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Iterative Analysis of Pore-Dynamic Models Discretized by
Meshless Local Petrov-Galerkin Formulations

Delfim Soares Jr.1

Abstract: This work proposes an iterative procedure to analyse pore-dynamic
models discretized by time-domain Meshless Local Petrov-Galerkin formulations.
By considering an iterative procedure based on a successive renew of variables,
each phase of the coupled problem in focus can be treated separately, uncoupling
the governing equations of the model. Thus, smaller and better conditioned systems
of equations are obtained, rendering a more attractive methodology. A relaxation
parameter is introduced here in order to improve the efficiency of the iterative pro-
cedure and an expression to compute optimal values for the relaxation parameter is
discussed. Linear and nonlinear models are focused, highlighting that the analysis
of the nonlinear relations can be carried out along the iterative steps of the coupled
model solution, adding no further computational costs to the analysis. At the end of
the paper, numerical examples illustrate the performance and potentialities of the
proposed techniques.
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1 Introduction

For many everyday engineering problems, such as earthquake engineering, soil-
structure interaction, biomechanics, seismic wave scattering etc., dynamic porous
media analysis is necessary and over simplified theoretical models may only rep-
resent a very crude approximation. Nowadays, several numerical approaches, es-
pecially those considering finite element procedures, are available to analyse com-
plex dynamic porous media (see, for instance, Ehlers and Bluhm, 1998; Lewis and
Schrefler, 1998; Zienkiewicz et al., 1999; etc.) and most of these approaches are
based on the pioneering work of Biot (Biot, 1941; 1956a-b; 1962 – for a com-
plete overview of the porous media theory evolution, the book of de Boer, 1998, is
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recommended).

In spite of the great success of the finite element method and other techniques as
effective numerical tools for the solution of boundary value problems on complex
domains, there is still a growing interest in development of new advanced meth-
ods. Nowadays, many meshless formulations are becoming popular, due to their
high adaptivity and to their low-cost effort to prepare input data (meshless methods
were essentially stimulated by difficulties related to mesh generation). In addition,
the need for flexibility in the selection of approximating functions (e.g., the flexi-
bility to use non-polynomial approximating functions) has played a significant role
in the development of meshless methods. Many meshless approximations give con-
tinuous variation of the first or higher order derivatives of a primitive function in
counterpart to classical polynomial approximation, where secondary fields have a
jump on the interface of elements; therefore, meshless approximations are leading
to more accurate results in many cases.

A variety of meshless methods has been proposed along the last decades (e.g., Be-
lytschko et al., 1994; Atluri and Shen, 2002 etc.). Many of them are derived from a
weak-form formulation on global domain (Belytschko et al., 1994) or a set of local
subdomains (Atluri and Zhu, 1998; Atluri and Shen 2002; Mikhailov, 2002; Sladek
et al. 2003, 2008). In the global formulation, background cells are required for
the integration of the weak form. In methods based on local weak formulation, no
cells are required (if, for the geometry of the subdomains, a simple form is chosen,
numerical integrations can be easily carried out over them) and therefore they are
often referred to as truly meshless methods. The Meshless Local Petrov-Galerkin
(MLPG) method is a fundamental base for the derivation of many meshless formu-
lations, since trial and test functions are chosen from different functional spaces.

Meshless methods, based on the MLPG approach, were developed and imple-
mented for the solution of the Biot’s consolidation problem by Ferronato et al.
(2007) and Bergamaschi (2009), taking into account axi-symmetric poroelastic
models, and by Wang et al. (2009), taking into account plane models. The pore-
dynamic analysis of elastic soils considering the MLPG was introduced by Soares
(2010a), taking into account Gaussian weight functions as test functions and differ-
ent discretizations for each phase of the model. Later on, Soares (2010b) extended
the formulation to consider the dynamic analysis of elastoplastic porous media tak-
ing into account MLPG formulations based on Heaviside step functions as test
functions.

In the present work, iterative analysis of pore-dynamic models discretized by MLPG
procedures is focused. In the Finite Element Method, the iterative analysis of pore-
dynamic models does not exhibit convergence unless some especial procedures are
considered (see, for instance, Li et al., 2003, and Markert et al., 2010). In the
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Boundary Element Method as well, convergence is hardly achieved considering
iterative analysis when pore-dynamic models are focused (Soares et al., 2006), al-
though this seems to be an appropriate procedure once static models are considered
(Cavalcanti and Telles, 2003). For the MLPG method, on the other hand, as it is
described along the present work, iterative analyses are very effective, and conver-
gence can be achieved considering few iterative steps.

This paper is organized as follows: first, the governing equations of the pore-
dynamic model are presented (section 2) and, in the sequence, their numerical
discretization by MLPG techniques is briefly described (section 3); in section 4,
the iterative analysis of the pore-dynamic model is discussed and the evaluation of
optimal relaxation parameters is introduced, in order to speed up the convergence of
the iterative procedure; finally, in section 5, numerical applications are presented,
illustrating the performance and potentialities of the proposed techniques.

2 Governing equations

For a unit volume and from the definition of the total stress, the total momentum
equilibrium equation for the solid-fluid ensemble can be written as (Zienkiewicz et
al., 1990)

σi j, j−ρm üi +ρm bi = ρ f (ẇi +w jwi, j) (1)

where σi j is the total Cauchy stress, using the usual indicial notation for Cartesian
axes; the effective stress is defined as σ ′i j = σi j +αδi j p, in which α is the so-called
Biot’s parameter, accounting for slight strain changes, and p is the pore pressure. In
addition, ui stands for the solid matrix displacement, wi for the mean fluid velocity
relative to the solid phase and bi for the body force distribution. Inferior commas
and overdots indicate partial space (u j,i = ∂u j/∂xi) and time (u̇i = ∂ui/∂ t) deriva-
tives, respectively. The density of the mixture is defined as ρm = µρ f +(1−µ)ρs,
where ρs and ρ f are the density of the solid and fluid phase, respectively, and µ is
the porosity of the solid.

The constitutive law can be written, incrementally, as

dσ
′
i j = Di jkl (dεkl−dε

0
kl)+σ

′
ikdωk j +σ

′
jkdωki (2)

where the last two terms account for the Zaremba-Jaumann rotational stress changes
(negligible generally in small displacement computation) and Di jkl is a fourth order
tangential tensor defined by suitable state variables and the direction of the incre-
ment. The incremental strain dεi j = (1/2)(dui, j + du j,i) and respective rotation
dωi j = (1/2)(du j,i− dui, j) components are defined in the usual way from incre-
mental displacement derivatives and ε0

i j refers to initial strains caused by external
actions such as temperature changes, creep, etc.
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For a unit control volume, assumed attached to the solid phase and moving with it,
the momentum equilibrium equation for the fluid alone can be written as

−κ p,i−wi +κρ f (bi− üi) = ρ f (ẇi +w jwi, j)/µ (3)

where κ is the isotropic permeability coefficient, according to D’Arcy’s seepage
law. The equation of flow conservation for the fluid phase can be written in the
following form

(1/Q)ṗ+αε̇ii +wi,i + ṡ0 =−(ρ f /ρm)ẇi (4)

where (1/Q) = µ/K f +(α−µ)/Ks and the compression modules of the solid and
fluid phases are represented by Ks and K f , respectively. The rate of volume changes
of the fluid is ṡ0.

When the acceleration spectrum is composed of low frequencies (i.e., high frequen-
cies contributions can be disregarded), the right hand side of equations (1), (3) and
(4) involving the relative acceleration of the fluid are not important and can be omit-
ted with confidence (Zienkiewicz and Shiomi, 1984). The omission of such terms
allows for wi to be eliminated from the governing system of equations, retaining
only ui and p as primary variables (u-p formulation). The simplified final system
of equations that arises, also considering the dynamic seepage forcing term (i.e.,
κρ f üi,i) as negligible, can be written as

σi j, j−ρm üi +ρm bi = 0 (5a)

αε̇ii−κ p,ii +(1/Q)ṗ+a = 0 (5b)

where a stands for domain source terms.

Equations (5), accompanied by appropriate initial (ui = ūi0, u̇i = ˙̄ui0 and p = p̄0) and
boundary conditions (ui = ūi or τi = σi j n j = τ̄i and p = p̄ or q = p, j n j = q̄, where
the prescribed values are indicated by over bars and q and τi represent fluxes and
tractions acting along the boundary whose unit outward normal vector components
are represented by ni), define the model to be solved by the MLPG formulations
proposed here.

3 Numerical discretization

Instead of writing the global weak-form for the governing equations described in
the previous section, the MLPG method constructs a weak-form over local fictitious
sub-domains, such as Ωs, which is a small region taken for each node inside the
global domain. The local sub-domains overlap each other and its geometrical shape
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and size can be arbitrary, covering the whole global domain Ω. The local weak-
form of the governing equations can be written as∫
∂Ωs

ϕikσi jn j dΓ−
∫
Ωs

ϕik, jσi j dΩ+
∫
Ωs

ϕik(ρm bi−ρmüi)dΩ

+ β

∫
Γsu

ϕik(ui− ūi)dΓ = 0 (6a)

∫
∂Ωs

ϕ κ p,ini dΓ−
∫
Ωs

ϕ,i κ p,idΩ+
∫
Ωs

ϕ (a− (1/Q)ṗ−αε̇ii)dΩ

+ β

∫
Γsp

ϕ (p− p̄)dΓ = 0 (6b)

where ϕ and ϕik are test functions and β is a penalty parameter, which is intro-
duced here in order to impose essential prescribed boundary conditions in an inte-
gral form. In equations (6), ∂Ωs is the boundary of the local sub-domain, which
consists of three parts, in general: ∂Ωs = Ls ∪ Γs1 ∪ Γs2. Here, Ls is the local
boundary that is totally inside the global domain, Γs2 is the part of the local bound-
ary which coincides with the global natural boundary, i.e., Γs2 = ∂Ωs∩Γ2 (where
Γ2 stands for the natural boundary, i.e., Γ2 ≡ Γq or Γ2 ≡ Γτ ) and, similarly, Γs1
is the part of the local boundary that coincides with the global essential boundary,
i.e., Γs1 = ∂Ωs ∩Γ1 (where Γ1 stands for the essential boundary, i.e., Γ1 ≡ Γp or
Γ1 ≡ Γu).

Taking into account a local approximation to represent the trial functions in terms
of nodal unknowns, which are either the nodal values of real field variables or
fictitious nodal unknowns at some randomly located nodes (such as in the Moving
Least-Square Method), equations (6) can be rewritten in matrix form, following
standard MLPG procedures (Soares, 2010a-b). For nonlinear analysis, the matrix
systems of equations that arise from equations (6) can be written as

M ¨̂U+ℑ(Û)−QP̂ = F (7a)

C ˙̂P+HP̂+G ˙̂U = R (7b)

where ℑ stands for the internal force vector, computed regarding the nonlinear
relations of the model (for the linear elastic particular case, ℑ(Û) = KÛ, where K
stands for the stiffness matrix). In equations (7), M stands for the mass matrix, C
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and H represent the compressibility and the permeability matrix, respectively, and
Q and G stand for coupling matrices. F and R are load nodal vectors and Û and
P̂ stand for unknown nodal values representing the solid matrix displacements and
the fluid phase pore-pressures, respectively.

Once the ordinary differential nonlinear matrix equations (7) are established, their
coupled solution can be accomplished, taking into account some time-domain itera-
tive technique, such as the Newmark/Newton-Raphson procedure (Soares, 2010b).
Considering such a technique, the final coupled system of equations that arises can
be given by[

(1/(γ2∆t2))M+KT
(k) −Q

(γ1/(γ2∆t))G (1/(γ3∆t))C+H

] [
δ Û(k+1)
δ P̂(k+1)

]
=

[
F̄n

(k)
R̄n

(k)

]
(8)

where ∆t is a selected time-step, superscript n indicates the current step and γ1,
γ2 and γ3 are the parameters of the generalized Newmark method. The r.h.s. of
equation (8) is defined by

F̄n
(k) = Fn−ℑ(Ûn

(k))+

+M(−(1/(γ2∆t2))dÛn
(k) +(1/(γ2∆t)) ˙̂U

n−1
+(1/(2γ2)−1) ¨̂U

n−1
)+QP̂n

(k)

(9a)

R̄n
(k) = Rn +C(−(1/(γ3∆t))dP̂n

(k) +(1/γ3−1) ˙̂P
n−1

)+

+G(−(γ1/(γ2∆t))dÛn
(k) +(γ1/γ2−1) ˙̂U

n−1
+∆t(γ1/(2γ2)−1) ¨̂U

n−1
)−HP̂n

(k)

(9b)

where KT
(k) stands for the tangent stiffness matrix. The iterative variations in equa-

tions (8) are defined by δ Û(k+1) = Ûn
(k+1)−Ûn

(k) and δ P̂(k+1) = P̂n
(k+1)−P̂n

(k) whereas

the iterative increments in equations (9) are defined by dÛn
(k) = Ûn

(k)− Ûn−1 and

dP̂n
(k) = P̂n

(k)− P̂n−1, where k stands for an iterative step. Equations (8-9), in as-
sociation with appropriate nonlinear relations, enable the computation of the solid
skeleton displacements and interstitial fluid pore-pressures of the model.

For more details regarding dynamic analyses of linear/nonlinear porous media by
MLPG techniques, the reader is referred to Soares (2010a-b). In these works, the
above equations are deeper discussed taking into MLPG formulations based on
Heaviside step functions or Gaussian weight functions as test functions, as well
as on the usage of the Moving Least-Square Method to approximate the involved
physical quantities, in the local integral equations.
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As indicated by equations (8), standard porous media analyses have to solve a
coupled system of equations at each iterative step (or time step, in case of linear
models). This coupled system is non-symmetric, extremely badly conditioned (the
entries of the solid and fluid phase matrices are quite different) and usually large-
scale. This is very computationally demanding, especially when nonlinear models
are focused.

In the next section, an alternative methodology is introduced in order to analyze
each phase of the coupled model independently, through an iterative procedure
(uncoupling the system of equations (8)). This methodology renders smaller and
better conditioned systems of equations, providing more effective analyses for sev-
eral applications.

4 Iterative analysis

Considering the iterative framework of the previous section (equations (8-9)), un-
coupled analyses of pore-dynamic linear/nonlinear models can be obtained accord-
ing to the iterative algorithm that follows.

(i) Solid phase analysis:

Firstly in the current iterative step, the solid phase is analyzed, computing the iter-
ative variations of the solid matrix displacements by the solution of the following
system of equations

[(1/(γ2∆t2))M+KT
(k)] δ Û(k+1) = Fn−ℑ(Ûn

(k))

+M(−(1/(γ2∆t2))dÛn
(k) +(1/(γ2∆t)) ˙̂U

n−1
+(1/(2γ2)−1) ¨̂U

n−1
)+QP̂n

(k) (10)

Once δ Û(k+1) is computed, the solid phase total and incremental displacements are
actualized, as indicated below

Ûn
(k+1) = Ûn

(k) +δ Û(k+1) (11a)

dÛn
(k+1) = Ûn

(k+1)− Ûn−1 (11b)

(ii) Fluid phase analysis:

Considering the solid phase results at the current iterative step, the fluid phase is
analyzed. The iterative variations of the interstitial fluid pore-pressures are then



68 Copyright © 2011 Tech Science Press CMES, vol.76, no.1, pp.61-82, 2011

computed by the solution of the following system of equations

[(1/(γ3∆t))C+H] δ P̂(k+1) = Rn +C(−(1/(γ3∆t))dP̂n
(k) +(1/γ3−1) ˙̂P

n−1
)

+G(−(γ1/(γ2∆t))dÛn
(k+1) +(γ1/γ2−1) ˙̂U

n−1
+∆t(γ1/(2γ2)−1) ¨̂U

n−1
)−HP̂n

(k)

(12)

and, once δ P̂(k+1) is evaluated, the fluid phase variables are actualized as follow

P̂n
(k+λ ) = P̂n

(k) +δ P̂(k+1) (13a)

P̂n
(k+1) = λ P̂n

(k+λ ) +(1−λ ) P̂n
(k) (13b)

dP̂n
(k+1) = P̂n

(k+1)− P̂n−1 (13c)

where λ is a relaxation parameter, introduced here in order to speed up the conver-
gence of the iterative process.

Once the fluid phase variables are computed, the solid phase is analyzed again,
reinitiating the iterative cycle. Convergence is achieved once the relative norms of
the iterative variations of the solid and fluid phases are lower than a given tolerance.

As one can observe, the present iterative solution is easy to implement and very
attractive, since it allows the analysis of reduced and well-conditioned systems of
equations. Moreover, nonlinear relations can be carried out within the same iter-
ative steps of the coupled model solution, not introducing a significant additional
computational cost for the analysis. The effectiveness of the present iterative al-
gorithm is, however, intimately related to the relaxation parameter selection: an
inappropriate selection for λ can considerably increase the number of iterations in
the analysis, reducing the advantages of the methodology. In order to obtain a more
robust and efficient technique, an expression for an optimal relaxation parameter is
presented and discussed in the next subsection. In subsection 5.2, results concern-
ing the introduction of relaxation parameters taking into account different variables
of the coupled formulation are presented, further illustrating the effect of relaxation
parameters in the current iterative analysis.

4.1 Optimal relaxation parameter

In order to evaluate an optimal relaxation parameter, the following square error
functional is here minimized

f (λ ) = ||P̂n
(k+1)− P̂n

(k)||
2 (14)
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Taking into account the relaxation of the pore-pressures for the (k + 1) and (k)
iterations, equations (15a) and (15b) may be written, regarding relation (13b)

P̂n
(k+1) = λ P̂n

(k+λ ) +(1−λ ) P̂n
(k) (15a)

P̂n
(k) = λ P̂n

(k+λ−1) +(1−λ ) P̂n
(k−1) (15b)

Substituting equations (15) into equation (14) yields

f (λ ) = ||λW(k+λ ) +(1−λ )W(k)||2 =

= λ
2||W(k+λ )||2 +2λ (1−λ )(W(k+λ ),W(k))+(1−λ )2||W(k)||2

(16)

where the inner product definition is employed (e.g.,(W,W) = ||W||2) and new
variables, as defined in equation (17), are considered.

W(k+`) = P̂n
(k+`)− P̂n

(k+`−1) (17)

To find the optimal λ that minimizes the functional f (λ ), equation (16) is differen-
tiated with respect to λ and the result is set to zero, as described below

λ ||W(k+λ )||2 + (1−2λ )(W(k+λ ),W(k))+(λ −1)||W(k)||2 = 0 (18)

Re-arranging the terms in equation (18), yields

λ = (W(k),W(k)−W(k+λ ))/||W(k)−W(k+λ )||2 (19)

which is an easy to implement expression that provides an optimal value for the
relaxation parameter λ , at each iterative step.

It is important to note that the relation 0 < λ ≤ 1 must hold. In the present work,
the optimal relaxation parameter is evaluated according to equation (19) and if
λ /∈ (0.01;1.00) the previous iterative-step relaxation parameter is adopted. For
the first iterative step, λ = 1 is selected.

5 Numerical Applications

Two numerical applications are considered here, illustrating the discussed method-
ologies. In the first application, the simulation of a one-dimensional problem is
focused, and a soil column is analysed taking into account different material prop-
erties. In the second application, a two-dimensional soil strip is considered. The
results obtained by the proposed formulation are compared with analytical an-
swers, whenever possible, and with results provided by the Finite Element Method
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(FEM). Two MLPG formulations are focused here, namely: (i) MLPG1 – denoting
the MLPG formulation that employs Heaviside test functions (Soares, 2010b); (ii)
MLPG2 – denoting the MLPG formulation that employs weight functions as test
functions (Soares, 2010a). For both formulations the Moving Least-Square Method
is adopted to approximate the incognita fields. The time integration parameters are
selected according to the trapezoidal rule, i.e.: γ1 = 0.5, γ2 = 0.25 and γ3 = 0.5. Re-
garding the iterative process, a tolerance error of 10−3 is considered for the relative
norms of the iterative variations.

5.1 Soil column

In this first example, a soil column is analysed (de Boer et al., 1993; Diebels and
Ehlers, 1996; Schanz and Cheng, 2000; Soares, 2008 etc.). A sketch of the model
is depicted in Fig.1. The top surface of the column is considered drained and uni-
formly loaded. The other surfaces of the model are undrained and have null normal
displacements prescribed. 561 nodes are employed to spatially discretize the rect-
angular domain (H = 10m).
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  Figure 1: Sketch of the soil column model.

Two kinds of soils and load amplitudes are considered here (the loads have a Heav-
iside time variation). The properties of the models are specified below:

Model 1 (de Boer et al., 1993; Diebels and Ehlers, 1996; Soares, 2008 etc.) – for
the present model, the load amplitude is 3kN/m2. The physical properties of the soil
are: ν = 0.3 (Poisson); E = 14515880N/m2 (Young Modulus); ρs = 2000kg/m3

(mass density – solid phase); ρ f = 1000kg/m3 (mass density – fluid phase); µ =
0.33 (porosity); κ = 10−6m4/Ns (permeability). The soil is incompressible and the
time discretization considered is given by ∆t = 10−3s;



Iterative Analysis of Pore-Dynamic Models 71

Model 2 (Kim and Kingsbury, 1979; Schanz and Cheng, 2000; Soares, 2008 etc.)
– the load amplitude is 1kN/m2. The physical properties of the soil are: ν =
0.298; E = 254423076.9N/m2; ρs = 2700kg/m3; ρ f = 1000kg/m3; µ = 0.48; κ =
3.55 ·10−9m4/Ns. The soil is compressible and Ks = 1.1 ·1010N/m2 (compression
modulus – solid phase); K f = 3.3 ·109N/m2 (compression modulus – fluid phase).
The time-step is ∆t = 10−4s.

In Fig.2, vertical displacements at point A are depicted, taking into account Model
1. As can be observed, the results obtained by the iterative MLPG formulation are
in good agreement with the analytical results provided by de Boer et al. (1993) and
with the results obtained by the FEM (since the results provided by the MLPG1
and by the MLPG2 are quite similar, just those related to the MLPG1 are depicted
in the figure).
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Figure 2: Displacements at point A for the incompressible soil column.

In Fig.3, the evolution of the optimal relaxation parameters, evaluated according
to equation (19), is depicted, taking into account MLPG1 and MLPG2. As one
can observe in the figure, for both MLPG procedures, the computed relaxation pa-
rameters are intricately distributed mostly within the interval (0.75; 1.00). As a
matter of fact, optimal relaxation parameters are expected to vary around distinct
values during iterative analyses and a constant pre-selection for λ , even when most
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FIGURE 3 

Figure 3: Optimal relaxation parameters for the incompressible soil column: (a)
MLPG1; (b) MLPG2.
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appropriated, is unable to account for this dynamic behaviour. It is important to
highlight that equation (19) accounts for this dynamic behaviour and that it estab-
lishes a correlation between the values of the relaxation parameter and the errors of
the iterative procedure, once variable W is computed based on iterative residuals
(see equation (17)).

Table 1: Average number of iterations per time-step for the MLPG1

Model
Relaxation Parameter
Unitary Optimal

Incompressible soil column 7.105 4.055
Compressible soil column 3.019 2.945

soil strip 25.491 5.917

Table 2: Average number of iterations per time-step for the MLPG2

Model
Relaxation Parameter
Unitary Optimal

Incompressible soil column 7.110 4.055
Compressible soil column 3.016 2.952

soil strip 22.051 5.859

Table 3: Average number of iterations per time-step considering different relaxation
procedures (soil strip)

Relaxation Parameter MLPG1 MLPG2
none 25.491 22.051
λ p 5.917 5.859
λ u 8.118 8.282

λ p & λ u 8.605 9.105

In Tab.1 and 2, the average number of iterations per time step is presented, con-
sidering analyses with optimal relaxation parameters and with a unitary value for
λ (which would be the same as an iterative analysis without the introduction of a
relaxation parameter). As one can observe, for λ = 1, an average amount of 7.105
and of 7.110 iterative steps are necessary for convergence, considering the MLPG1
and the MLPG2, respectively. Taking into account optimal relaxation parameters,
these values are reduced to 4.055.
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FIGURE 4 

Figure 4: Compressible soil column: (a) displacements at point A; (b) pore-
pressures at point B.
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FIGURE 5 

 

Figure 5: Optimal relaxation parameters for the compressible soil column: (a)
MLPG1; (b) MLPG2.
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Figure 7: Displacements at point A for the soil strip considering linear and nonlin-
ear behaviour.
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Figure 8: Optimal relaxation parameters for the soil strip considering linear and
nonlinear behaviour (MLPG1).

In Fig.4, vertical displacements at point A and pore-pressures at point B are pre-
sented, taking into account Model 2. The MLPG results are in good agreement
with the results provided by the semi-analytical procedure presented by Schanz
and Cheng (2000) and with those provided by the FEM (once again, since MLPG1
and MLPG2 provide similar results, only MLPG1 is depicted).

In Fig.5, the evolution of the optimal relaxation parameters is illustrated, taking into
account MLPG1 and MLPG2. As one can observe in Tab.1 and 2, convergence is
achieved quite rapidly considering Model 2, even when a relaxation technique is not
considered (around 3 iterations per time step are necessary for convergence, in this
case). Since this model is already naturally well-suited for the iterative analysis
in focus, the optimal relaxation parameter evaluation reflects this fact, and most
values computed for λ are around 1, as depicted in Fig.5. These results highlight
the assertiveness of the proposed expression (19).

5.2 Soil strip

In this second example, a two-dimensional soil strip is analysed (Li et al., 2003;
Soares et al., 2006; Soares, 2008 etc.). A sketch of the model is depicted in Fig.6.
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The geometry of the strip is defined by a = 5m, b = 10m and c = 1m. The sym-
metry of the model is taken into account and 441 and 121 nodes are employed to
spatially discretize the solid and the fluid phase, respectively. An important feature
of meshless techniques is that they easily allow the adoption of different phase dis-
cretizations (Soares, 2010a), a task which may be quite complex considering some
mesh-based formulations, such as the Finite Element Method.

The soil strip is loaded as indicted in Fig.6 (in kN/m2) and the adopted time-step is
∆t = 5 ·10−4s. The soil is compressible (fluid phase) and ν = 0.2; E = 107N/m2;
ρs = 2538.5kg/m3; ρ f = 1000kg/m3; µ = 0.35; κ = 10−7m4/Ns and K f = 3.3 ·
109N/m2. A perfectly plastic material obeying the Mohr-Coulomb yield criterion
is assumed, where c = 2 ·102 N/m2 (cohesion) and θ = 100 (internal friction angle).

Vertical displacements at point A (see Fig.6) are depicted in Fig.7, considering lin-
ear and nonlinear behaviour (since results related to the MLPG1 and to the MLPG2
are similar, only MLPG1 results are plotted). As can be observed, the results pro-
vided by the proposed formulation are in good agreement with those provided by
the FEM. In Fig.8, the evolution of the optimal relaxation parameters is illustrated
(MLPG1), taking into account linear and nonlinear behaviour. For this application,
the computed relaxation parameters are intricately distributed mostly within the in-
terval (0.55; 1.00). As one can observe in Tab.1 and 2, for the present application,
the introduction of optimal relaxation parameters expressively reduces the number
of iterations in the analysis. For the linear case, the average number of iterations
per time-step is reduced from 25.491 to 5.917, considering the MLPG1, and from
22.051 to 5.859, considering the MLPG2. It is also important to note that non-
linear analyses can be carried out without introducing a significant increase in the
computational costs of the iterative procedure: considering the MLPG1, the aver-
age number of iterations per time-step in the linear case was 5.917 whereas for the
nonlinear case it was 5.947.

In the relaxation procedure described in section 4, the relaxation parameters are in-
troduced in the actualization of the pore-pressure variables (equations (13)); how-
ever, several other techniques are possible. As for instance, the relaxation param-
eters could be introduced in the actualization of the displacement variables (equa-
tions (11)), or in the actualization of both pore-pressure and displacement variables.
In Tab.3, the average number of iterations per time step is presented considering
these different relaxation procedures. The nomenclature adopted in Tab.3 is de-
fined as follows: (i) for the λ p case, optimal relaxation parameters are considered
just for the actualization of the pore-pressure variables (as described in section 4);
(ii) for the λ u case, optimal relaxation parameters are considered just for the ac-
tualization of the displacement variables; and (iii) for the λ p & λ u case, optimal
relaxation parameters are considered for the actualization of both pore-pressure and
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displacement variables. For all cases, computation of optimal values is carried out
analogously to what is presented in subsection 4.1. As one can observe in Tab.3,
introduction of relaxation parameters just in the actualization of the pore-pressure
variables provides more efficient analyses. Similar results are obtained considering
other applications, thus, this relaxation procedure was selected to be presented in
section 4.

6 Conclusions

An iterative procedure was presented to analyse pore-dynamic models discretized
by time-domain MLPG formulations. The introduction of optimal relaxation pa-
rameters was considered, taking into account a low computational cost and easy to
implement equation, expressively improving the efficiency of the methodology. As
described in the discussed numerical examples, the proposed formulation allows
convergence to be achieved considering just few iterative steps. Two MLPG for-
mulations were focused and similar results were obtained for them (and they are
expected for other similar MLPG approaches). Nonlinear analyses were also con-
sidered, indicating that the iterative solution of the coupled system of equations can
also handle the analysis of the nonlinear relations without increasing the computa-
tional effort of the procedure.

The proposed iterative methodology exhibits several advantages, such as: (i) each
phase of the model can be analysed separately, leading to smaller and better-conditioned
systems of equations; (ii) different solvers and modelling numerical procedures,
such as completely different spatial and temporal discretization techniques, can be
easily considered for each phase of the model, rendering more flexible and accurate
analyses; (iii) only interface routines are required when one wishes to use existing
codes to build coupling algorithms; (iv) nonlinear analyses can be easily carried out
within the framework of the iterative solution of the coupled equations; etc. An-
other major advantage of the present iterative formulation (to be explored in future
works) regards the facility to introduce adaptive techniques (for each phase of the
model independently) within the framework of the iterative solution, a procedure
which is very appropriate taking into account truly meshless formulations, such as
the MLPG.
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