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Mathematical Analysis of Waiting Times for Reaching
Therapeutic Effects

J. A. Ferreira1, P. de Oliveira2 and P. M. da Silva3

Abstract: In two previous papers the authors presented mathematical models
that simulate the mass of drug delivered, in vitro Ferreira, Oliveira, Silva, Carreira,
Gil and Murta (2010) and in vivo Ferreira, Oliveira, Silva and Murta (2011), from
a therapeutic contact lens. In the present paper the time it takes to reach an equi-
librium state is studied. A closed formula based on the concept of effective time is
derived and the influence of the parameters of the model is analyzed.

1 Introduction

In two recent papers Ferreira, Oliveira, Silva, Carreira, Gil and Murta (2010) and
Ferreira, Oliveira, Silva and Murta (2011) the authors presented a new therapeutic
contact lens used to control drug delivery into the cornea. The lens is composed by
a polymeric platform loaded with drug where silicone particles - also encapsulating
drug - are dispersed. The process aims to release the drug over an extended dura-
tion in order to overcome the drawbacks associated with topical administration, as
the high rate of clearance by the tear fluid and the absorption into the circulation
via nasal and nasopharingeal mucosa. A continuous flux, with no initial burst has
been achieved, for a period of 8 days. In this paper we are concerned with theo-
retical investigations based on mathematical models that describe the physical and
chemical mechanisms of release, completing the results presented in the previously
referred papers. Namely the time it takes to reach therapeutic effects is studied and
its dependence on the parameters of the model is analysed.

Some authors have proposed the use of microparticles delivering drug to the cornea
(Gulsen and Chauhan (2004), Gulsen and Chauhan (2005)). In the first paper the
particles were stabilized with a silica shell which causes a discontinuity in the deliv-
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ery, occurring between the end of the release of the drug within the polymeric ma-
trix and the beginning of delivery from the drug inside the particles. When no stabi-
lization was made an initial burst release occurs followed by subtherapeutic levels
of drug release. Even though the lens presented in Gulsen and Chauhan (2004),
Gulsen and Chauhan (2005) and the lens presented in Ferreira, Oliveira, Silva,
Carreira, Gil and Murta (2010) and Ferreira, Oliveira, Silva and Murta (2011) are
conceptually analogous - polymeric platforms with dispersed particles loaded with
drug - they have been prepared with different materials and procedures. The math-
ematical models describing the behaviors of the lens reflect these differences. In
the present paper the release from the platform and the particles are modelled as si-
multaneous phenomena while in Gulsen and Chauhan (2004), Gulsen and Chauhan
(2005) these phenomena are modelled sequentially.

The control of the flux in the drug release from the therapeutic lens is a conse-
quence of the two barriers that the drug must surmount: the polymeric matrix and
the dispersed particles. Apart from the use of dispersed particles loaded with drug,
a delay can also be induced by "sandwich type" structures (Ciolino, Hoare, Iwata,
Behlau, Dohlman, Langer and Kohane (2009)) where a drug-PLGA film is con-
tained between two layers of p-Hema.

Within the field of drug delivery two different but complementary approaches can
be found in the literature: laboratory experiments and theoretical studies based
on mathematical simulations of the phenomena. We follow this last approach by
developing a systematic framework to analyze the influence of the parameters of
the model on the time it takes to reach predefined therapeutic effects. The study is
based on the concept of effective time, a time constant which measures, in a certain
sense, the mean time needed to reach equilibrium (Collins (1980), Simon (2009),
Simon, Kim and Kanneganti (2011)). The explicit dependence on the parameters
provides information on the waiting period before the therapeutic effects of the
drug are achieved.

In Section 2 after shortly recalling the mathematical model presented in Ferreira,
Oliveira, Silva, Carreira, Gil and Murta (2010) we establish a closed formula for
the effective time of the therapeutical lens. The explicit dependence of this time
constant, on the parameters of the model, provides a qualitative and quantitative
understanding of its behavior. In Section 3 an approximation formula for total
mass released at time t is presented. The formula is based on the concept of ef-
fective time. A comparison of this approximation with theoretical values of the
released mass show the effectiveness of the approach. Finally we show how to con-
jugate effective time and released mass equations to tailor the therapeutic lens to a
specified treatment.
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2 Effective time for a therapeutic lens

2.1 Mathematical model of the drug delivery

In Ferreira, Oliveira, Silva, Carreira, Gil and Murta (2010) a therapeutical lens pre-
pared with a p-HEMA/MAA copolymer platform, loaded with drug, where silicone
particles encapsulating drug are dispersed, was presented. In vitro, drug release is
described by the system


∂Cg

∂ t
(x, t) = D

∂ 2Cg

∂x2 (x, t)− ∂Cb

∂ t
(x, t), x ∈ (−`,`), t > 0

∂Cb

∂ t
(x, t) = λ (Cg(x, t)−Cb(x, t)), x ∈ (−`,`), t > 0

, (1)

where Cg represents the drug concentration in the gel, Cb the drug concentration in
the particles, D the diffusion coefficient of the drug in the gel and λ stands for a
transfer coefficient. The system is coupled with initial conditions

{
Cg(x,0) = C0g

Cb(x,0) = C0b , (2)

where C0g and C0b are known initial concentrations in the gel and in the particles,
respectively. Assuming symmetry and immediate removal of the drug, the system
is completed with conditions

 ∂Cg

∂x
(0, t) = 0

Cg(`, t) = Cext

, (3)

where Cext represents the external drug concentration.

Let the total delivered mass at time t, M(t), be defined by

M(t) =−2D
∫ t

0

∂Cg

∂x
(`,τ)dτ. (4)

Using Laplace transforms we obtain

M(p) =−2D
p

A(p)
p(p+2λ )

k1 tanh(k1`), (5)
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where M(p) is the Laplace transform of M(t), with M(p) =
∫

∞

0
e−ptM(t)dt. In (5),

A(p) = Cext(p+2λ )−C0g(p+λ )−λC0b and k1 =

√
p(p+2λ )
D(p+λ )

. We then have

M(t) =−4D
`

∞

∑
n=0

A(an)
an(a2

n +2λ 2 +2anλ )
(an +λ )(eant −1) (6)

where, for every natural number n, an satisfies

an(an +2λ )
D(an +λ )

=−(2n+1)2π2

4`2 . (7)

Different scenarios of drug delivery from this lens can be considered:

(1) The gel and the particles are both loaded with drug;

(2) The polymeric matrix is loaded with drug and contains no particles (λ =
0, C0b = 0);

(3) Only the particles are loaded with drug (λ 6= 0, C0g = 0);

(4) The matrix is loaded with drug and the particles are initially void (λ 6=
0, C0b = 0).

Let Mi(t), i = 1,2,3,4, represents the total mass released at instant t, in the previous
scenarios. It can be established analitically that

M2(t)≥M4(t)≥M1(t)≥M3(t), (8)

when the initial drug concentration is the same in the four experiments (Figure 1).
We observe that, in the case of Scenario 3, this is a theoretical hypothesis because,
due to small particles size and its large surface area, the same drug loading of
Scenarios 1 2 and 4 is not achieved.

The therapeutic lens corresponds to Scenario 1. Scenario 2 represents a simple
platform loaded with drug. Scenario 3 and 4 are academic but they are useful to
understand the delay effect when only the particles are loaded and when they are
void. Observing Figure 1 we conclude that the largest delay occurs in Scenario 3
when the drug is encapsulated in the particles. In fact in this case the drug must
surmount two barriers - the matrix and the particles - to be released.
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Figure 1: Comparison of Mass: Mi(t), i = 1,2,3,4.

2.2 Effective time

To improve the design of the lens it is important to know the waiting time that is the
period of time elapsed before the mass attains a certain therapeutic level and how to
adjust the parameters to produce a pre-defined delivery profile. In this subsection
we present the concept of effective time (Collins (1980)).

Let Ms represents the stationary mass that is Ms = lim
t−→∞

M(t). The effective time
te f f is defined as the mean time to achieve the equilibrium,

te f f =
∫

∞

0 t(Ms−M(t))dt∫
∞

0 (Ms−M(t))dt
, (9)

which can be seen as the first moment of the probability density function

d(t) =
Ms−M(t)∫

∞

0 (Ms−M(t))dt
. (10)

To compute te f f only M(p), the Laplace transform of M(t), must be known. In fact
it can be proved (Collins (1980)) that if M(p) can be expanded in powers of p,

M(p) =
1
p
(B1 +B2 p+B3 p2 + ...), (11)

then
te f f =−B3

B2
,
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provided that B2 6= 0.

In the case D 6= 0, λ 6= 0, we give (5) the form (11), with

B1 =−2a
`

λ
, B2 =

`

λ
(

a
λ

+
4a
3D

`2−2ϖ),

B3 =
`

λ
(− 4a

3λD
`2− 16a

15D2 `4 +
2
ϖ

λ +
4ϖ

3D
`2− a

λ 2 +
ϖ

λ
),

where

a = 2λCext −λ (C0g +C0b),ϖ =
C0b−C0g

2
.

After some tedious but straightforward computations we obtain (Silva (2010))

te f f =
1

λD
2ϖD2λ −aD2− 4

3 aλD`2− 16
15 aλ 2`4 + 4

3 ϖDλ 2`2

2ϖDλ −aD− 4
3 aλ`2

. (12)

In the case of Scenario 2 (λ = 0, C0b = 0), effective time can not be obtained from
(12). A direct calculus from (11) leads to

te f f =
2`

5D
. (13)

In Figure 2 a plot of te f f given by (12), as a function of D and λ , is exhibited with
C0g = 0.5, C0b = 0.25, Cext = 0, ` = 1. As expected effective time is a decreasing
function of D, for constant λ , and a decreasing function of λ , for constant D. In
fact when D increases the drug diffuses faster; when λ increases the drug encapsu-
lated in the particles easier surmounts the barrier represented by their boundary. In
Figure 3 we present plots of the surface in Figure 2. We note that the influence of
D is more significant than the influence of λ .

In engineering literature (Simon (2009)) it is generally accepted that the onset of
equilibria is defined by the response time tr, where tr = 4te f f . We postpone for
Section 3 an explanation of this assumption. If we compute 4te f f for the previous
scenarios, for D = 0.05, ` = 1, λ = 0.05, C0g = 0.5, C0b = 0.5, Cext = 0, we obtain
the values presented in Table I.

Scenario 1 Scenario 2 Scenario 3 Scenario4
4te f f 116.5716 32 121.6 104

Table I - Response times.
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Figure 2: Behavior of te f f as a function of the parameters D and λ .

We note that t2
r < t4

r < t1
r < t3

r , where the superscript refers to the scenarios. This
result agrees with the inequalities established in (8) for the delivered masses.

We note that the use of particles induces a significant delay in the drug release. In
fact the smallest response time t2

r corresponds to Scenario 2, where there are no
particles. Response times exhibited in Table I, and the values resulting from other
experiences that have been carried on, suggest that 4t2

r ≈ t1
r , even if we have no

theoretical support for this observation. This aspect stresses the importance of the
use of particles in controlled drug delivery. In the present state of development of
particles technology, there are still severe restrictions to their loading and conse-
quently the hypothesis underlying Scenario 3 is purely academic. It is precisely in
this scenario that the largest delay is observed. It is also worthwhile mentioning
that in Scenario 4, where particles are initially void, significant delay in the release
is observed. This is explained by the fact that initially the drug in the polymeric
matrix penetrates the particles.

3 Qualitative behavior and mass estimations

In Section 2 we showed that the concept of effective time provides an accurate
prediction of the onset of equilibrium. In this section we illustrate how to use such
concept to obtain closed formulas that give a priori estimations of released masses.
We will be concerned with M1(t) the mass of the drug delivered by the therapeutic
lens presented in this paper.

We begin by explaining why the response time is defined by 4te f f .
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Figure 3: Behavior of te f f as a function of λ (left) and D (right).

Let us suppose that drug release was modeled by an ordinary differential equation.
It seems then natural to make the ansatz that the density d(t) can be approximated

by an exponential like function of form d∗(t) = ae−bt . As
∫

∞

0
d∗(t)dt = 1 and∫

∞

0
td∗(t)dt = te f f , then

d∗(t) =
1

te f f
e−t/te f f . (14)

This function represents the density of a first order system with time constant te f f .
It is expected that the predictions obtained from d∗ are not accurate at short times
because of "the lag time that occurs in a system which is partly driven by diffusion"
(Simon, Kim and Kanneganti (2011)). In Figure 4 we plot the density d(t) and
its approximation d∗(t), (14), with te f f given by (12), where D = 0.05, ` = 1, λ =
0.05, C0g = 0.5, C0b = 0.5, Cext = 0.

Interpreting t as a statistical variable, with exponential density distribution d∗(t),
the probability that t ≤ kte f f , P(t ≤ kte f f ), is defined, for every k ∈ R, by

P(t ≤ kte f f ) = 1− e−k. (15)

As this probability can be viewed as Me(t)
Ms , we have

Me(t) = (1− e
− t

te f f )Ms, (16)

where Me(t) represents an estimation for M(t).



Mathematical Analysis of Waiting Times for Reaching Therapeutic Effects 171

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

t

 

 

d*(t)
d(t)

20 30 40 50 60 70

0

2

4

6

8

10

12

14

16
x 10

−3

t

 

 

d*(t)
d(t)

a) b)

Figure 4: a) Density function d(t) and d∗(t), b) zoom of a) for t ∈ [20,75].

Using the Final Value theorem, Ms = lim
p−→0

pM(p), we obtain

Ms =−2`(2Cext −C0g−C0b), (17)

and finally from (16) and (17) we obtain the following estimation

Me(t) =−2`(1− e
− t

te f f )(2Cext −C0g−C0b). (18)

We observe that this estimation avoids the numerical solution of (1) or the compu-
tation of the inversion of Laplace transforms. It can be used with (12) as a simple
tool to estimate the mass released until a certain time.

In Table II the estimated masses for several times t, computed using (16), are pre-
sented.

t Me(t)
te f f 63.21%Ms

2te f f 86.47%Ms

3te f f 95.02%Ms

4te f f 98.17%Ms

Table II - Estimated delivery masses.

In Table III are presented the estimated delivered masses Me(t), (18), and M1(t),
(6), computed with D = 0.05, ` = 1, λ = 0.05, C0g = 0.5, C0b = 0.5, Cext = 0.
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Effective Time Estimated Mass Me(t) Mass M1(t) Relative Error
te f = 29.15 63.21%Ms = 1.2642 1.4306919 1.320×10−1

2te f = 58.29 86.47%Ms = 1.7294 1.7825530 3.073×10−2

3te f = 87.43 95.02%Ms = 1.9004 1.9145475 7.445×10−3

4te f = 116.57 98.17%Ms = 1.9634 1.9645691 5.954×10−4

Table III- Estimated mass and mass computed from (11)
(D = 0.05, ` = 1, λ = 0.05, C0g = 0.5, C0b = 0.5, Cext = 0).

The plots of the released mass M1(t) and the corresponding estimated mass Me(t)
for the parameters in Table III, are represented in Figure 5. The values of M1(t)
have been computed from (6) with 100 terms.
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Figure 5: Mass tracking of M1(t), for parameters in Table III.

As expected when t increases a better approximation Me(t) of M1(t) is obtained.
Once fixed a certain therapeutic mass and a certain waiting time to reach this mass,
the lens can be tailored in order to fullfil these requirements. Let us consider, for
example, that D and C0g are free parameters. If we define that at te f f = 1000, the
released mass should be Me(4te f f ) = 1, then

C0g = 0.484329, D = 8.415×10−3,

where C0b = 0.025, Cext = 0, ` = 1, λ = 0.01. If the same therapeutic mass is to be
delivered within a shorter period of time, te f f = 100, then as expected the diffusion
coefficient increases, obtaining in this case D = 1.774×10−2.
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4 Conclusion

A therapeutic lens used to deliver drug to the anterior segment of the eye for an
extended period of time was studied by the authors in two previous papers Fer-
reira, Oliveira, Silva, Carreira, Gil and Murta (2010) and Ferreira, Oliveira, Silva
and Murta (2011). To fully understand the kinetics of the delivery, and namely
the waiting times before predefined therapeutic levels are reached, a methodology
based on effective time is proposed. Closed expressions for the waiting times and
the corresponding total delivered masses are established. These expressions incor-
porate properties such as the drug diffusion coefficient, the transfer coefficient from
the particles, the initial concentration of drug in the gel and in the particles. Conse-
quently, a tool that evaluates the effects of a host of conditions on the waiting times
and delivered masses is provided by such closed formulas. They give indications
on the characteristics of the materials and on the initial concentrations. The con-
tents of the paper represents an approach to the tailoring of a therapeutic lens to a
specified treatment.
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