelepiped (not
necessarily a rectangular prism in general).

Similarly, we write xcr + A−1Π to denote the translation of this parallelepiped by
the vector xcr.

Let y ∈ xcr +A−1Π = A−1bcr +A−1Π. Then there exists unique vector w such that
w ∈ bcr + Π and A−1w = y. The possibility of the vector w defines the possibility
of the vector y.

Now we define what we mean by a solution of (2).

Definition 9. A given vector x is called to be a solution of (2) with possibility α , if
corresponding unique vector w = Ax belongs to the set bcr +Π with possibility α .
Definition 10. We denote by Xα the set of all solutions with possibility α , where
0≤ α ≤ 1. The set S =

⋃
0≤α≤ 1

Xα is called the solution set of (2).

4 Main Results

Theorem 1. If A is invertible, the solution set S of (2) is S = xcr +A−1Π.

Proof.
Let x ∈ xcr +A−1Π has non-zero possibility α . By definition of A−1Π, there exists
a z ∈ Π such that x = xcr + A−1z = A−1(bcr + z). Hence, again by definition, the
possibilities of the vectors x and bcr + z are equal. On the other hand, bcr + z ∈
bcr +Π and Ax = bcr + z. Then by Definition 9, x is a solution with possibility α .

Now let us take a vector x from the solution set S with possibility α . Then, there
exists a vector w with possibility α such that w ∈ bcr +Π and Ax = w. From here
we obtain w = bcr +v for some v ∈Π (by definition of Π) and Ax = bcr +v. This
implies that x = xcr +A−1v. Hence the vector x belongs to the set xcr +A−1Π with
possibility α .

Theorem 1 means that the solution set of (2) is xcr + A−1Π, which is a paral-
lelepiped translated by xcr. Possibilities of the solutions in this parallelepiped are
distinct by definition. Then we need to address the following problems:

a) How can we compute the parallelepiped S = xcr +A−1Π efficiently?

b) How can we determine if a given vector is a solution of a given FLS? If it is, how
can we find the possibility of the solution?

c) Is there a solution of FLS in the form of a vector of triangular fuzzy numbers? If
not, why? For which matrices A, does such kind of solution exist?

In the rest of this Section, we work out these questions.

a) An algorithm to compute the parallelepiped S = xcr +A−1Π
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Step 1. Compute the inverse matrix A−1.

Step 2. Compute the crisp vector bcr = (b1,b2, ...,bn)T from the triangular fuzzy
numbers f̃i = (li,mi,ri) with taking bi = mi. Also compute the fuzzy number vector
b̃ = (b̃1, b̃2, ..., b̃n)T by the equation b̃i = (li−mi, 0, ri−mi) = (di, 0, hi).
Step 3. Find the crisp vector xcr = A−1bcr.

Step 4. Define the following vectors:

v1 = (d1, 0, 0, ..., 0)T

v2 = (0, d2, 0, ..., 0)T

...
vn = (0, 0, ..., 0, dn)T

and

u1 = (h1, 0, 0, ..., 0)T

u2 = (0, h2, 0, ..., 0)T

...
un = (0, 0, ..., 0, hn)T

These vectors determine the prism Π completely. Let us call them principal vectors
of the prism. Since hi > 0 and di < 0, ui and vi are in the same and opposite
directions with the i-th standard basis vector ei, respectively.

Remark. Any vector from Rn can be uniquely represented as a linear combination,
with non-negative coefficients, of the principal vectors (under the condition that
only one of vectors, either ui or vi, is used separately for each i).

Step 5. Constitute the fuzzy solution set:

S = {x = xcr +
n

∑
i=1

αiA−1wi |αi ∈ [0, 1]; wi = vi or wi = ui}

with µS(x) = 1− max
1≤ i≤n

αi.

The following theorem justifies Step 5.

Theorem 2. The fuzzy set S = {x = xcr +
n
∑

i=1
αiA−1wi |αi ∈ [0, 1]; wi = vi or wi =

ui} with the membership function µS(x) = 1− max
1≤ i≤n

αi is the solution set of (2).

Proof.
Let represent B̃ = bcr + b̃ and b̃ = (b, 0, b̄).
We express the vectors b and b̄ through standard basis vectors e1,e2, . . . ,en:

b = b1e1︸︷︷︸
v1

+b2e2︸︷︷︸
v2

+ . . .+ bnen︸︷︷︸
vn

;



A Geometric Approach to Solve Fuzzy Linear Systems 195

b = b̄1e1︸︷︷︸
u1

+ b̄2e2︸︷︷︸
u2

+ . . .+ b̄nen︸︷︷︸
un

Only the i-th coordinates of the vectors vi and ui are nonzero. The i-th coordinate
of vi is negative, while the i-th coordinate of ui is positive. Any crisp vector can
be uniquely written as a linear combination, with non-negative coefficients, of the
vectors vi and ui.

The fuzzy numbers on the right-hand side of the system Ax̃ = b̃ constitute a rect-
angular prism in space:

b̃ = Π = {α1w1 +α2w2 + . . .+αnwn)|αi ∈ [0, 1]; wi = vi or wi = ui}

This prism, upon multiplication with the inverse matrix, transforms into a paral-
lelepiped and after translation by the vector xcr gives the solution set:

S≡ X̃ = xcr +A−1
Π =

= {x = xcr +A−1(α1w1 +α2w2 + . . .+αnwn) |αi ∈ [0, 1]; wi = vi or wi = ui}

with µX(x) = 1− max
1≤ i≤n

αi.

An α-cut of the solution, is similar to the parallelepiped above:

Xα = xcr +A−1
Πα =

= {x = xcr +A−1(α1w1 +α2w2 + . . .+αnwn) |αi ∈ [0, 1−α]; wi = vi or wi = ui}

Thus, the theorem has been proved.

Below we give another representation for the solution and then we extend the re-
sults for the case, where the right-hand sides of the system (2) are arbitrary fuzzy
numbers.

If the triangular fuzzy numbers on the right-hand side of (2) are as f̃i = (li,mi,ri),
we have bi = li−mi, b̄i = ri−mi. It can be seen that an α-cut of the solution and
the solution itself can be represented also as follows:

Xα = {x = xcr +c1A−1e1 +c2A−1e2 + . . .+cnA−1en|ci ∈ [(1−α)bi, (1−α)b̄i]} (3)

X̃ = X0 with

µX(x) = 1− max
1≤ i≤n

γi,

where

γi =

{
ci/b̄i, ci ≥ 0
ci/bi, ci < 0

(4)
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Not that A−1ei is determined by the i-th column of matrix A−1, so no additional
calculations required to constitute the parallelepipeds Xα and X = X0.

For the case when right-hand side consists of parametric fuzzy numbers

f̃i = (( fi)L(α), ( fi)R(α))

the solution can be represented as follows:

Xα ={x = xcr + c1A−1e1 + c2A−1e2 + . . .+ cnA−1en

|ci ∈ [( fi)L(α)− (bcr)i, ( fi)R(α)− (bcr)i]}
(5)

X̃ = X0 with

µX(x) = min
1≤ i≤n

αi, (6)

where

αi =


( fi)−1

R (ki), ki > ( fi)R(1)
1, ( fi)L(1)≤ ki ≤ ( fi)R(1)
( fi)−1

L (ki), ki < ( fi)L(1)

; (7)

and

ki = (bcr)i + ci. (8)

( f−1 denotes the inverse function of f ).

Here bcr is a vector with possibility 1. We note that if the initial values are in
parametric form, then bcr, in general, is not unique. In this case, we can choose the
components of bcr arbitrarily to the extent that ( fi)L(1) ≤ (bcr)i ≤ ( fi)R(1). For
instance, we can put (bcr)i = [( fi)L(1)+( fi)R(1)]/2.

b) Checking if a vector X is a solution of a given FLS and computing its possi-
bility if it is a solution.
Step 1. Compute the vector z = AX−bcr.

Step 2. Represent z as a linear combination, with positive coefficients, of the prin-
cipal vectors.

z =
n
∑

i=1
αiwi, where wi = vi or wi = ui.

Step 3. If α = max
1≤ i≤ n

αi is greater than 1, then X is not a solution. Otherwise X is

a solution with possibility 1−α .



A Geometric Approach to Solve Fuzzy Linear Systems 197

c) A necessary and sufficient condition for existence of a solution in the form
of a vector of fuzzy numbers [Friedman et al (1998)].
Theorem 3. Let A be an invertible matrix. The solution of the system (2) is a vector
of fuzzy numbers for every B̃ if and only if the matrix A can be written as A = DP,
where D is a diagonal matrix and P is a permutation matrix.

Proof.
In order for the solution set to correspond to a triangular fuzzy number vector, the
set A−1Π needs to determine a rectangular prism (with edges parallel to coordinate
axes). This means that the linear transformation with matrix A−1 does no shear
along the coordinate axes. Then the matrix A has the same property. A fact in
linear algebra states that the geometric effect of a matrix transformation is the same
as an appropriate succession of shears, compressions, expansions, and reflections
[Anton and Rorres (2005)]. All reflections such as a reflection about y = x can be
represented by a permutation matrix P. Operations other than these reflections can
be represented by a diagonal matrix D. Hence the matrix A is in the form A = DP,
i.e. A is a generalized permutation matrix.

5 Examples

Example 1: Solve the system:1 −1 2
3 −1 4
5 1 7

 x
y
z

=

(−4, −2, −1)
(−1, 0, 1)
(12, 14, 17)

 .

Determine whether

X1 =

0.5
4.5
0.9


and

X2 =

−3.4
5.2
3.5


are solutions. Compute the possibility for the solutions.

Solution:

We have

A−1 =
1
6

−11 9 −2
−1 −3 2
8 −6 2

 ; bcr =

−2
0
14


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The crisp solution is:

xcr = A−1bcr =
1
6

−11 9 −2
−1 −3 2
8 −6 2

 −2
0
14

=

−1
5
2


The uncertainty of the right-hand side is:

b̃ = B̃−bcr =

(−4, −2, −1)
(−1, 0, 1)
(12, 14, 17)

−
−2

0
14

=

(−2, 0, 1)
(−1, 0, 1)
(−2, 0, 3)

⇒

b =

−2
−1
−2

=

−2
0
0


︸ ︷︷ ︸

v1

+

 0
−1
0


︸ ︷︷ ︸

v2

+

 0
0
−2


︸ ︷︷ ︸

v3

; b =

1
1
3

=

1
0
0


︸︷︷︸

u1

+

0
1
0


︸︷︷︸

u2

+

0
0
3


︸︷︷︸

u3

b̃ corresponds to a rectangular prism:

b̃ = Π = {αw1 +βw2 + γw3|α,β ,γ ∈ [0, 1]; wi = vi or wi = ui}.

The vectors v1, v2, v3, u1, u2, u3 are principal vectors of the prism.

The fuzzy solution set X̃ forms a parallelepiped in the coordinate space:

X̃ = xcr +A−1
Π =

= {x = xcr +A−1(αw1 +βw2 + γw3)|α,β ,γ ∈ [0, 1]; wi = vi or wi = ui}

with

µX(x) = 1−max{α,β ,γ}

Now we determine whether the given vectors X1 and X2 are solutions. We calculate

z1 ≡ b1 = AX1−bcr =

−0.2
0.6
−0.7


and

z2 ≡ b2 = AX2−bcr =

 0.2
−1.4
−1.3


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We express b1 and b2 as linear combinations, with positive coefficients, of principal
vectors:

b1 =

−0.2
0.6
−0.7

= 0.1

−2
0
0


︸ ︷︷ ︸

v1

+0.6

0
1
0


︸︷︷︸

u2

+0.35

 0
0
−2


︸ ︷︷ ︸

v3

⇒

X1 is a solution with µX(X1) = µΠ(b1) = 1−max{0.1, 0.6, 0.35}= 0.4;

b2 =

 0.2
−1.4
−1.3

= 0.2

1
0
0


︸︷︷︸

u1

+1.4

 0
−1
0


︸ ︷︷ ︸

v2

+0.65

 0
0
−2


︸ ︷︷ ︸

v3

⇒

max{0.2, 1.4, 0.65}> 1⇒ X2 is not a solution.

To emphasize the geometry of the problem we solve the following example using a
method, equivalent to the algorithm above.

Example 2: Solve the system[
3 5
1 −2

] [
x
y

]
=
[
(−2, −1, 1)

(5, 7, 8)

]
=
[

ã
b̃

]
.

Find α-cuts of the solutions for α = 0.4 and α = 0.7.

Solution:

Triangular fuzzy numbers ã and b̃ on the right-hand side of the system form a
rectangular region in the coordinate plane. The boundary of the region is shown by
the rectangle ACBD in Fig. 1.

For α = 0.4:

aL(0.4) =−1.6; aR(0.4) = 0.2
bL(0.4) = 5.8; bR(0.4) = 7.6

For α = 0.7:

aL(0.7) =−1.3; aR(0.7) =−0.4
bL(0.7) = 6.4; bR(0.7) = 7.3

The coefficient matrix

A =
[

3 5
1 −2

]
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is invertible:

A−1 = 1
11

[
2 5
1 −3

]
.

Under the multiplication by the inverse matrix, one can find the images of the points
A, B, C and the vertex M.

For this example: A′(36
11 , - 26

11 ), B′(27
11 , - 14

11 ), C′(42
11 , - 23

11 ) and the crisp solution is
M′(3, −2).
The fourth vertex of the parallelogram A’ C’ B’ D’ can be computed by the formula
OD′ = OA′+C′B′. Hence D′(21

11 , - 17
11 ).

One can determine an α-cut of the fuzzy solution from A′, B′, C′ and M′ by taking
M′, which corresponds to the crisp solution, as a center and using geometric simi-
larity. Since the right-hand side of the system is in the form of a vector of triangular
fuzzy numbers we can do this.

-2 0 2
a

4

8

b

A

B

C

2 4
x

-3

-2

-1

y

A'
C'

B'

D

D'

 

Figure 1: Thick black dots represent the crisp value of the right-hand side and the
corresponding crisp solution. The left part of the figure: The rectangular boundary
ACBD of the fuzzy region determined by the right-hand side of the system and the
boundaries of the α-cuts (α = 0.4 (dotted line); α = 0.7 (dashed line)).
The right part of the figure: The parallelogram boundary A’ C’ B’ D’ of the fuzzy
region determined by the solution and the boundaries of the α-cuts.
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For α = 0.4, we work out the vertices of the parallelogram that bounds the α-cut.

Â = M′+(1−α)M′A′ = (3, −2)+0.6 · ( 3
11 , - 4

11 )

= (3 18
110 , - 2 24

110 ) ≈ (3.16364, - 2.21818)

Similarly: B̂≈ (2.67273, - 1.56364) and Ĉ≈ (3.49091, - 2.05455). OD̂ = OÂ+ĈB̂
⇒ D̂≈ (2.34546, - 1.72727).

For α = 0.7:

Ǎ = M′+(1−α)M′A′ = (3 9
110 , - 2 12

110 )≈ (3.08182, - 2.10909),

B̌≈ (2.83636, - 1.78181), Č ≈ (3.24545, - 2.02727)

and

OĎ = OǍ+ČB̌⇒ Ď≈ (2.67273, - 1.86363).

6 Conclusion

In this paper, we dealt with FLS with crisp coefficients and a vector of triangular
fuzzy numbers on the right-hand side. We proposed a geometric approach to solve
the system. Instead of looking for solution to be a vector of fuzzy numbers, we
determined fuzzy solution set consisting of real vectors, each of which satisfies FLS
with some possibility. We showed that this set is an n dimensional parallelepiped.
We suggested an efficient method to compute the solution set. Then we proved
the necessary and sufficient condition theorem for the existence of a solution in
the form of a vector of fuzzy numbers. We illustrated the results with numerical
examples.
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