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A New Algorithm for the Thermo-Mechanical Coupled
Frictional Contact Problem of Polycrystalline Aggregates

Based on Plastic Slip Theory

Yun Chen1, Junzhi Cui2, Yufeng Nie1 and Yiqiang Li1

Abstract: This paper presents a new numerical algorithm for thermal-mechanical
coupled analysis of polycrystalline aggregates based on the plastic slip theory in-
side crystals and the frictional contact on their interfaces. It involves the mechanics
and heat conduction behaviors caused by both force loads and temperature chang-
ing within crystal and contact interfaces between crystals. Firstly, the constitutive
relationship inside single crystal, and the moment equations and energy equations
are derived by means of rate-dependent plastic deformation theory and the formu-
lation of elastic-plastic tangent modulus depended on temperature. Secondly, the
contact conditions with friction, including frictional heat generation and heat trans-
fer across the contact interface, are discussed. And then based on the ABAQUS
software, the subroutines to calculate thermo-mechanical behaviors of polycrys-
talline copper are coded, and a polycrystalline body composed by four grains within
16 contact interfaces is simulated under the torsion and bending loadings. The nu-
merical results show that crack propagation path are associated with loading ways
and temperature change through the contact interfaces in addition to the friction
heat generation. The displacement jumps are related to the contact pressure. The
modeling approach presented in this work can be extended to more complicated
systems with the interaction of a number of grains.

Keywords: Polycrystalline aggregates, Friction contact, Thermo-mechanical cou-
pled, Crystal slip theory.

1 Introduction

Thermo-mechanical coupled problems are often encountered in civil, mechanical
or aerospace engineering. The coupling between the mechanics and thermal behav-
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iors is twofold. On the one hand, the deformation of the structure strongly depends
on the temperature field. On the other hand, deformations induce structural heat
behaviors. So it is necessary to discuss the behaviors of polycrystalline body in the
thermo-mechanical coupled environment. The evolution of the deformation field
and the temperature field is typically accompanied with the local rearrangement of
in-homogeneities in the crystal interiors. The formulas of elastic-plastic tangent
modulus depended on temperature are derived in our previous work [Chen, Cui,
Nie, and Guan (2011)], some main results are briefly shown here to simulate the
thermal-mechanical coupled frictional contact behaviors of polycrystalline. Rela-
tive to the microcrystalline counterparts from the atomistic simulations reported in
recent literatures [Tian and Cui (2010)], the results show that local stress concen-
trations are driven by dislocation mechanisms. It is clear that slip and separation
phenomena begin to play an important role on the interfaces of crystals for the
polycrystalline materials. To the knowledge of the authors there are two methods
to simulate the crystal boundary phenomena at continuum sense. One method as-
sumes that the interfaces between the crystals are sandwich materials with certain
thickness, and the boundary regions were modeled by adding an expanded strain
perpendicular to crystal interface to internal slip deformation, this approach can be
seen in our work [Chen, Cui, Nie, and Guan (2011)]. Another approach to treat
interfaces is to construct the frictional contact algorithm on interfaces. In this paper
the interface frictional contact algorithm is discussed.

The numerical simulation for frictional contact problems of polycrystalline aggre-
gates is still a challenging task. Earlier works have been done to deal with the
contact problems in friction and large deformations, those can be found in [Wrig-
gers and Miehe (1994);Johansson and Klarbring (1993);Laursen (2003);Song and
Yovanovich (1987)]. The large deformation based on the node to-segment algo-
rithm of the contact interface between two bodies was adopted by Wriggers [Wrig-
gers and Miehe (1994)], Lagrange multiplier technique was enforced on contact
constraints [Nour-Omid and Wriggers (1986)],pentalty methods is given in [Wrig-
gers and Simo (1985)] and the contact smooth techniques for saving computational
time is in the works of Belyschko and Neal[Belytschko and Neal (1991)]. In recent
years the simulation of contact problems is still of intensive interest. Polycrystalline
systems involving contact mechanics between grains were solved by Wei[Wei and
Anand (2004)], the mortar approach for dynamic contact problems were found
in [Hueber and Wohlmuth (2009)], and the hot metal forming [Adam and Pon-
thot (2002)], the contact friction model of large plastic deformation in powder
compaction process [Khoei, Biabanaki, Vafa, Yadegaran, and Keshavarz (2009)].
Further, the contact algorithm was developed by Temizer[Temizer and Wriggers
(2008)], they treated a contact homogenization technique with deformable elastic
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solid and rigid surface. In addition, the extended finite element technique was
applied to modeling contact problems by Khoei[Khoei, Biabanaki, and Anahid
(2009)]. The challenges in solving the problems mentioned above are following:
the contact constraints are strongly nonlinear and not smooth, the searching for
contact need to be done efficiently, and the cost for numerical simulations is expen-
sive. These issues are treated very carefully in this paper, the finite element meshes
are finer on the contact surface than other regions, and the parallel computing is
adopted on the cluster service to decrease computing time.

In this paper we mainly focus on a new computational algorithm for simulating the
thermo-mechanical coupled problem with friction contact condition on the inter-
face and thermo-elastic-plastic deformation in the crystal interiors at finite strains.
The thermo-mechanical coupled governing equations of crystal, based on rate-
dependent slip deformation theory, and thermodynamics law are given in section 2.
In section 3 the coupled thermo-mechanical friction contact algorithm is described
without physical softening, which is associated with large deformation and rela-
tive sliding. The numerical results for the thermo-mechanical coupled behavior of
the polycrystalline at bending and torsion are shown in section 4. Finally, some
concluding remarks are given.

2 Thermal-elasto-plasticity constitutive equations of single crystal

For the convenience of descriptions below, here the basic symbols are defined:
u displacement t time
ρ0 mass density S the seccond Piola-Kirchhoff stress
f body force density p the first Piola-Kirchhoff stress
k thermal conductivity coefficient r heat source density
γ shear strain c specific heat
θ absolute temperature σ cauchy-stress
∇ gradient operator Div divergence operator

2.1 Foundation of crystal plasticity

The multiplicative decomposition of deformation gradient F is expressed as

F = FeF p.

Where, Fe denotes lattice distortion and the rigid rotation that produced by the elas-
tic deformation gradient, F p denotes plastic shear of the material to an intermediate
reference configuration in which lattice orientation and spacing are the same as in
the original reference configuration. Each slip system is specified by a unit normal
n(α) to the slip plane, and a unit vector s(α) denoting the slip direction.
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Let L denotes velocity gradient, L = ḞF−1 = D +W , the symmetric and skew
parts of the velocity gradient are respectively denoted by deformation rate tensor
D and spin rate tensor W , and their plastic parts are respectively written as Dp

and W p, have Dp = ∑
α∈A

P(α)
γ̇(α),W p = ∑

α∈A
W (α)

γ̇(α), and corresponding elastic

parts are denoted by De,W e respectively . Where, P(α) = 1
2 [s(α)n(α) + n(α)s(α)],

W (α) = 1
2 [s(α)n(α)− n(α)s(α)], and we denote the set of active systems by A =

{α |α = 1, · · · ,m≤ n}.

2.2 Thermo-mechanical coupled equations

Refer to [Clayton (2005);Anand and Gurtin (2003)], the free energy in the current
configuration is given by,

ψ =
1
2

Ee ·C τ
e Ee−C τ

e Eea0(θ −θ0)+
1
2

λ µ(θ ,ζ )ζ 2 + c(θ −θ0)− cθ ln(
θ

θ0
),

where, C τ
e is the elastic-plastic tangent modulus, Ee denotes elasticity Cauchy

strain. a0 is the thermal expansion tensor,θ0 is the initial temperature, λ is a con-
stant, µ(θ ,ζ ) is the equivalent shear modulus , ζ is an internal variable expression
related crystal defect microscopic elastic storage energy. The term 1

2 Ee ·C τ
e Ee−

C τ
e Eea0(θ − θ0) is the strain energy, this term 1

2 λ µ(θ ,ζ )ζ 2 is the plastic energy
and the term c(θ −θ0)− cθ ln( θ

θ0
) is the thermal energy.

And the second Piola-Kirchoff stress is given by S = C τ
e [Ee−a0(θ−θ0)], the term

C τ
e a0(θ −θ0) reflects temperature induced thermal effects.

The momentum conservation equation in reference configuration is given by

Div p+ f = ρ0
∂ 2u
∂ t2 . (1)

Here, there is a certain relation between the first Piola-Kirchoff stress and the sec-
ond Piola-Kirchoff stress, p = FS . The equation of heat in reference configuration
is derived from the first thermodynamics, to express that equation as, see [Rosakis,
Rosakis, Ravichandran, and Hodowany (2000);Adam and Ponthot (2005)] for more
details.

cθ̇ = κ(SDp)+Div(k∇ ·θ)+ r. (2)

As the heat produced by elastic deformation is much smaller than that by the plas-
tic deformation, so part from elastic deformation. The term κ(SDp) only describes
non-elastic deformation energy, and the term k∇ ·θ represents heat flux, κ the plas-
tic power into heat ratio, located among 0.8 and 1.0 [Belytschko, Liu, and Moran
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(2000)]. So the thermal-mechanical coupled equations can be written asDivF {C τ
e [Ee−a0(θ −θ0)]}+ f = ρ0

∂ 2u
∂ t2 ,

cθ̇ = κ

{
[C τ

e Ee−C τ
e a0(θ −θ0)] ∑

α∈A
P(α)γ̇(α)

}
+Div(k∇ ·θ)+ r.

(3)

As the elastic-plastic tangent modulus needs to be updated at each increment step,
here, next we give the derived process of elastic-plastic tangent modulus formula.

2.3 Constitutive relation

Generally think that the elastic properties of the crystal is not affected by the slip
deformation, taking into account the impact of thermal stress, the elastic constitu-
tive relation in the intermediate configuration is written as:

L e
v σ = C τ

e : (De−a0θ̇). (4)

Where, L e
v σ is Jaumann rate of the Cauchy stress tensor which is the co-rotational

stress rate in terms of the coordinate system that rotates with the lattice. L e
v σ is

determined by

L e
v σ = σ̇ −W e

σ +σW e. (5)

The co-rotational stress rate on the coordinate system that rotates with the material
is given as

Lvσ = σ̇ −Wσ +σW. (6)

Combining Eq. 4 and Eq. 6, rewrite the Eq. 5

L e
v σ = Lvσ + ∑

α∈A
B(α)

γ̇
(α). (7)

In the Eq. 7, let

B(α) = W (α)
σ −σW (α). (8)

According to the Eq. 4-Eq. 8, so get

Lvσ = C τ
e : De− (C τ

e : a0θ̇)− ∑
α∈A

B(α)
γ̇

(α). (9)

The Eq. 9 is coupled temperature, shear rate and stress rate, we compute the shear
rate as expected now and then we update the elastic-plastic tangent modulus. The
constitutive formulation in the present report adopts the rate-dependent hardening
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model. The shear rate γ̇(α)of the α slip system in a rate-dependent crystalline solid
is determined by the corresponding resolved shear stress τ(α), it is usually presented
by a power function,

γ̇
(α) = ȧ(α)[

τ(α)

g(α) ]

[∣∣∣∣∣τ(α)

g(α)

∣∣∣∣∣
] 1

m−1

, (10)

where the constant ȧ(α) is the reference strain rate on slip system α , g(α)is a variable
which describes the current strength of that system, m is the rate sensitivity expo-
nent. In the limit as m→ 0, this power law approaches that of a rate-independent
material. The strain hardening is characterized by the evolution of the strengths
g(α) through the incremental relation:

ġ(α) = ∑
β∈A

hαβ

∣∣∣γ̇(β )
∣∣∣, (11)

where, hαβ are the slip hardening moduli. We employ a linear interpolation within∆t,
the increment shear strain ∆γ(α) in slip system α within the time increment ∆t,

∆γ
(α) = ∆t

[
(1−Θ)γ̇(α)

t +Θγ̇
(α)
t+∆t

]
. (12)

The parameter Θ belongs to (0,1), it is chosen as 0.5 . The increment of shear strain
∆γ(α) in the slip systems are uniquely determined by the following linear algebraic
equation,

∑
β∈A

(δαβ +
Θ∆t γ̇(α)

t

mτ(α) [P(α) : C τ
e +B(α)] : P(β ) +

Θ∆t γ̇(α)
t

mg(α) hαβ sgn(τ(β )))∆γ
(β )

= (γ̇(α)
t +

Θ∆t γ̇(α)
t

mτ(α)

{
[P(α) : C τ

e +B(α)] : D−P(α) : (C τ
e : a0θ̇)

}
)∆t

(13)

Let Nαβ be

Nαβ = δαβ +
Θ∆t γ̇(α)

t

mτ(α) ∑
β∈A

[P(α) : C τ
e +B(α)] : P(β )

+
Θ∆t γ̇(α)

t

mg(α) ∑
β∈A

hαβ sgn(τ(β )).

(14)
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Let ∆γ(α) substitute into Eq. 9 and by comparing the left and right sides of the
equation, the expression of update elastic-plastic tangent modulus C τ p

e are given
by

C τ p
e = C τ

e − ∑
α∈A

∑
β∈A

(C τ
e : P(α) +B(α))[Nαβ ]−1 Θ∆t γ̇(β )

t

mτ(α) [P(β ) : C τ
e +B(β )]. (15)

3 Thermo-mechanical coupled friction contact formulation on the interface

We limit the discussion to a two body system without loss of generality for defining
the thermo-mechanical friction contact problems. The reference configurations of
two bodies are denoted by the open sets Ωm and Ωs as shown in Fig. 1 and Ωm ⊂
Rd ,Ωs ⊂ Rd . Where d is the number of spatial dimensions. The superscript m
stands for the master body s for the slave body.

 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

0( )

( [ : ] : sgn( ))

( [ : ] : : ( : ) )

t t
e

t
t e e

t t
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Let N  be  

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
[ : ] : sgn( )t t

e

t t
N P B P h

m mg
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Figure 1: Basic contact geometry.

The bodies undergo motions are denoted byϕ i
t , i ∈ (s,m), which cause them to con-

tact during some portion of the time interval[0, T ]. These motions can be expressed
via the following mappings:

ϕ
(i)
t : xi = ϕ

i(X i, t), i ∈ (s,m), t ∈ [0,T ]. (16)

Where, X is a point of reference configuration, at any timet ∈ [0,T ]. Assume two
bodies come into contact and view mechanical contact as a penetration of the cur-
rent boundaries ϕ

(i)
t (Γi

c), here, Γi
c ⊂ ∂Ωi are possible contact surfaces of the bod-

ies Ωi. Denote the current slave surface ϕ
(s)
t (Γs

c) penetrates into the current mas-
ter surface ϕ

(m)
t (Γm

c ) and we take the latter as target. Define a smooth mapping
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Rt(X s) : Γs
c → Γm

c , X s ∈ Γs
c. The reference point X s on the boundary Γs

c after
deformation is projected onto the current master boundary ϕ

(m)
t (Rt(X s, t), t) along

the current normal ns. The relative displacement after local deformation from the
point X s on the contact surface of slave surface to the point on the contact surface
of target may be defined as

gn := [ϕs
t (X

s, t)−ϕ
(m)
t (Rt(X s, t), t)] ·n on Γc = Γ

m
c ∩Γ

s
c, (17)

here, gn is the projection of the gap of two bodies on the normal direction, and
n := ns is the normal vector of the current configuration. The contact conditions
has the following expressions

gn ≤ 0, pn ≥ 0, pngn = 0, (18)

where pn is the normal contact stress and may be defined as the form pn = εngn ,
εnis the normal stiffness of the material. The total contact stress pcis defined as

pc :=−ps
cns = pm

c nm on Γ
s
c, (19)

and its tangential part

pτ := pc− pn. (20)

We split the tangential part of the gap gτ into elastic ge
τ and plastic part gp

τ . Define
the temperature of interface θc := max{θ m

c ,θ s
c} and initial temperature is θ0. Next

we introduce the free energy of the interface and it has the following form [Laursen
(1999)],

ψ̂c(gn,ge
τ ,θc) =

{
IR−(gn) or

1
2 εn < gn>

2

}
+

ετ

2
< ge

τ>
2− cc

2θ0
(θc−θ0)

2, (21)

with IR−(gn) =

{
0 gn ≤ 0
+∞ gn > 0

, < ·>= max(0, ·),

where, cc is heat capacity of the contact interface and ετ is think as physical tangen-
tial stiffness, IR−(gn) indicates that infinite stiffness of the interface in the normal
direction. The conditions for the heat flux qi

c := qini across the possible contact
interface and may be written as:

qm
c =

km(pn)ks(pn)
km(pn)+ ks(pn)

(θ m
c −θ

s
c )−

km(pn)
km(pn)+ ks(pn)

Dmech,c,

qs
c =

km(pn)ks(pn)
km(pn)+ ks(pn)

(θ s
c −θ

m
c )− ks(pn)

km(pn)+ ks(pn)
Dmech,c,

(22)
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where ki(pn) denotes the thermal conduction coefficient dependent on the con-
tact stress [Wriggers and Miehe (1994)], Dmech,cis the contact mechanical dis-
sipation as the plastic slip deformation and it can be written as Dmech,c = pτ ġp

τ ,
pτ = ετge

τ . We adopt rate-dependent elastic-plastic model with the elastic domain
Et :=

{
pτ ∈ Rd−1 | φc(pτ)≤ 0

}
in the space of the contact tangential stress. The

yield functions corresponding to each surface are taken as

φc = ‖pτ‖− pnµ0 ≤ 0, (23)

where µ0 is interface frictional coefficient. Fix pn and use the maximum dissipation
principle, (pτ − p̃τ) · ġp

τ ≥ 0, ∀ p̃τ ∈ Et , so the tangential plastic slip may be given
as ġp

τ = γc
pτ

‖pτ‖ , γc is the plastic parameter. During plastic deformation, the active
mechanism must satisfy the consistency condition

γc ≥ 0, γcφc = 0, (24)

So the γc is uniquely determined by the Eq. 24.

4 Numerical simulations

The FCC polycrystalline body of copper shown in Fig. 2 is simulated, the size
is 162nm× 131nm× 110nm. It consists in 4 parts with 16 contact pairs. The
body contains 69320 elements and 18689 nodes, the element C3D4T is taken in
part 1, 2 and 3 and element C3D8T is adopted in part 4. Elastic constants are
taken as: C11 = 168.4GPa, C12 = 121.4GPa, C44 = 75.4GPa, at initial tempera-
ture 0°C,density is 8960kg/m3, thermal conductivity is1.439W/m · °C, linear ex-
pansion coefficient is 1.7× 10−5/°C, specific thermal capacity is 390J/kg · °C,
the constants of the pressure dependent contact conductivity relations are given
as 0.05W/N · °C. The viscous slip parameters are calculated from fitting test curve
[Huang (1991)]. It is assumed that within each single crystal there is only one set of
slip systems{1 1 1} < 1 1 0 >. In this system, the initial slip hardening modulus
h0 = 0.5415 GPa, the critical shear stress τ0 = 0.0608GPa, the stress in the first
stage τs = 0.1095GPa, coefficient of rate-sensitive hardening factor ȧ(α) is taken as
0.001.

4.1 Bending conditions

Boundary conditions at bending state: from Fig. 2, the up surface XOZ and the
bottom surface XOZ are subjected to a bending angle 5.7°, on the right surface
YOZ the heat flux is 4× 1014J/s ·m2 and temperature on the left surface YOZ
is subjected to from 0°C to 20°C, linear increasing with time. Displacements on
the near surface XOY equal to zeros, the other surface XOY is free. The initial
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Figure 2: Polycrystalline aggregates and each single crystal.

temperature of finite nodes is 0°C. The fictional coefficients on all contact surfaces
are assumed 0.2. Initial meshes and deformed meshes for bending simulation are
shown in Fig. 3 (a, b) respectively.

   

(a)                                   (b) 

Fig. 3. (a) Initial meshes,  (b) deformed meshes. 
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910J  ) with time ( s ) of the polycrystalline body is shown in 

Fig .4 (a), external work is shown in Fig. 4 (b), potential energy is shown in Fig. 4 (c) and strain 

energy in Fig .4 (d) . 

 

 (a)                                   (b) 

 

(c)                            (d) 

Fig. 4. (a) The frictional dissipation, (b) external work, (c) potential energy, (d) strain energy. 

Figure 3: (a) Initial meshes, (b) deformed meshes.

The frictional dissipation(J × 10−9) with time (s) of the polycrystalline body is
shown in Fig. 4 (a), external work is shown in Fig. 4 (b), potential energy is shown
in Fig. 4 (c) and strain energy in Fig. 4 (d) .

In the case of external forces do work, potential energy and strain energy have
changed that causes the plastic dissipation occurred inside the crystal and the sepa-
ration occurred on the contact interface or a small amount of penetration, the inter-
face sliding making the friction dissipation increase with time.

As all surfaces of the inner part number 4 of the crystals are contact surfaces, here
remove crystal 3. Contact pressure contour at different times are shown Fig. 5 (a),
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Fig. 3. (a) Initial meshes,  (b) deformed meshes. 
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(c)                            (d) 

Fig. 4. (a) The frictional dissipation, (b) external work, (c) potential energy, (d) strain energy. 
Figure 4: (a) The frictional dissipation, (b) external work, (c) potential energy, (d)
strain energy.

(b) and (c), respectively. The displacement jump contour of the contact at different
times are shown Fig. 6 (a), (b) and (c).

From contact pressure contour, the contact pressure changes with time, combines
with displacement jump contour, it’s known that the contact pressure is larger when
the displacement jump is smaller. When the contact pressure is limit to zero, the
displacement jump reaches to its max value. Here we are concern on the areas of
max displacement jump (m× 10−6), next we plot the crack as a function of time
in Fig. 7 (a) and difference in temperature (°C) of master node and slave node
between crystal 3 and crystal 2 in Fig. 7 (b).

There exists a temperature change among bodies through the contact interfaces in
addition to the friction heat generation. Due to the change of contact pressure, the
heat flux also change with time and results in different temperature on both sides of
the contact zone in Fig. 7 (b). If we only conserve crystal 4 and remove other parts
of the crystals, the relation of the contact pressure (Gpa) and heat flux (J× 10−9)
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In the case of external forces do work, potential energy and strain energy have changed that 

causes the plastic dissipation occurred inside the crystal and the separation occurred on the contact 

interface or a small amount of penetration, the interface sliding making the friction dissipation 

increase with time. 

As all surfaces of the inner part number 4 of the crystals are contact surfaces, here remove 

crystal 3. Contact pressure contour at different times are shown Fig .5 (a), (b) and (c), respectively. 

The displacement jump contour of the contact at different times are shown Fig .6 (a), (b) and (c).  
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Fig. 6. Displacement jump contour at (a)
104.5 10 s ,  (b)

85 10 s ,  (c)
61 10 s . 
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610m  ), next we plot 

the crack as a function of time in Fig. 7 (a) and difference in temperature (
0C ) of master node and 

slave node between crystal 3 and crystal 2 in Fig. 7 (b). 

Figure 5: Contact pressure contour at time (a) 4.5× 10−10s, (b) 5× 10−8s, (c)
1×10−6s.
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displacement jump contour, it’s known that the contact pressure is larger when the displacement 

jump is smaller. When the contact pressure is limit to zero, the displacement jump reaches to its 

max value. Here we are concern on the areas of max displacement jump (
610m  ), next we plot 

the crack as a function of time in Fig. 7 (a) and difference in temperature (
0C ) of master node and 

slave node between crystal 3 and crystal 2 in Fig. 7 (b). 

Figure 6: Displacement jump contour at (a) 4.5× 10−10s, (b) 5× 10−8s, (c) 1×
10−6s.

 

(a)                            (b) 

Fig. 7. (a) Displacement jump with time (b) Difference in temperature with time 

 

There exists a temperature change among bodies through the contact interfaces in addition to 

the friction heat generation. Due to the change of contact pressure, the heat flux also change with 

time and results in different temperature on both sides of the contact zone in Fig. 7 (b). If we only 

conserve crystal 4 and remove other parts of the crystals, the relation of the contact pressure 

(Gpa ) and heat flux (
910J  ) can be more clear in the heat flux contour of crystal 4 in Fig. 8. 

 

(a)                            (b) 

Fig . 8. (a) Heat flux contour, (b) Contact pressure with time in the band zones near 

magnitude HFL and zones more far from the magnitude HFL. 

 

As crystal 4 is surrounded from Fig .2 view and near middle band zones of that contact with 

three crystals at the initial time, if the zones separate from one crystal and that may be contact 

with one of the others. The evolution of contact pressure with respect to time is given in Fig. 8 (b). 

We see that it is very smooth for low HFL and erratic for high HFL. The effect of continuing slip 

deformation making the frictional dissipation increasing with the time, at the end time the heat 

flux in the band zones are larger than other regions, it can be seen from heat flux contour in Fig. 8 

(a). Heat flux increases with contact pressure increasing on the contact interfaces compare the 

Figure 7: (a) Displacement jump with time, (b) Difference in temperature with
time.
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can be more clear in the heat flux contour of crystal 4 in Fig. 8.
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Fig. 7. (a) Displacement jump with time (b) Difference in temperature with time 
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conserve crystal 4 and remove other parts of the crystals, the relation of the contact pressure 

(Gpa ) and heat flux (
910J  ) can be more clear in the heat flux contour of crystal 4 in Fig. 8. 

 

(a)                            (b) 

Fig . 8. (a) Heat flux contour, (b) Contact pressure with time in the band zones near 

magnitude HFL and zones more far from the magnitude HFL. 

 

As crystal 4 is surrounded from Fig .2 view and near middle band zones of that contact with 

three crystals at the initial time, if the zones separate from one crystal and that may be contact 

with one of the others. The evolution of contact pressure with respect to time is given in Fig. 8 (b). 

We see that it is very smooth for low HFL and erratic for high HFL. The effect of continuing slip 

deformation making the frictional dissipation increasing with the time, at the end time the heat 
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(a). Heat flux increases with contact pressure increasing on the contact interfaces compare the 

Figure 8: (a) Heat flux contour, (b) Contact pressure with time in the band zones
near magnitude HFL and zones more far from the magnitude HFL.

As crystal 4 is surrounded from Fig. 2 view and near middle band zones of that
contact with three crystals at the initial time, if the zones separate from one crystal
and that may be contact with one of the others. The evolution of contact pressure
with respect to time is given in Fig. 8 (b). We see that it is very smooth for low
HFL and erratic for high HFL. The effect of continuing slip deformation making
the frictional dissipation increasing with the time, at the end time the heat flux in
the band zones are larger than other regions, it can be seen from heat flux contour
in Fig. 8 (a). Heat flux increases with contact pressure increasing on the contact
interfaces compare the results of two different zones near from the magnitude heat
flux in Fig. 8 (b).

4.2 Torsion conditions

Boundary conditions at torsion state: the up surface XOZ and the bottom surface
XOZ are subjected to torsion angle 2.9°, and other conditions are the same to the
bending loading.

The deformed meshes are shown in Fig. 9 (a), and at the max crack between crystal
2 and crystal 3, plot the torsion moment (N ·m×10−9) with time (s) on the contact
interface crystal 3 and it is show in Fig. 9 (b) , the relation of the torsion moment
and displacement jump (m× 10−6) is shown in Fig. 9 (c) and the displacement
jump with time is given in Fig. 9 (d).

At the contact interface between crystal 2 and crystal 3, the displace jumps increase
with time in Fig. 9 (d) but torsion moment decreases at first then increases with
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results of two different zones near from the magnitude heat flux in Fig. 8 (b). 

 

Torsion conditions 

Boundary conditions at torsion state: the up surface XOZ and the bottom surface XOZ are 

subjected to torsion angle
02.9 , and other conditions are the same to the bending loading. 

The deformed meshes are shown in Fig. 9 (a), and at the max crack between crystal 2 and 

crystal 3, plot the torsion moment (
910N m   ) with time ( s ) on the contact interface crystal 3 

and it is show in Fig.9 (b) , the relation of the torsion moment and displacement jump(
610m  ) 

is shown in Fig.9 (c) and the displacement jump with time is given in Fig.9 (d). 

      

(a)                             (b) 

  

(c)                            (d) 

Fig. 9. (a) Deformed meshes , (b) torsion moment on the interface of crystal 3,(c) the relation 

of the torsion moment and displacement jump, (d) the displacement jump with time 

 

At the contact interface between crystal 2 and crystal 3, the displace jumps increase with time in 

Fig. 9.(d) but torsion moment decreases at first then increases with time, as torsion moment works 

there is no crack emerges but has a very small amount of penetration. When there exits penetration, 

Figure 9: (a) Deformed meshes , (b) torsion moment on the interface of crystal 3,(c)
the relation of the torsion moment and displacement jump, (d) the displacement
jump with time

time, as torsion moment works there is no crack emerges but has a very small
amount of penetration. When there exits penetration, the torsion moment of slave
interface decreases. But when the displacement jumps appear and increase, torsion
moment always increases with displacement jumps increasing.

The frictional dissipation(J × 10−9) with time (s) of the polycrystalline body is
shown in Fig. 10 (a), external work is shown in Fig. 10 (b), potential energy is
shown in Fig. 10 (c) and strain energy in Fig. 10 (d) .

Similar to bending state, in the case of external work acting, frictional energy in-
creases with time, potential energy and strain energy are change with time.

Remove crystal 3, contact pressure contour at different times are shown Fig. 11 (a),
(b) and (c), respectively. The displacement jump contour of the contact at different
times are shown Fig. 12 (a), (b) and (c).

The evolution of contact pressure and displacement jump with time are shown re-
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the torsion moment of slave interface decreases. But when the displacement jumps appear and 

increase, torsion moment always increases with displacement jumps increasing. 

The frictional dissipation(
910J  ) with time ( s ) of the polycrystalline body is shown in 

Fig .10 (a), external work is shown in Fig. 10 (b), potential energy is shown in Fig. 10 (c) and 

strain energy in Fig .10 (d) . 

 

(a)                                (b) 

 

(c)                            (d) 

Fig. 10.(a) The frictional dissipation, (b) external work, (c) potential energy, (d) strain 

energy. 

 

Similar to bending state, in the case of external work acting, frictional energy increases with 

time, potential energy and strain energy are change with time. 

Remove crystal 3, contact pressure contour at different times are shown Fig .11 (a), (b) and (c), 

respectively. The displacement jump contour of the contact at different times are shown Fig .12 (a), 

(b) and (c).  

Figure 10: (a) The frictional dissipation, (b) external work, (c) potential energy, (d)
strain energy.

spectively in Fig. 11 and Fig. 12 reveals that contact pressure is inverse propor-
tional to displacement jump. Combined with Fig. 5 and Fig. 6, we can conclude
that loading in different ways and the path of the crack are not the same.

5 Conclusions

In this paper, a new numerical algorithm for thermal-mechanical coupled behavior
of polycrystalline aggregates is presented based on plastic slip theory inside crys-
tals and frictional contact condition on the interfaces between crystals. It involves
the mechanics and heat conduction behaviors caused by both force loads and tem-
perature changing in crystal interiors and through contact interfaces. The evolution
of the deformation field and the temperature field are typically accompanied with
the local rearrangement of material in-homogeneities, it is due to plastic deforma-
tion in the crystal interiors and frictional heat generation and heat transfer across
the contact interface.
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Fig. 11. Contact pressure contour at time (a)
92.5 10 s , (b)

71 10 s , (c)
77 10 s . 

 

   

(a)                        (b)                        (c) 

Fig. 12. Displacement jump contour at (a)
92.5 10 s , (b)

71 10 s , (c)
77 10 s . 

 

The evolution of contact pressure and displacement jump with time are shown respectively in 

Fig.11 and Fig.12 reveals that contact pressure is inverse proportional to displacement jump. 

Combined with Fig.5 and Fig.6, we can conclude that loading in different way and the path of the 
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Numerical simulation results for the thermal-mechanical coupled behavior of polycrystalline 

aggregates shows that crack propagation path is associated with loading ways, temperature change 

through the contact interfaces besides the friction heat generation. The displacement jumps are 

related to the interface moment and contact pressure, the torsion moment of slave interface 

decreases and contact pressure always changes with time. Besides, the friction dissipation energy 

and strain energy increase with time as the total works of potential energy and external work. The 

modeling approach in this paper is not limited to several contact bodies, it can be extended to 

Figure 11: Contact pressure contour at time (a) 2.5× 10−9s, (b) 1× 10−7s, (c)
7×10−7s.
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Fig. 12. Displacement jump contour at (a)
92.5 10 s , (b)

71 10 s , (c)
77 10 s . 

 

The evolution of contact pressure and displacement jump with time are shown respectively in 

Fig.11 and Fig.12 reveals that contact pressure is inverse proportional to displacement jump. 

Combined with Fig.5 and Fig.6, we can conclude that loading in different way and the path of the 

crack are not the same. 

5. Conclusions 

In this paper, a new numerical algorithm for thermal-mechanical coupled behavior of 

polycrystalline aggregates is presented based on plastic slip theory inside crystals and frictional 

contact condition on the interfaces between crystals. It involves the mechanics and heat 

conduction behaviors caused by both force loads and temperature changing in crystal interiors and 

through contact interfaces. The evolution of the deformation field and the temperature field are 

typically accompanied with the local rearrangement of material in-homogeneities, it is due to 

plastic deformation in the crystal interiors and frictional heat generation and heat transfer across 

the contact interface.  

Numerical simulation results for the thermal-mechanical coupled behavior of polycrystalline 

aggregates shows that crack propagation path is associated with loading ways, temperature change 

through the contact interfaces besides the friction heat generation. The displacement jumps are 

related to the interface moment and contact pressure, the torsion moment of slave interface 

decreases and contact pressure always changes with time. Besides, the friction dissipation energy 

and strain energy increase with time as the total works of potential energy and external work. The 

modeling approach in this paper is not limited to several contact bodies, it can be extended to 

Figure 12: Displacement jump contour at (a) 2.5× 10−9s, (b) 1× 10−7s, (c) 7×
10−7s.

Numerical simulation results for the thermal-mechanical coupled behavior of poly-
crystalline aggregates shows that crack propagation path is associated with loading
ways, temperature change through the contact interfaces besides the friction heat
generation. The displacement jumps are related to the interface moment and con-
tact pressure, the torsion moment of slave interface decreases and contact pressure
always changes with time. Besides, the friction dissipation energy and strain en-
ergy increase with time as the total works of potential energy and external work.
The modeling approach in this paper is not limited to several contact bodies, it can
be extended to more complicated system with a number of crystals.
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