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Application of Meshless Local Petrov-Galerkin (MLPG)
Method to Three Dimensional Elasto-Plastic Problems

Based on Deformation Theory of Plasticity

A. Rezaei Mojdehi1,2, A. Darvizeh3 and A. Basti2

Abstract: In this paper, a meshless method based on the local petrov-galerkin ap-
proach is proposed for the three dimensional (3D) elasto-plastic problems. Galerkin
weak-form formulation is applied to derive the discrete governing equations. A
weak formulation for the set of governing equations is transformed into local inte-
gral equations on local sub-domains by using a unit test function. Nodal points are
distributed in the 3D analyzed domain and each node is surrounded by a cubic sub-
domain to which a local integral equation is applied. Three dimensional Moving
Least-Square (MLS) approximation is used as shape function to approximate the
field variable of scattered nodes in the problem domain. Hencky’s total deformation
theory is used to define effective elastic material parameters, which are treated as
spatial field variables and considered as functions of the equilibrium stress state and
material properties. These effective material parameters are obtained in an iterative
process. Several example problems are presented to illustrate the effectiveness of
the numerical approach.

Keywords: Meshless Local Petrov-Galerkin method, Elasto-Plastic Analysis, Hen-
cky’s Total Deformation Theory, Three Dimensional Moving Least Square approx-
imation.

1 Introduction

Due to nonlinear nature of materials in the engineering structures, it is very impor-
tant to consider this aspect of analysis in solving engineering problems. However,
the nonlinear stress–strain relationship and the loading path dependency in the plas-
tic range make the analysis tedious. From the viewpoint of mathematics, the dis-
cretization of nonlinear problems results a set of simultaneous equations, in which
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equation coefficients depend on the solutions variable or their derivatives. Due to
the mathematical difficulties, analytical solutions are limited to problems with very
simple geometries and external loadings. Consequently, approximate solutions of
realistic engineering problems are usually obtained numerically. Numerical tech-
niques with different discretization schemes, such as FEM, have been widely used
for the analysis of material behaviour in the elastic and elasto-plastic ranges, es-
pecially in practical engineering applications [Belytschko, Liu and Moran (2000);
Zienkiewicz and Taylor (2000)] . However, mesh based finite element method faces
difficulties in solving problems involving large deformation and discontinuities,
such as mesh distortion, crack propagation and the growth of phase boundaries. In
those problems, in order to maintain the element connectivity, high computational
cost is involved in the mesh generation and refinement algorithms. To overcome
these shortcomings, the concept of meshless method has been proposed.

During recent years, meshless approaches have attracted considerable attention due
to their capability to solve a boundary value problem without a meshing procedure.
In contrast to the finite element formulation, computational model is described only
by a set of nodes which don’t need to be connected into elements. Thus, the nodes
can be easily added and removed without burdensome remeshing of the entire struc-
ture. Furthermore, by using the meshless formulation many other difficulties asso-
ciated with the finite element method may also be overcome. A variety of these
methods have been developed which include Element-Free Galerkin method [Be-
lytschko, Lu and Gu (1994)] , the reproducing kernel particle method [Liu, W. K.,
Jun and Zhang (1995)] , hp-clouds [Duarte and Oden (1996)] , the partition of unity
method [Babuska and Melenk (1997)] , meshless Galerkin using radial basis func-
tions [Wendland (1995)] , the diffuse element [Nayroles, Touzot and Villon (1992)]
, the natural element [Sukumar, Moran and Belytschko (1998)] , the smoothed par-
ticle hydrodynamics [Lucy (1977)] , the collocation technique employing radial
basis functions [Fasshauer (1997)] and the modified smoothed particle hydrody-
namics [Zhang, G. M. and Batra (2004)] . Of these, the last three methods do not
require any mesh whereas others generally need a background mesh for the evalu-
ation of integrals appearing in the weak formulation of the problem.

Up to now, most developments in meshless methods have been focused mainly on
linear elastic materials. Research in inelastic or elasto-plasticity materials using
meshless methods has not been widespread and is only gaining attention recently.
Currently, application of meshless methods in plasticity problems are mainly fo-
cused on the element-free Galerkin (EFG) and reproducing kernel particle meth-
ods. Rao and Rahman (2004) proposed an enriched meshless method for fracture
analysis of mode-I crack in non-linear elastic, two dimensional solids. It involves
an EFG method and two new enriched basis functions to analysis of non-linear
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fracture mechanics. Kargarnovin et al. (2004) extended the EFG method to elasto-
plastic stress analysis using the incremental formulation of plastic deformation. Xu
and Saigal [(1998); (1999)] proposed an EFG based formulation for steady quasi-
static and dynamic crack growth, in elasto-plastic materials undergoing small scale
yielding. Chen et al. (2002) formulated the dynamic meshless methods for local
and non-local field theories and applied the method to two crack problems. Liu et
al. (2006) employed an element-free Galerkin-finite element coupling method to
solve elasto-plastic contact problems. Belinha and Dinis (2006) carried out elasto-
plastic analysis of plates using the element-free Galerkin method. Jianfeng et al.
(2008) extended meshless integral method based on regularized boundary integral
equation to elasto-plastic materials. Chen et al.(1996) implemented reproducing
kernel particle method (RKPM) to model large deformation analysis of nonlinear
structures. Liew et al.(2002) proposed an RKPM algorithm based on parametric
programming for elasto plasticity problems. Li et al. (2000) performed large de-
formation analysis of thin shell structures using RKPM.

The Meshless Local Petrov–Galerkin (MLPG) method developed by Atluri et al.
[(1998); (1999); (2002b); (2002a)] is a truly meshless method which is based on
the local weak rather than the global weak formulation of the problem, and does
not require a background mesh for the evaluation of integrals in the weak formula-
tion of the problem. In the MLPG method, the trial and test functions are chosen
from totally different functional spaces. Furthermore, the physical size of the test
and trial domains is not necessary to be the same, which makes the MLPG a very
flexible method. Based on the concept of the MLPG, six different methods have
been introduced, which are labeled as MLPG1–MLPG6 Atluri and Shen (2002b)
. Difference between These six methods is due to the type of test function consid-
ered in the weak formulation. The MLPG methods have been employed in a wide
range of applications, for example elasto-statics [Atluri and Zhu (2000)] , elasto-
dynamics [Batra and Ching (2002)] , fluid mechanics [Lin and Atluri (2001)] ,
convection–diffusion problems [Lin and Atluri (2000)] , thermoelasticity [Sladek,
Sladek and Atluri (2001)] , beam problems [Atluri, Cho and Kim (1999); Gu and
Liu (2001)] , plate problems [Gu and Liu (2001); Long, S. and Atluri (2002); Qian,
L. F, Batra and Chen (2003); Soric, Li, Jarak and Atluri (2004); Li, Q., Soric, Jarak
and Atluri (2005); Sladek, Sladek, Krivacek, Wen and Zhang (2007); Xiao, Ba-
tra, Gilhooley, Gillespie Jr. and McCarthy (2007)] , fracture mechanics [Kim and
Atluri (2000); Ching and Batra (2001)] , strain gradient theory [Tang, Shen and
Atluri (2003)] and FGM problems [Qian, L. F., Batra and Chena (2004); Ching and
Yen (2005); Sladek, sladek and Zhang (2005); Ching and Yen (2006); Gilhooley,
Batra, Xiao, McCarthy and Gillespie Jr. (2007); Sladek, Sladek and Solek (2009);
Rezaei Mojdehi, Darvizeh, Basti and Rajabi (2011)] . All of these wide ranges
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of applications demonstrate that the MLPG method is one of the most promising
alternative methods for computational mechanics.

There are a few works carried out with MLPG method for analysis of elasto-plastic
materials and material nonlinearities; Han et al. (2005) developed MLPG mixed
finite volume method for the large deformation analysis of static and dynamic prob-
lems with application to high speed impact problems. Zhang et al. (2006) presented
two-dimensional large deformation analysis of hyperelastic and elasto-plastic ma-
terials based on MLPG method. Gu et al. (2007) extended MLPG method for two-
dimensional analysis of material nonlinear problems based on deformation theory
of plasticity. Long et al. (2008) developed MLPG method for elasto-plastic fracture
problems. Soares et al. (2009) presented analyze of dynamic problems containing
one example with elasto-plasticity. Except first one, which is a mixed approach, all
of mentioned papers are limited to the two-dimensional problems. After many pio-
neering research studies were successfully carried out for 2D problems, the MLPG
methods are becoming more attractive for solving 3D problems, because of their
distinct advantages over the element-based methods. The representative 3D works,
include the papers [Han and Atluri (2003); Li, Q., Shen, Han and Atluri (2003);
Han and Atluri (2004b); (2004a); Sladek, Sladek and Solek (2009); Rezaei Mo-
jdehi, Darvizeh, Basti and Rajabi (2011)] for elastic problems by using the MLPG
domain methods. It has been reported that the MLPG methods give better accuracy
with lesser CPU time and lesser system resources, than the element-based methods
[Atluri and Shen (2002b); (2002a); Han and Atluri (2004b)] .

In the present work, meshless local petrov-galerkin method is developed for the 3D
elasto-plastic problems. Galerkin weak-form formulation is applied to derive the
discrete governing equilibrium equations in a three dimensional continuum. Nu-
merical integration is performed using Gauss quadrature method. A weak formula-
tion for the set of governing equations is transformed into local integral equations
on local sub-domains by using a unit test function. Nodal points are distributed
in the 3D analyzed domain and each node is surrounded by a cubic sub-domain to
which a local integral equation is applied. Three dimensional Moving Least-Square
(MLS) approximation is used as shape function to approximate the field variable of
scattered nodes in the problem domain. Hencky’s total deformation theory is used
to define stress-strain relations in the plastic zones. Effective elastic material pa-
rameters, which are treated as spatial field variables and considered as functions of
the equilibrium stress state and material properties, are obtained from effective con-
stitutive equations of elasto-plastic materials. These effective material parameters
are obtained in an iterative process based on strain controlled projection method,
using experimental uniaxial tension test curve. The supports of the MLS approxi-
mation function cover the same sets of nodes during iterative procedures, thus the
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shape function need to be computed only in the initial stage. Von Mises yield cri-
terion in three dimensional space is used as a yield function to distinguish plastic
zone from elastic one. Several numerical examples are presented to illustrate the
effectiveness of the present formulation. The obtained results from present method
have been compared with those of finite element commercial software ABAQUS
and are found to be in good agreement with them.

2 MLPG formulation for 3D problems

Consider the problem of three-dimensional linear elasticity, where the equilibrium
equations in a domain of the volume Ω, which is bounded by the surface Γ, are
given by;

i j, j +bi = 0, in Ω (1)

where i j, j are the components of the symmetric stress tensor which correspond to
the displacement field ui and bi are the body force. The indices i, j which take the
values 1, 2 and 3 refer to the coordinates x, y, z on the boundary Γ, respectively.
A comma followed by index j denotes partial differentiation with respect to the
position x j of a material particle. The following boundary conditions are assumed;

ui = ui, on Γu (2a)

ti = σi jn j = t i, on Γt (2b)

where ui and t i are the prescribed displacements and surface tractions, on the dis-
placement boundary Γu and on the traction boundary Γt , respectively. n j are the
components of a unit outward normal to the global boundary Γ.

The weak form of governing equations can be obtained over the local sub-domains,
which are located entirely inside the global domain Ω. The local sub-domains may
overlap with each other and must cover the whole global domain. Various arbitrary
shapes, with different sizes, such as spheres, cubes and ellipsoids can be chosen as
sub-domains in 3D domains. In the present work, cubic domains are considered as
local sub-domain and support domain which can be seen in Fig. 1.

2.1 Local weak form of 3D solids

Based on the local petrov-galerkin approaches, a generalized local weak form of
the equilibrium equation over a local sub-domain Ωq, can be written as;∫

Ωq

(σi j, j +bi)νidΩ−α

∫
Γqu

(ui−ui)νidΓ = 0 (3)
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Figure 1: Local sub-domains used in the MLPG method

herein ui is the trial function describing the displacement field, while νi is the test
function. α denotes a penalty parameter, α � 1, which is introduced in order to
satisfy the essential boundary conditions.

Unlike the conventional Galerkin method in which the trial and test functions are
chosen from the same space, the Petrov-Galerkin method uses the trial and the
test functions from different spaces. In particular, the test functions don’t need to
vanish on the boundary where the essential boundary conditions are specified. By
applying the divergence theorem from Eq. 4, Eq. 3 may be rewritten as;

σi j, jνi = (σi jνi), j−σi jνi, j (4)∫
Γq

σi jn jνidΓ−
∫

Ωq

(σi jνi, j−biνi)dΩ−α

∫
Γqu

(ui−ui)νidΓ = 0 (5)

by imposing the natural boundary conditions in Eq. 2b one obtains;∫
Γqi

tiνidΓ+
∫

Γqu

tiνidΓ+
∫

Γqt

t iνidΓ−
∫

Ωq

(σi jνi, j−biνi)dΩ−α

∫
Γqu

(ui−ui)νidΓ = 0

(6)

As evident, the boundary Γq of the local sub-domain is divided into three parts,
i.e., Γq = Γqi ∪Γqu ∪Γqt , in which Γqi is the internal boundary of the local sub-
domain, which does not intersect with the global boundary Γ; Γqt is the part of the
natural boundary that intersects with the local sub-domain and Γqu is the part of
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the essential boundary that intersects with the local sub-domain. Fig. 1, shows the
local sub-domain used in the MLPG method.

Eq. 6 can be rewritten as;∫
Ωq

σi jνi, jdΩ−
∫

Γqi

tiνidΓ−
∫

Γqu

tiνidΓ+α

∫
Γqu

uiνidΓ

=
∫

Γqt

t iνidΓ + α

∫
Γqu

uiνidΓ +
∫

Ωq

biνidΩ (7)

which represent a set of three equations for each local sub-domain. In the present
implementation, the local domain is chosen as a cube, centered at a node xi. The
test function νi is chosen such that it is positive inside the local sub-domain Ωq and
vanishes outside of Ωq.

2.2 3D approximation using Moving Least Square (MLS) approximation

Using the MLS shape functions, we can approximate the trial function for the dis-
placement at each point. The MLS approximation of u(x) is defined at x as;

uh (x) =
∫ m

i=1
pi (x)ai (x) = p

T
(x)a(x) ∀x ∈Ω (8)

where pT (x) = [p1 (x) , p2 (x) , . . . , pm(x)] is a vector of complete basis functions
of order m and a(x) is a vector containing the coefficients ai (x) , i = 1, 2, . . . , m
, which are functions of the space coordinates x = [x, y, z]T . In 3D problems, the
linear basis is defined as;

pT (x) = [1,x,y,z] ; m = 4 (9)

and the quadratic basis is defined as;

pT (x) =
[
1,x,y,z,x2,y2,z2,xy,yz,xz

]
; m = 10 (10)

The coefficient vector function ai (x) is determined by minimizing a weighted dis-
crete L2 norm, which is defined as;

J (x) =
∫ N

I=1
wI (x) [pT(xI)a(x)−ûI]

2
(11)

where ûI are the fictitious nodal values and wI is the weight function associated
with the node I. N is the number of nodes in the support domain for which the
weight function wI(x) > 0 and xI denotes the value of x at nod I. A fourth-order
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spline weight function is considered in the present work. This weight function
corresponding to node I for a one-dimensional domain may be written as;

wI (x) =

1−6
(

dI(x)
rI(x)

)2
+8
(

dI(x)
rI(x)

)3
−3
(

dI(x)
rI(x)

)4
0≤ dI(x)≤ rI(x)

0 dI(x) > rI(x)
(12)

where dI(x) = x− xI is the distance from node xI to point x in x direction; while
rI(x) is the size of the support for the weight function wI(x) defined as rI(x) =
αsdI(x) which the weight function wI(x) associated with node xI is non-zero and
αs is the dimensionless size of the support domain. Using the cubic support domain,
the weight function for the 3D problem can be obtained by a simple extension of
the one-dimensional function of Eq. 12 as follows;

wI (x) = wI (x,y,z) = wI (x)wI (y)wI (z) (13)

where functions wI (y) and wI (z) are obtained by replacing x with y and z in Eq.
12, respectively. In this regard, the parameters dI (y) = y− yI and dI (z) = z− zI

are the distances from node xI to point x in y and z direction, respectively.

The stationary condition of J in Eq. 11 with respect to a(x),

∂J/∂a = 0 (14)

leads to the following linear relation between fictitious (û) and approximated (uh)
nodal displacements.

uh (x) =
∫ N

I=1
Φ

I (x) ûI = Φ
T (x) û (15)

where ΦT (x) can then be described as the shape function associated with the nodes
and is given as;

Φ
T (x) = PT (x)A−1 (x)B(x) (16)

where,

A(x) =
∫ N

I=1
wI (x)p(xI)pT (xI) = PTWP (17)

B(x) = [w1 (x)p(x1) , w2 (x)p(x2) , . . . , wN (x)p(xN)] = PTW (18)
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herein,

P =


pT (x1)
pT (x2)

...
pT (xN)


N×m

(19)

and,

W =

 w1(x) · · · 0
...

. . .
...

0 · · · wN(x)


N×N

(20)

The partial derivatives of the trial function are introduced as follows;

uh
,x (x) =

∫ N

I=1
Φ

I
,x (x) ûI (21)

where ΦI
,x are derivatives of the MLS shape function and can be obtained as;

[ΦI
,x (x) =

∫ m

j=1

[
p j,x
(
A−1B

)
jI + p j

(
A−1B,x +A−1

,x B
)

jI

]
(22)

where A−1
,x =−A−1A,xA−1 represents the derivative of the inverse of matrix A with

respect to x.

2.3 Test function

Atluri and Shen (2002b) have proposed six different choices for test functions and
labeled the corresponding formulations as MLPG1 through MLPG6. Here we take
the test function to be a fourth-order spline weight function. The corresponding
MLPG formulation is called MLPG1. Cubic sub-domain is also chosen for the sup-
port of the test function. The test function for the cubic sub-domain is constructed
following the same procedure as mentioned in the previous section for constructing
the weight function. Therefore, the test function for MLPG1 is defined as;

νI (x)= νI (x)νI (y)νI (z)=

1−6
(

dI(x)
rq(x)

)2
+8
(

dI(x)
rq(x)

)3
−3
(

dI(x)
rq(x)

)4
0≤ dI(x)≤ rq(x)

0 dI(x) > rq(x)

(23)

where dI = x−xI and rq(x) is the size of the support for the test function νI defined
as rq(x) = αqdI(x) which the test function νI(x) associated with node xI is non-zero
and αq is the dimensionless size of the support for the test function domain.
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2.4 Discretization and numerical implementation

The geometry of the problem is discretized by the nodes located on the 3D prob-
lem domain. By using, the test function, in the MLPG method, only three linear
equations of û will yield for each point and/or its local domains. Note that the trial
function u within the sub-domain Ωq, in MLS approximation, is determined by the
fictitious nodal values ûi, in the domain of definition for all points x falling in Ωq.
The nodal variables are three fictitious displacement components in the Cartesian
coordinate system x, y, z. Therefore, we need as many local domains Ωq as the
number of nodes in the global domain to obtain as many equations as the number
of unknowns.

The stress tensor components σ i j can be written in a Cartesian coordinate system
as;

σ
T = [σx σy σz xy yz zx] (24)

Using an effective material parameter in a generalized Hooke’s law, the stress tensor
components in elastic and plastic phase can be expressed in terms of the nodal
unknown variables by the relation;

σ =
∫ N

j=1
DeB ju j (25)

where De is the three-dimensional effective material parameter which is a func-
tion of the equilibrium stress state and material properties in plastic phase and is
constant in elastic one. B j denotes the strain-displacement matrix obtained by dif-
ferentiation of the shape function in a three dimensional space;

De = D0
e



1 νe
1−νe

νe
1−νe

0 0 0
νe

1−νe
1 νe

1−νe
0 0 0

νe
1−νe

νe
1−νe

1 0 0 0
0 0 0 1−2νe

2(1−νe)
0 0

0 0 0 0 1−2νe
2(1−νe)

0
0 0 0 0 0 1−2νe

2(1−νe)


(26)

D0
e =

Ee (1−νe)
(1+νe)(1−2νe)

(27)

where Ee and νe are effective Young’s modulus and Poisson’s ratio, which are ob-
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tained from iterative projection technique and will be discussed in the next Sections.

B(6×3N) =



∂Φ1
∂x 0 0 . . . ∂ΦN

∂x 0 0
0 ∂Φ1

∂y 0 . . . 0 ∂ΦN
∂y 0

0 0 ∂Φ1
∂ z . . . 0 0 ∂ΦN

∂ z
∂Φ1
∂y

∂Φ1
∂x 0 . . . ∂ΦN

∂y
∂ΦN
∂x 0

0 ∂Φ1
∂ z

∂Φ1
∂y . . . 0 ∂ΦN

∂ z
∂ΦN
∂y

∂Φ1
∂ z 0 ∂Φ1

∂x . . . ∂ΦN
∂ z 0 ∂ΦN

∂x


(28)

The surface traction components t may also be expressed in a vector form by the
relation;

t = Nσ =
∫ N

j=1
NDB ju j (29)

which N is the matrix describing the outward normal on Γq,

N =

 nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

 (30)

By substituting fourth-order spline test function from Eq. 23 into Eq. 7 and by
means of Eqs. 15, 25 and 29, Eq. 7 is transformed in the discretized system of
equations which may be written in the matrix form as;

Ku = F (31)

where, K and F are equivalent stiffness and force matrixes, respectively, i.e.

Kij =
∫

Ωq

(
ŴT

i DeB j

)
dΩ−

∫
Γqi

ViNDeB jdΓ−
∫

Γqu

ViNDeB jdΓ+α

∫
Γqu

ViΦ jdΓ

(32)

Fij =
∫

Γqt

t iVidΓ+α

∫
Γqu

uiVidΓ+
∫

Ωq

biVidΩ (33)

where Ŵi, bi and t i are the test function derivatives, body force and traction matri-
ces, corresponding to node i, respectively.

where,

Vi =

 ν(x,xi) 0 0
0 ν(x,xi) 0
0 0 ν(x,xi)

 (34)
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Ŵi =

 ν,x 0 0 ν,y 0 ν,z

0 ν,y 0 ν,x ν,z 0
0 0 ν,z 0 ν,y ν,x

 (35)

Equations similar to Eq. 31 with stiffness and force matrix (as Eqs. 32 and 33)
are obtained for each cubic local sub-domain Ωq, whose centre is at the node xi.
The Gauss quadrature rule of an appropriate order is employed to evaluate integrals
over each local sub-domain.

3 Stress – strain relation based on deformation theory

The strain–stress relationship can be taken in the form [Jahed, Sethuraman and
Dubey (1997)]

εi j = f (σi j) (36)

where f is a function and εi j is the total strain tensor, which

εi j = ε
e
i j + ε

p
i j (37)

according to the additive decomposition the total strain tensor is the summation
of conservative elastic εe

i j and nonconservative plastic part ε
p
i j. The elastic strain

tensor is related to the stress tensor by Hook’s law for isotropic materials as;

ε
e
i j =

1+ν

E
σi j−

ν

E
σkkδi j (38)

The plastic strain tensor is also related to the deviatoric part of stress tensor based
on Hencky’s total deformation theory as;

ε
p
i j = ΨSij (39)

Where Ψ is a scalar valued function, given by

Ψ =
3εp

equivalent

2σequivalent
=

3
2

√
2ε

p
i jε

p
i j/3√

3SijSij/2
(40)

and

Sij = σi j−
1
3

σkkδi j (41)
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is deviatoric stress tensor. By substituting Eqs. 38–41 into Eq. 37, we can get

εi j =
(

1+ν

E
+Ψ

)
σi j−

(
ν

E
+

1
3

Ψ

)
σkkδi j (42)

Eq. 42 can be rewritten as:

εi j =
1+νe

Ee
σi j−

νe

Ee
σkkδi j (43)

Where, Ee and νe are termed as the effective Young’s modulus and the effective
Poisson’s ratio, respectively, which are functions of E, ν and ψ and are considered
as material parameters. By comparing Eq. 42 and 43, effective values of material
parameters can be obtained as;

Ee =
1( 1

E

)
+
(2

3 Ψ
) (44)

νe =

(
ν

E

)
+
(

Ψ

3

)( 1
E

)
+
(2

3 Ψ
) (45)

Eq. 43 is the effective constitutive equation for the analysis of material nonlinearity.

4 Determination of the effective material parameters

By employing relations of effective Young’s modulus and the effective Poisson’s
ratio from Eqs. 44 and 45, for different material behaviors containing linear or
nonlinear stress-strain relationship, effective material parameters can be obtained.

For example, for the elastic-perfectly plastic material, as shown in Fig. 2, the yield
stress is σ0; we can obtain the effective material parameters as;

1
Ee

per f ect =
1
E

+
ε p

σ0
(46)

νe
per f ect = Ee

per f ect
(

ν

E
+

?p

2σ0

)
(47)

For linear work- hardening materials, in which σ0 is assumed as yield stress and
ET as tangent modulus, the effective material parameters can be obtained as;

1
Ee

harden =
σ0

Eσ
+

σ −σ0

σET
(48)
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Figure 2: The stress–strain relation for an elastic–perfectly plastic material.

νe
harden = Ee

harden
(

ν

E
+

σ0−σ

2σ

(
1
E
− 1

ET

))
(49)

One general case of hardening material model is Ramberg – Osgood formula which
represent the stress – strain relation with power law as shown in Fig. 3. The relation
between stress and strain in this model can be written as;

ε

ε0
=

σ

σ0
+α

(
σ

σ0

)n

(50)

where ε0 is the strain at initial yield, α is the yield offset, and n is the hardening
exponent. Both α and n are material constants and are obtained from experimental
tests. The effective material parameters can be expressed in the form;

1
Ee

Ramb =
1
E

+α
ε0

σ0

(
σ

σ0

)n−1

(51)

νe
Ramb = Ee

Ramb

(
ν

E
+

1
2

α
ε0

σ0

(
σ

σ0

)n−1
)

(52)

The effective material parameters which are presented here are functions of the fi-
nal state of stress fields. They are also related to the position of a point because
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Figure 3: The stress–strain relation for Ramberg – Osgood model.

the stress is also the function of position. Hence, the effective material parameters
can be proposed as field variables describing the material properties of each point,
where the stress state is unique. On the other hand the system of equations is con-
structed based on the Gauss quadrature points, and therefore, the effective material
parameters should be also calculated for each Gauss quadrature points.

5 Numerical procedure

As mentioned above, the effective material parameters are functions of the final
stress fields, which are usually unknown. Hence, the direct method is impossible
to get the final solution. Thus, to get solution from Eq. 31, the effective material
matrix De in Eq. 26 should be calculated at first. In this regard, following iteration
method based on the projection technique [Desikn and Sethuraman (2000)] is used.

5.1 Projection technique

In the projection method, initially, a linear elastic MLPG analysis is carried out.
Consider a particular material point, and evaluate the equivalent stress from linear
elastic analysis. To determine whether a material enters the plastic range, the Von
Mises yield criterion in three dimensional space [Owen and Hinton (1980)] , which
compares the equivalent stress with the yield stress, is used (see Eq. 53). If this
point is in elastic phase, the material parameters will be kept unchanged as elastic
one and the material still satisfies the linear elasticity; if mentioned point enters
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in plastic phase, it means that the deformation already enters the plastic region,
and the following iteration computing will be performed to calculate the effective
material parameters. This state is shown as a point ‘A’ in Fig. 4. This point has
crossed the yield stress. Keeping the strain values the same, i.e. strain controlled,
and projecting the point ‘A’ on the experimental uniaxial curve (point ‘B’), the ef-
fective value of Young’s modulus for the next iteration is obtained. Substituting
this effective value in Eq. 45 the effective Poisson’s ratio is obtained. These ef-
fective values are obtained for all the nodal and Gauss points, which have been
yielded. With this new set of effective material parameters the next linear elastic
MLPG analysis is performed. This iterative procedure is repeated and elastic anal-
ysis with currently evaluated Ee and νe is performed until all the effective material
parameters converge and equivalent stress falls on the experimental uniaxial stress-
strain curve. However, if the applied loading is too large, the computing may not
converge, and it means that the material is already failure, and this certain loading
is called the critical failure loading which is also an important parameter for solids
and structures.

σe =
1√
2

[
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2
]1/2

(53)

{
σe < σy the material is elastic
σeσy the material has yielded

Fig. 5 shows the flowchart of the iterative solution procedure for the governing
equations. The iteration criterion is defined as;√√√√∫ n

j=1
(
Ee j

(i+1)−Ee j
(i))2

∫ n
j=1
(
Ee j

(i))2 ≤ R (54)

Where n is the number of quadrature points, Ee
(i) and Ee

(i+1) are the effective
Young’s modulus of ith and (i+1)th iteration steps, respectively, and R is a prede-
fined accuracy tolerance.

6 Numerical examples

Gauss quadrature is used to evaluate the integral equations obtained from mesh-
less formulation. For a field node xI , a local quadrature cell Ωqis needed for the
Gauss quadrature. For each Gauss quadrature point xq, the MLS shape functions
are constructed to obtain the integrand. Because of simplicity, the cubic quadra-
ture domain is used to integrate the integral equations. For node xI , the size of the
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Figure 4: Determination of Ee by the projection method.

quadrature domain can be determined by rqx, rqyand rqz in the x, y and z directions,
respectively, as follows;

rqx = αqxdcx

rqy = αqydcy

rqz = αqzdcz

(55)

where αqx, αqy and αqz are dimensionless sizes of the local quadrature domain in
the x, y and z directions, respectively.

The local support domain for a Gauss quadrature point xq can be arbitrary in shape.
In this paper, a cubic support domain is used. The size of the local support domain
is determined by rsx, rsy and rsz in the x, y and z directions, respectively.

rsx = αsxdcx

rsy = αsydcy

rsz = αszdcz

(56)

where dcx, dcy and dcz are, respectively, the local nodal spacing in x, y and z direc-
tions and αsx, αs? and αsz are dimensionless sizes of the local support domain in
the x, y and z directions, respectively.
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Figure 5: Flowchart of solution procedure.

In this regard, the dimensions of the local quadrature domain and local support do-
main used for Gauss quadrature and constructing the MLS shape functions become
(2αqxdcx)× (2αqydcy)× (2αqzdcz) and (2αsxdcx)× (2αsydcy)× (2αszdcz), respec-
tively.

In the present study, for the local support domain, αsx = αsy = αsz = 2.7 and for the
local quadrature domain, αqx = αqy = αqz = 0.8 are used.

Several numerical problems have been analyzed to demonstrate the accuracy and
efficiency of the present method. Results obtained from present meshless method
are compared with those of finite element solution from ABAQUS.

6.1 Uniaxial tension of a 3D bar

A 3D cantilever bar subjected to a uniformly distributed tensile load, having a re-
sultant F at its end, is analyzed. Geometry and nodal distributions of the bar can
be seen in Fig. 6. The Young’s modulus, Poisson’s ratio and yield stress are as-
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sumed as E=2.1×1011 pa, ν = 0.3 and σ0=1.68×108pa, respectively. The material
is initially considered as elastic-perfectly plastic. The discretization is performed
by 11×3×3 distributed nodes among the problem domain. Fig. 7 and 8 show
the convergence paths for different resultant load F in the bar. It can be seen that
the present method using the projection technique can quickly produce convergent
results. However, the number of iteration steps will increase as F increases. As
shown in Fig. 9, when F becomes larger than a certain value, the results will not be
converged, and the structure fails. This value is called the critical failure load, and
it is F = 154×105 N in this problem.

 

 
 Figure 6: A 3D cantilever bar subjected to a uniformly distributed tensile load: (a)

geometry and load conditions, (b) 11×3×3 nodal distribution.

Fig. 10 shows the horizontal displacement of free end of the bar, under different
loadings. For comparison, FEM results obtain from ABAQUS are also plotted in
the same figure. It can be seen that results obtained from present method are in
good agreement with those of FEM.

A work-hardening material based on Ramberg – Osgood model is also considered.
As shown in Fig. 11, a work-hardening material with a much higher resultant load
than an elastic-perfectly plastic material is rapidly converged.

6.2 3D thick plates subjected to a uniformly distributed load

A 3D thick cantilever plate subjected to a uniformly distributed load is also studied.
The plate thickness to span ratio is h/a=0.1. The material data are Young’s modulus
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a) 

 
b) 

 
 Figure 7: The convergence path of the bar with elastic-perfectly plastic material

(F=152×105N): (a) the convergence path, (b) the magnified convergence path.

E=2.1×1011 pa, Poisson’s ratio ν = 0.3 and yield stress σ0=1.7×105pa. Due
to symmetry, only one half of the plate is discretized by the various uniformly
distributed nodal points on the domain of the plate. The discretization by 7×3×3
nodes is shown in Fig. 12.

Fig. 13 shows the deflection of midline of the plate with respect to the plate length.
The plate deflections are normalized by its elastic value from analytical solution
Srinivas and Rao (1973) and are compared with results obtained from finite element
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a) 

 
 
 

b) 
 

 Figure 8: The convergence path of the bar with elastic-perfectly plastic material
(F=153×105 N): (a) the convergence path, (b) the magnified convergence path.

commercial software ABAQUS. Fig. 14 represents the convergence path of the
midpoint on the clamped edge of the plate versus number of iterations.

At last, a fully clamped square plate subjected to a uniformly distributed load is
considered. The plate thickness to span ratio is h/a=0.1 and its material properties
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Figure 9: The convergence path of the bar with elastic-perfectly plastic material
(F=154×105N).

 
Figure 10: Force-Displacement curve of the bar with elastic-perfectly plastic ma-
terial.
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Figure 11: The convergence path of the bar with Ramberg – Osgood material
(F=160×105N)

 
Figure 12: Discretization of one half of the plate with 7×3×3 nodes.

are E=10×105, ν = 0.3 and σ0=2.7×104pa. Due to symmetry, only one quarter
of the plate is discretized by 7×7×3 nodes on the problem domain and is shown in
Fig. 15.

Fig. 16 and 17 present normalized deflection and convergence path of the plate
versus plate length and number of iterations, respectively. It can be seen that results
obtained from present method are in good agreement with those of finite element
solution from ABAQUS.
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Figure 13: Deflection of midline of the plate versus plate length.

 
Figure 14: The convergence path of the cantilevered plate.

7 Conclusion

In the present paper, meshless local petrov-galerkin method is developed for 3D
elasto-plastic problems. Based on local petrov-galerkin approach, weak form of
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Figure 15: Discretization of one quarter of the plate with 7×7×3 nodes.

 
Figure 16: Normalized deflection of the plate versus plate length.

equilibrium equation is obtained. Three dimensional MLS approximation is used
as shape function to get the meshless discrete system of equations. Numerical
integration is performed using Gauss quadrature method. A weak formulation for
the set of governing equations is transformed into local integral equations on local
sub-domains by using a unit test function. Nodal points are distributed in the 3D
analyzed domain and each node is surrounded by a cubic sub-domain to which
a local integral equation is applied. Hencky’s total deformation theory is used to
define the effective material parameters, which are treated as spatial field variables
and considered as functions of the equilibrium stress state and material properties.
These effective material parameters are obtained in an iterative manner using strain
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Figure 17: The convergence path of the fully clamped plate.

controlled projection method using experimental uniaxial tension test curve. Von
Mises yield criterion in three dimensional space is used as a yield function. The
supports of the MLS approximation function cover the same sets of nodes during
iterative procedures, thus the shape function need to be computed only in the initial
stage. Several numerical examples are presented to illustrate the effectiveness of
present formulation for the elasto-plastic analysis of 3D solids. It has been found
that this meshless method is very effective with rapid convergence for problems
with material nonlinearities.
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