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Some Fundamental Properties of Lattice Boltzmann
Equation for Two Phase Flows
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Abstract: Due to the mesoscopic and kinetic nature, the lattice Boltzmann equa-
tion (LBE) method has become an efficient and powerful tool for modeling and
simulating interfacial dynamics of multi-phase flows. In this work we discuss sev-
eral fundamental properties of two-phase LBE models. Particularly, the effects of
force discretization, spurious currents in the vicinity of interfaces, and checker-
board effects with the underlying lattices, are investigated.
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1 Introduction

Multiphase flows are frequently encountered in the nature world and industrial ap-
plications. Owing to the complex interfacial dynamics involving large space and
time scales, it is a challenging task to model and simulate such flows. Physically,
the interfacial phenomena in multi-phase systems are the natural consequences of
microscopic interactions among fluid molecules. Therefore, the multi-phase flows
can be effectively captured once the microscopic inter-molecular interactions are
correctly modeled.

Different numerical methods have been developed for simulating multi-phase flows
from different viewpoints, such as phase field model [Jacqmin (1999)], volume
of fluid method [Hirt and Nichols (1981)], level set method [Sussman, Smereka,
and Osher (1994)], and the lattice Boltzmann equation (LBE) method [Shan and
Chen (1993); Shan and Chen (1994); Gunstensen and Rothman (1991); Grunau,
Chen, and Chen (1993); Swift, Osborn, and Yeomans (1995); Swift, Orlandini,
Osborn, and Yeomans (1996); Inamuro, Konishi, and Ogino (2000); Inamuro,
Ogata, Tajima, and Konishi (2004); He, Shan, and Doolen (1998); He, Chen,
Zhang (1999)]. The former three methods are constructed based on continuous
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hydrodynamic equations, while the LBE method is based on mesoscopic kinetic
theory, which has many advantages in modeling multi-phase flows.

Four type of multi-phase LBE models have been proposed in the past decades.
The first type is the Color model proposed by Gunstensen et al [Gunstensen and
Rothman (1991)] based on a lattice gas automation model [Rothman and Keller
(1998)], in which two different fluids are denoted by red and blue particle distribu-
tion functions, and the inter-particle interactions are modeled by the local color gra-
dient. Another type is pseudo-potential model proposed by Shan and Chen [Shan
and Chen (1993); Shan and Chen (1994)], in which an artificial potential is in-
cluded. The third type of LBE models for multi-phase flows was due to Swift et
al. [Swift, Osborn, and Yeomans (1995); Swift, Orlandini, Osborn, and Yeomans
(1996)], which is constructed based on the free-energy of a multi-phase system.
The last type of multi-phase LBE models are base on certain kinetic equations [He,
Shan, and Doolen (1998); He, Chen, Zhang (1999)], which has solid physical
foundations.

Even though these models are developed in different ways, there are some common
issues among them. In this work we will investigate several fundamental points in
two-phase LBE models, aiming to clarify some confusion and misunderstandings
about the LBE method.

2 LBE model for two-phase flows

Although the available two-phase LBE models were constructed from different
viewpoints, it can be shown that they can all be regrouped into a standard evolution
equation with a forcing term [He, Shan, and Doolen (1998)],

fi(x+ ciδ t, t +δ t)− fi(x, t) =−1
τ
[ fi(x, t)− f eq

i (x, t)]+δ tFi, i = 0∼ b−1, (1)

where fi(x, t) is the distribution function at position x and time t moving with dis-
crete velocity ci, τ is the relaxation time, δ t is the time step, b is the number of
discrete velocities, and fi

eq is the equilibrium distribution function given by

f eq
i = wiρ

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
, (2)

where wi is the weighting factor, ρ and u are the local density and velocity, and
cs is the sound speed related to the lattice speed c = δx/δ t, where δx is the lattice
spacing; Fi is the forcing term representing the effect of the interaction force F.
Different formulations of Fi have been proposed, and here we consider the model
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proposed by He et al. [He, Shan, and Doolen (1998)],

Fi =
(

1− 1
2τ

)
(ci−u) ·F

ρc2
s

f eq
i . (3)

For an isothermal system, the fluid density and velocity are defined as

ρ = ∑
i

fi, ρu = ∑
i

ci fi +
δ t
2

F. (4)

For a van der Waals fluid, the interaction force can be written as [He, Shan, and
Doolen (1998)]

F = ∇ρc2
s −ρ∇(µ0−κ∇

2
ρ) = ∇(ρcs

2− p0)+ρκ∇∇
2
ρ, (5)

where µ = µ0− κ∇2ρ is the chemical potential with µ0 being the chemical po-
tential in the bulk region, κ is a parameter that controls the surface tension, and
p0 is the thermodynamic pressure related to the density through certain equation
of state. In the literature the first and second expressions of the force in Eq. (5)
are usually termed as “potential form" and “pressure form", respectively [Wagner
(2003); Lee, Fischer (2006)]. From the thermodynamic relations ∇p0 = ρ∇µ , it
is apparent that the two formations are totally identical mathematically. However,
their discrete versions may give quite different results due to numerical errors, and
these numerical differences may have significant influences on the interfacial dy-
namics.

The interaction force is closely related with free-energy in two-phase systems.
Without loss of generality, in this work we consider the following bulk free-energy
[Jamet, Lebaigue, Coutris, and Delhaye (2001)],

E0 ≈ β (ρ−ρ
sat
v )2(ρ−ρ

sat
l )2,

where the parameters β and κ are related to the thickness of an interface D and the
surface-tension σ ,

κ =
βD2(ρsat

l −ρsat
v )2

8
, σ =

(ρsat
l −ρsat

v )3

6

√
2κβ ,

where ρsat
v and ρsat

l are the vapor and liquid densities at saturation, respectively.
From the free energy E0 one can obtain the thermodynamic pressure p0 and the
chemical potential µ0 [Lee, Fischer (2006)],

p0(ρ) = ρ
∂E0

∂ρ
−E0, µ0 =

∂E0

∂ρ
.
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3 Effects of force discretization

The gradients in the interaction force, either in potential formulation or pressure
one, must be discretized in practical applications. Two finite-difference schemes
are available in the literature. The first one is the second-order isotropic central
scheme (ICS),

∇ψ ≈ ∇
c
ψ(x) = ∑

i 6=0

wiciψ(x+ ciδ t)
c2

s δ t
, (6)

where ψ is an arbitrary function, and the discrete Laplacian operator is given by

∇
2
ψ(x)≈ ∇

2
cψ(x) = ∑

i 6=0

2wi[ψ(x+ ciδ t)−ψ(x)]
c2

s δ t2 . (7)

The force F with the ICS is denoted by Fics, and the corresponding forcing term is
denoted by F ics

i . The fluid velocity is also calculated using this discrete force,

ρu = ∑
i

ci fi +
δ t
2

Fics. (8)

The second force-discretization method was proposed by Lee and Fisher, which is
a mixed scheme (MS) [Lee, Fischer (2006)],

Fms
i =

1
2

[(
1− 1

τ

)
Fc

i +Fb
i

]
, (9)

where the subscripts c and b denote the second-order central-difference and biased-
difference, respectively. Fc

i and Fb
i in potential form are defined by

Fc
i =

1
ρc2

s

[
∇

c
i ρc2

s −ρ∇
c
i µ−u · (∇c

ρc2
s −ρ∇

c
µ)
]

f eq
i , (10a)

Fb
i =

1
ρc2

s

[
∇

b
i ρc2

s −ρ∇
b
i µ−u · (∇b

ρc2
s −ρ∇

b
µ)
]

f eq
i , (10b)

where the directional derivatives ∇c
i and ∇b

i are defined by

∇
c
i ψ(x) =

ψ(x+ ciδ t)−ψ(x− ciδ t)
2δ t

, (11a)

∇
b
i ψ(x) =

−ψ(x+2ciδ t)+4ψ(x+ ciδ t)−3ψ(x)
2δ t

. (11b)
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Expressions in pressure form can also be calculated similarly. It should be noted
that the homogenous derivative ∇cψ in above equations is the same as the isotropic
central scheme, and ∇b is defined as

∇
b
ψ(x) = ∑

i 6=0

wici[−ψ(x+2ciδ t)+4ψ(x+ ciδ t)−3ψ(x)]
2c2

s δ t

= −∑
i6=0

wiciψ(x+2ciδ t)
2c2

s δ t
+2 ∑

i 6=0

wiciψ(x+ ciδ t)
c2

s δ t
. (12)

Equation (12) indicates that the biased scheme is actually a combination of two
isotropic central schemes with the nearest and second nearest neighboring nodes
as the stencils. It is also noted that the velocity in the Lee-Fischer model is still
defined by Eq. (8) where only the isotropic central scheme is involved.

In the continuum limit, Fms
i is identical to F ics

i . However, they are different at
discrete level due to numerical errors. It can be shown that the LBE with the mixed
scheme does not conserve the total mass. For instance, for the D2Q9 LBE model it
can be verified that

∑
i

Fms
i =

−3c2
s δ t3

8
[
(c2

s +u2
x)∂

4
x ρ +(c2

s +u2
y)∂

4
y ρ +4uxuy(∂ 3

x ∂yρ +∂x∂
3
y ρ)

+2(c2
s +u2

x +u2
y)∂

2
x ∂

2
y ρ
]
+

3ρδ t3

8
[
(c2

s +u2
x)∂

4
x µ +(c2

s +u2
y)∂

4
y µ

+4uxuy(∂ 3
x ∂yµ +∂x∂

3
y µ)+2(c2

s +u2
x +u2

y)∂
2
x ∂

2
y µ
]
+O(δ t4). (13)

Furthermore, it can be shown that ∑i ciFms
i contains some terms like uu ·∇∇2ρ ,

which means that Fms
i is non-Galilean invariant. This phenomenon is shown in

Fig. 1 where the potential form is used to represent the force. Initially, a circular
droplet with density 1.0 and radius 20 is put at the center of a Lx×Ly = 128×127
channel, whose walls move with a constant velocity along the x direction. The rest
part of the channel is filled with the vapor with density 0.2. The system is set to
be rest at first, and then the channel walls start to move with a constant velocity
uw = (ux, uy) = (0.01, 0.0). Periodic boundary conditions are employed at the
inlet and outlet, and the half-way bounce back scheme [Ladd (1994)] is applied
to the moving walls. It is observed that the drop remains a circular shape when
the ICS is used, while large deformation is observed when the mixed scheme is
employed. Similar phenomena are also observed when the force is expressed in
pressure form.
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Figure 1: Evolution of a droplet in a moving channel (Force in potential form).
Top: Mixed-scheme; Bottom: Isotropic-central-scheme.

3.1 Spurious currents

In LBE the interface between different phases usually takes several lattice grids,
and therefore these two-phase LBE models can be viewed as certain diffuse-interface
method. Consequently, LBE also shares the common shortcoming of diffuse-
interface method that spurious currents will appear near an interface at equilibrium,
which is described as “a small amplitude velocity field due to a slight unbalance be-
tween stresses in the interfacial region ” [Lafaurie, Nardone, Scardovelli, Zaleski,
and Zanetti (1994)]. These currents can lead to unphysical phenomena and numer-
ical instability.

Many efforts have been devoted to reducing or eliminating spurious current and
identifying its origin [Nourgaliev, Dinh, and Sehgal (2002); Lishchuk, Care, and
Halliday (2003); Cristea and Sofonea (2003); Shan (2006); Seta and Okui (2007);
Sbragaglia, Benzi, Biferale, Succi, Sugiyama, and Toschi (2007); Pooley and Fur-
tado (2008); Tiribocchi, Stella, Gonnella, Lamura (2009); Wagner (2003); Lee,
Fischer (2006)]. Nourgaliev et al. [Nourgaliev, Dinh, and Sehgal (2002)] related
the origin of the spurious current to the local violation of the momentum conser-
vation, and suggested to use of a "multifractional stepping" procedure for the ad-
vection operator together with an implicit trapezoidal discretization of the collision
operator to remove it. Similarly, Cristea and Sofonea [Cristea and Sofonea (2003)]
also attributed the spurious current to the discretization of the advection operator,
and proposed a correction force term which is helpful to control the parasitic cur-
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rent. By generalizing the usual lattice representations, Tiribocchi et al. [Tiribocchi,
Stella, Gonnella, Lamura (2009)] used another finite-difference scheme to reduce
the spurious currents. Shan [Shan (2006)] pointed out that spurious currents are
caused by the insufficient isotropy of the discrete gradient operator in the interac-
tion force, and argued that a discrete gradient operator with higher isotropy can
effectively reduce the magnitude of the parasitic current. Later, Sbragaglia et al.
[Sbragaglia, Benzi, Biferale, Succi, Sugiyama, and Toschi (2007)] extended the
gradient operator proposed by Shan to further reduce spurious currents. Recently,
Seta and Okui [Seta and Okui (2007)] suggested using an accurate forth-order form
to calculate gradients in the pressure tensor so that the intensity of spurious current
could decrease. Other than an accurate gradient operator, Pooley and Furtado [Poo-
ley and Furtado (2008)] proposed to use a revised equilibrium distribution function
to reduce spurious currents. Alternatively, Wagner [Wagner (2003)] attributed the
origin of parasitic current to the different discretizations of the driving force for
the order parameter and momentum equations, and argued that the use of potential
form could remove the parasitic current. However, the numerical stability of this
method was unsatisfied. Lee and Fisher [Lee, Fischer (2006)] found that the spu-
rious currents can be effectively eliminated using the potential form of interaction
force together with the mixed difference scheme.

Although all of the above methods can reduce the parasitic currents, these contro-
versies also indicate that the origin of the spurious currents in LBE is not clear
yet. In order to understand this unphysical phenomenon more clearly, we con-
sider a two-dimensional flat interface parallel to the x direction where the density
changes only in the y direction. For this problem, it is reasonable to assume that
u = (ux,uy) = (0,v), F = (Fx,Fy) = (0,F), and ∂xφ = 0 for any fluid variable φ .
We will apply the D2Q9 LBE model as an example to this problem.

We now try to find the analytical solution of the LBE for this flat interface problem
without invoking the Chapman-Enskog expansion. In this case the LBE (1) can be
written as

fi(x+ ciδ t) = f ′i (x)≡ fi(x)− 1
τ

[
fi(x)− f (eq)

i (x)
]
+Fi(x). (14)

Particularly, we have fi = f ′i for i = 0, 1, and 3, from which we can obtain that

f013 ≡ f0 + f1 + f3 =
2
3

(
1− v2

2c2
s

)[
ρ−

(
τ− 1

2

)
vF
c2

s

]
.

With this result and the definitions of ρ and v, i.e.,

f256 + f478 = ρ− f013, ( f256− f478) = ρv− 1
2

F,
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where f256 ≡ f2 + f5 + f6 and f478 ≡ f4 + f7 + f8, we can obtain that

f256 =
ρ

6
+

ρv2

2
+

ρv
2
− F

4
+
(

τ− 1
2

)[
1− 3v2

2

]
Fv, (15a)

f478 =
ρ

6
+

ρv2

2
− ρv

2
+

F
4

+
(

τ− 1
2

)[
1− 3v2

2

]
Fv. (15b)

Multiplying 1 and ciy on both sides of Eq. (14) and taking summation over i,
respectively, we can obtain mass and momentum conservative equations in discrete
form as,

f256( j +1)+ f478( j−1)+ f013( j) = ρ j, (16a)

f256( j +1)− f478( j−1) = ρv j +
δ

2
Fj, (16b)

where j is the label of the grid number along the y direction. With the expressions
of f013, f256, and f478, we can obtain from Eq. (16) that

−
ρ j+1−2ρ j +ρ j−1

3
+

Fj+1−Fj−1

2
= R1(v j), (17a)

−
ρ j+1−ρ j−1

3
+

Fj+1 +2Fj +Fj−1

2
= R2(v j), (17b)

where R1 and R2 are two collective terms of v,

R1(v j) = (ρ j+1v j+1−ρ j−1v j−1)+(4τ−2)(Fj+1v j+1−2Fjv j +Fj−1v j−1)+O(v3),
(18a)

R2(v j) = (ρ j+1v j+1−2ρ jv j +ρ j−1v j−1)+(ρ j+1v2
j+1−ρ j−1v2

j−1)

+(2τ−1)(Fj+1v j+1−Fj−1v j−1)+O(v3). (18b)

It is obvious that R1 = R2 = 0 if v = 0, and therefore a “necessary condition" for
vanishing spurious current is,

Fj+1−Fj−1

2
=

ρ j+1−2ρ j +ρ j−1

3
, (19a)

Fj+1 +2Fj +Fj−1

4
=

c2
s [ρ j+1−ρ j−1]

2
. (19b)
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Figure 2: Velocity profiles of standard two-phase LBE model for the flat interface
at steady state. (a)Nx×Ny=4×100; (b)Nx×Ny=5×101;

These two equations can be viewed as numerical schemes for the following equa-
tions,

∂y(F− c2
s ∂yρ) = 0, F− c2

s ∂yρ = 0, (20)

which are consistent with each other.

The terms on the left and right hand side of Eqs. (19a) and (19b) are linear combi-
nations of the interaction force and fluid density, respectively. For non-ideal gases,
it is well understood that the pressure given by the equation of state is usually
nonlinear function of the density that varies nonlinearly in the interfacial region,
and so is the interaction force F . Furthermore, because the gradients in the force
given by Eq. (5) should be evaluated numerically point by point in the LBE (1),
the terms on the left hand side of Eqs. (19a) and (19b) may involve some terms
like ρ j+2 and/or ρ j−2, which are absent on the right hand side. These implies that
in general the necessary condition (19) cannot be fulfilled exactly no matter what
formulations of the force (either pressure form or potential form) are adopted and
what numerical schemes for the gradients are used, and the small force unbalance
due to the numerical errors will produce spurious currents inevitably. Therefore,
it can be concluded that spurious current is an intrinsic nature of LBE due to the
nonlinear interaction force. Although the above arguments are made based on the
LBE model derived from an extended Boltzmann equation, they also apply to other
types of LBE models in that their evolution equations can also be reformulated as
Eq. (1) with different force formulations.
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3.2 Checkerboard effects

Checkerboard effects were first found in the lattice gas automata (LGA) method for
single-phase flows [Zanetti (1989)]. Such effects are due to the finite symmetry
of the discrete velocity set and the simple collision and streaming dynamics on the
lattice. Checkerboard effects are also found in LBE models [Ladd (1994); Qian
(1997); Kandhai, Koponen, Hoekstra, Kataja, Timonen, and Sloot (1999); d’
Humiéres, Bouzidi, and Bouzidi (2001)], which are excited by solid boundaries in
single-phase flows [Ladd (1994)].

For two-phase LBE models, the phase interface may act like a boundary and then
excite the checkerboard invariance. It is known that checkerboard invariants depend
on the parity of the number of grids with periodic boundary conditions (Kandhai,
Koponen, Hoekstra, Kataja, Timonen, and Sloot , 1999). When the grid number
in each direction is even (even lattice), a checkerboard invariant may be decoupled
into two sub-populations; On the other hand, the sub-populations will mix on the
boundaries if the grid numbers in all directions are odd (odd lattice).

An example is shown in Fig. 2, in which a liquid slab with density ρl = 1.0 and
thickness 50 (in lattice unit) is put at the center of the lattice with Nx×Ny nodes,
where x and y are set to be the directions parallel and normal to the interface,
respectively. Other parts of the lattice are filled with the gas with ρv = 0.2. The
checkerboard effect on the velocity field is clearly shown in Fig. 2(a) on the even
lattice. On the other hand, the magnitude of the velocity is much weaker on the
odd lattice, although some small oscillations also appears, which means that the
checkerboard effects are effectively removed.

In order to eliminate the checkerboard effects in two-phase LBE, one need to mix
the two sub-populations. Qian has proposed a fraction propagation method to re-
move staggered invariant for single-phase LBE models [Qian (1997)], which has
been extended later [Guo, Zheng, Zhao (2001)]. We will try to employ the Lax-
Wendroff (LW) scheme to control the checkerboard effects, which can be expressed
as two sub-steps [Guo, Zheng, Zhao (2001)]:

Collison: f ′i (x, t) = fi(x, t)− 1
τ ′

[
fi(x, t)− f (eq)

i (c′;x, t)
]
+δ

′
t Fi(x, t), (21)

Streaming: fi(x, t) = α0 f ′i (x, t)+α1 f ′i (x+ eiδx, t)+α−1 f ′i (x− eiδx, t), (22)

where α0 = 1−A2, α1 = A(A+1)/2, and α−1 = A(A−1)/2, with 0 < A≤ 1 being
a parameter. Clearly as A = 1 the LW-LBE reduces to the standard LBE. It should
be noted that in the LW-LBE scheme the lattice speed is defined as c′ = Aδx/δ ′t ,
so if we take δx and c′ as the length and velocity units, respectively, the time step
should be given by δ ′t = Aδx = Aδt . On the other hand, it can be shown that LW-
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Figure 3: Velocity profiles of LW-LBE model for the flat interface at steady state
(A = 0.99). Solid line: Nx×Ny=4×100; Dashed line: Nx×Ny=5×101

LBE is ν = c2
s (τ
′− 0.5)δ ′t . Therefore in order to keep the same viscosity as the

standard LBE, the relaxation time τ ′ should take τ ′ = 0.5+(τ−0.5)/A.

In Fig. 3 the velocity profiles predicted by the LW-LBE based on two lattices are
shown. It is clear that the results on the odd and even lattices are nearly the same,
meaning that checkerboard effects are effectively canceled on both grids, even with
A = 0.99.

4 Conclusions

The LBE method has been recognized as an efficient tool for studying two-phase
flows, and a variety of models have been developed based on different physical
pictures. However, there are still some fundamental problems that should be clarify
before applying such methods. In this work, we have investigated some of them.

First, we show that the discretization methods for the interaction force have signif-
icant influences on the phase behaviors of LBE, although in the continuous limit
they are identical mathematically. Particularly, it is found that the mixed scheme,
which is believed to be able to reduce the spurious currents in LBE, does not con-
serve mass and is non-Galilean invariant.

Second, a necessary condition for vanishing spurious currents in LBE is obtained,
which cannot be fulfilled at discrete level due to discrete errors generally. This
suggests that spurious current is an inherent nature of LBE.

Finally, we found that two-phase LBE models suffer from checkerboard effects,
which are excited by the interfaces. A Lax-Wendroff scheme was shown to be able
to suppress such effects effectively.
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