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A Spring-Damping Regularization and a Novel Lie-Group
Integration Method for Nonlinear Inverse Cauchy

Problems

Chein-Shan Liu1 and Chung-Lun Kuo2

Abstract: In this paper, the solutions of inverse Cauchy problems for quasi-
linear elliptic equations are resorted to an unusual mixed group-preserving scheme
(MGPS). The bottom of a finite rectangle is imposed by overspecified boundary
data, and we seek unknown data on the top side. The spring-damping regular-
ization method (SDRM) is introduced by converting the governing equation into a
new one, which includes a spring term and a damping term. The SDRM can further
stabilize the inverse Cauchy problems, such that we can apply a direct numerical
integration method to solve them by using the MGPS. Several numerical examples
are examined to show that the SDRM+MGPS can overcome the ill-posed behavior
of the inverse Cauchy problem. The present algorithm has good efficiency and sta-
bility against the disturbance from random noise, even with an intensity being large
up to 10%, and the computational time is very saving.

Keywords: Inverse Cauchy problem, Quasi-linear elliptic equations, Spring-dam-
ping regularization method, Mixed group-preserving scheme

1 Introduction

During the past several decades, the science and engineering communities have
paid much attention to the inverse Cauchy problem, which is a non-characteristic
initial value problem for the elliptic type partial differential equation (PDE). Ac-
cording to the Cauchy-Kowalewski theorem, the solution of an analytic Cauchy
problem for PDEs exists and is unique. However, the Cauchy problem is quite dif-
ficult to solve both numerically and analytically, since its solution does not depend
continuously on the given data, that is, a small error in the specified data may result
in a terribly incorrect solution. It means that the continuous dependence of the so-
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lution on the given data is not satisfied in the Hardmard sense. Therefore, we must
treat this type problem with a suitable numerical algorithm, which compromises
accuracy and stability.

The use of electrostatic image in the non-destructive testing of metallic structures
leads to an inverse boundary value problem for elliptic equation. In order to detect
the unknown shape of the inclusion within a conducting metal, the overspecified
Cauchy data, for example the voltage and current, are imposed on the accessible
boundary [Akduman and Kress (2002); Inglese (1997); Kaup, Santosa and Vo-
gelius (1996)]. This amounts to solving an inverse Cauchy problem from available
data measured on the partial boundary. There had been many studies on this type
problems in the open literature [Andrieux, Maranger and Ben Abda (2006); Apari-
cio and Pidcock (1996); Ben Belgacem and El Fekih (2005); Berntsson and Eldén
(2001); Bourgeois (2005, 2006); Chapko and Kress (2005); Kress (2004); Mera,
Elliott, Ingham and Lesnic (2000); Slodička and Van Keer (2004); Liu (2011)].

In the past several years there already had many numerical methods being pro-
posed to solve the inverse Cauchy problems [Brühl and Hanke (2000); Cimetière,
Delvare, Jaoua and Pons (2001); Fang and Lu (2004); Knowles (1998); Chang,
Yeih and Shieh (2001); Chi, Yeih and Liu (2009); Johansson and Marin (2010)].
Among the many numerical methods, the schemes based on iteration have also
been developed previously by Jourhmane and Nachaoui (1999, 2002), Essaouini,
Nachaoui and Hajji (2004), Nachaoui (2004), Jourhmane, Lesnic, and Mera (2004),
and Marin (2009).

Liu (2008a) has applied a modified collocation Trefftz method in the inverse Cauchy
problem for the Laplace equation. In order to achieve a stable numerical solu-
tion for recovering the discontinuous data, a regularization by truncating the higher
modes of the Fourier series of the input data is necessary. A similar method has
been named the Fourier regularization method by Fu, Li, Qian and Xiong (2008).

Most of the existent literature were concerned with the inverse Cauchy problems of
linear elliptic equations, like as, the Laplace equation [Ling and Takeuchi (2008);
Liu (2008a, 2008b); Marin (2009); Shigeta and Young (2009); Qian, Fu and Xiong
(2006); Xiong and Fu (2006); Qian and Wu (2009); Tuan, Trong and Quan (2010);
Abbasbandy and Hashemi (2011), Liu (2011)], the Poisson equation [Marin (2008)],
the Helmholtz equation [Qin and Wei (2009); Qin, Wei and Shi (2009); Johansson
and Marin (2010); Cheng, Fu and Feng (2011); Zhang, Qin and Wei (2011)], and
the biharmonic equation [Liu (2008c)]. To account of the sensitivity to noisy distur-
bance of the inverse Cauchy problems for linearly elliptic PDEs, there already had
many studies by using different regularization techniques, such as the Tikhonov
regularization, linear regularization and their variants [Wei, Hon and Ling (2007);
Chen, Chen and Lee (2009)]. Regularization techniques were created one by one,
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but they are only useful for each specific case being considered. There are two
major drawbacks of the previous approaches: some kind of matrix inversion is re-
quired for the resulting ill-conditioned matrix, and they cannot be directly extended
to nonlinear elliptic systems.

In contrast to those methods the present paper aims to provide a simple numer-
ical computation method based on an unusual group-preserving scheme, directly
integrating the inverse Cauchy problem as an initial value problem. In order to
express the new method simpler and clearer we first restrict ourself to the inverse
Cauchy problem defined in a rectangle, because in this domain a numerical method
of lines is easily employed for the discretization of the nonlinear elliptic equation
into a nonlinear system of ODEs. It is known that the inverse Cauchy problem is
a non-characteristic problem, and there were rare papers to develop a direct nu-
merical integration method to solve it [Qian, Fu and Xiong (2006); Abbasbandy
and Hashemi (2011); Liu and Chang (2012)]. After a suitable and mathematically
equivalent regularization technique for the enhancement of numerical stability by
introducing the spring/damping terms in Section 2, we develop a numerical integra-
tion method for the inverse Cauchy problem of nonlinear elliptic equation defined
in a rectangular domain, which is discretized into a nonlinear ODEs system by us-
ing the numerical method of lines in Section 3. In Section 4 we introduce three
different group-preserving schemes, and the numerical results are given in Section
5. Finally, the conclusions are given in Section 6.

2 A spring-damping regularization

We consider an inverse Cauchy problem for a quasi-linear elliptic equation with
overspecified boundary conditions at y = 0:

∂ 2u
∂x2 +

∂ 2u
∂y2 = F(x,y,u,ux,uy), 0 < x < `, 0 < y < b, (1)

u(x,0) = f (x), 0≤ x≤ `, (2)
∂u
∂y

(x,0) = g(x), 0≤ x≤ `, (3)

u(0,y) = u0(y), u(`,y) = u`(y), 0≤ y≤ b, (4)

where f (x),g(x),u0(y), and u`(y) are given functions.

In the present paper we develop a novel integration method to directly solve the
above inverse Cauchy problem by recovering the data at the top side y = b. The in-
tegration direction will be in the y-axis, and thus we consider the following variable
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transformation:

u(x,y) = eαyU(x,y). (5)

A similar transformation has been used by Liu (2004) to treat the backward heat
conduction problem. From Eqs. (1)-(5) it follows that

∂ 2U
∂x2 +

∂ 2U
∂y2 +2α

∂U
∂y

+α
2U = e−αyF(x,y,eαyU,eαyUx,eαyUy +αeαyU), (6)

U(x,0) = f (x), 0≤ x≤ `, (7)
∂U
∂y

(x,0) = g(x)−α f (x), 0≤ x≤ `, (8)

U(0,y) = U0(y) = e−αyu0(y), U(`,y) = U`(y) = e−αyu`(y), 0≤ y≤ b. (9)

It can be seen that in Eq. (6) we have introduced two extra terms: a spring term
α2U , and a damping term 2α∂U/∂y. It is known that in the mechanical vibration
system a suitable choice of spring and damping constants can enhance the stability
of motion. This regularization technique has been first developed by Liu and Chang
(2012) for linear inverse Cauchy problems defined in annular domains, which was
shown to be very effective for overcoming the ill-posed behavior of inverse Cauchy
problems. In the present paper we are going to extend the spring-damping regular-
ization method (SDRM) to the nonlinear inverse Cauchy problems.

3 Numerical method of lines

The numerical method of lines is simple in concept that for a given system of partial
differential equations discretize all but one of the independent variables. The semi-
discrete procedure yields a coupled system of ordinary differential equations which
are then numerically integrated. For the above equation (6) we adopt the numerical
method of lines to discretize the spatial coordinate x by

∂U(x,y)
∂x

∣∣∣∣x=i∆x =
Ui+1(y)−Ui−1(y)

2∆x
,

∂ 2U(x,y)
∂x2

∣∣∣∣x=i∆x =
Ui+1(y)−2Ui(y)+Ui−1(y)

(∆x)2 ,
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where ∆x = `/(n + 1) is a uniform discretization spacing length, and Ui(y) =
U(i∆x,y), such that Eq. (6) can be approximated by

∂Ui(y)
∂y

= Vi(y), (10)

∂Vi(y)
∂y

=−Ui+1(y)−2Ui(y)+Ui−1(y)
(∆x)2 −2αVi(y)−α

2Ui(y)+ e−αyFi(y), (11)

where for simple notation we use Fi(y) to denote

F(xi,y,eαyUi(y),(Ui+1(y)−Ui−1(y))/(2∆x), eαyVi(y)+αeαyUi(y)).

The next step is to advance the solution from the initial conditions given at y = 0
to the position y = b. Really, Eqs. (10) and (11) have totally 2n coupled nonlinear
differential equations for the 2n variables Ui(y),Vi(y), i = 1,2, . . . ,n, which can be
numerically integrated to obtain the solutions.

4 Group-preserving schemes

Liu (2001) has derived a Lie-group transformation for the augmented dynamics on
the future cone, and developed a group-preserving scheme for an effective numeri-
cal solution of nonlinear differential equations.

4.1 Forward group-preserving scheme

Group-preserving scheme (GPS) can preserve the internal symmetry group of the
considered nonlinear differential equations system. Liu (2001) has embedded it
into an augmented dynamical system, which concerns with not only the evolution
of state variables but also the evolution of the magnitude of state variables vector.
That is, for an n ODEs system:

ẋ = f(x, t), x ∈ Rn, t ∈ R, (12)

we can embed it to the following n+1-dimensional augmented dynamical system:

d
dt

[
x
‖x‖

]
=

 0n×n
f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

[ x
‖x‖

]
. (13)

Here we assume ‖x‖> 0 and hence the above system is well-defined.
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It is obvious that the first row in Eq. (13) is the same as the original equation (12),
but the inclusion of the second row in Eq. (13) gives us a Minkowskian structure of
the augmented state variables of X := (xT,‖x‖)T, satisfying a future cone condition:

XTgX = 0, (14)

where

g =
[

In 0n×1
01×n −1

]
(15)

is a Minkowski metric, In is the identity matrix of order n, and the superscript T

stands for the transpose. In terms of (x,‖x‖), Eq. (14) becomes

XTgX = x ·x−‖x‖2 = ‖x‖2−‖x‖2 = 0, (16)

where the dot between two n-dimensional vectors denotes their Euclidean inner
product. The cone condition is thus the most natural constraint that we can impose
on the dynamical system (13).

Consequently, we have an n+1-dimensional augmented system:

Ẋ = AX (17)

with a constraint (14), where

A :=

 0n×n
f(x,t)
‖x‖

fT(x,t)
‖x‖ 0

 , (18)

satisfying

ATg+gA = 0, (19)

is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1). This
fact prompts us to devise the so-called group-preserving scheme, whose discretized
mapping G exactly preserves the following properties:

GTgG = g, (20)

det G = 1, (21)

G0
0 > 0, (22)

where G0
0 is the 00th component of G.
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We assume that the value of A at the k-th time step is denoted by A(k), which is
viewed as a constant matrix. An exponential mapping of A(k) admits a closed-form
representation:

exp[hA(k)] =

 In + (ak−1)
‖fk‖2 fkfT

k
bkfk
‖fk‖

bkfTk
‖fk‖ ak

 , (23)

where

ak := cosh
(

h‖fk‖
‖xk‖

)
, bk := sinh

(
h‖fk‖
‖xk‖

)
. (24)

Consequently, we can obtain

xk+1 = xk +η1(k)fk = xk +
(ak−1)fk ·xk +bk‖xk‖‖fk‖

‖fk‖2 fk. (25)

This scheme preserves all the group properties for all h > 0, which is called a for-
ward group-preserving scheme.

4.2 Backward group-preserving scheme

We can also embed Eq. (12) into the following n + 1-dimensional augmented dy-
namical system:

d
dt

[
x
−‖x‖

]
=

 0n×n − f(x,t)
‖x‖

− fT(x,t)
‖x‖ 0

[ x
−‖x‖

]
. (26)

It is obvious that the first equation in Eq. (26) is the same as the original equation
(12), but the inclusion of the second equation gives us a Minkowskian structure of
the augmented state variables of X := (xT,−‖x‖)T, satisfying a past cone condition:

XTgX = x ·x− (−‖x‖)2 = ‖x‖2−‖x‖2 = 0. (27)

Here, we should stress that the cone condition imposed on the dynamical system
(13) is a future cone, and that for the dynamical system (26) the imposed cone
condition (27) is a past cone.

Consequently, we have an n+1-dimensional augmented system:

Ẋ = BX (28)
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with a constraint (27), where

B :=

 0n×n − f(x,t)
‖x‖

− fT(x,t)
‖x‖ 0

 (29)

satisfying

BTg+gB = 0, (30)

is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1). The
term orthochronous used in the special relativity theory is referred to the preserva-
tion of time orientation. However, it should be understood here as the preservation
of the sign of −‖x‖.
Similarly, we assume that the value of B at the k-th time step is denoted by B(k),
which is viewed as a constant matrix. Accordingly, an exponential mapping of B(k)
admits a closed-form representation:

exp[−hB(k)] =

 In + (ak−1)
‖fk‖2 fkfT

k
bkfk
‖fk‖

bkfTk
‖fk‖ ak

 , (31)

where ak and bk were defined by Eq. (24), and we have

xk−1 = xk +η2(k)fk = xk +
(ak−1)fk ·xk−bk‖xk‖‖fk‖

‖fk‖2 fk. (32)

This scheme is group properties preserved for all h > 0. This scheme was first
developed by Liu, Chang and Chang (2006), and was called a backward group-
preserving scheme.

Comparing Eqs. (32) and (25) it is interesting to note that these two numerical
schemes have the same form in addition that the sign before bk‖xk‖‖fk‖ in the nu-
merators.

4.3 Mixed group-preserving scheme

Although the above two schemes, forward and backward group-preserving schemes,
are very accurate, but they are sensitive to the noise, which is added on the data by

f̂i = f (xi)[1+σR(i)], ĝi = g(xi)[1+σR(i)], (33)
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where R(i) are random numbers in [−1,1]. In order to overcome this instability we
apply the following mixed group-preserving scheme (MGPS) to Eqs. (10) and (11):

Ui(y j+1) = Ui(y j)+η1( j)Vi(y j), (34)

Vi(y j+1) = Vi(y j)+η2( j)Hi(y j), (35)

where

Hi(y) :=−Ui+1(y)−2Ui(y)+Ui−1(y)
(∆x)2 −2αVi(y)−α

2Ui(y)+ e−αyFi(y), (36)

and η1( j) and η2( j) are defined respectively in Eqs. (25) and (32). Here, instead of
η1( j) used in the forward group-preserving scheme, the term η2( j) used in Eq. (35)
can impress the instability which is happened for the forward group-preserving
scheme.

5 Numerical examples

5.1 Example 1

In this example we apply schemes (25) and (32), respectively, to

uxx +uyy = 0, 0 < x < π, 0 < y < 1, (37)

u(x,0) = sinx, uy(x,0) = 0, (38)

u(0,y) = u(π,y) = 0. (39)

The exact solution is u(x,y) = sinxcoshy. Without considering the noise being
imposed on the given initial data, we can obtain very accurate results as shown in
Fig. 1, where ∆x = π/40, and h = ∆y = 10−4 are used in the GPS. Because this
problem is symmetric with y and −y, and the boundary conditions are independent
to y, both schemes led to the same results. However, when a little noise is imposed
on the given data, both schemes are failure to recover the data on the top side.

5.2 Example 2

In this example we apply schemes (34) and (35) to

uxx +uyy = 0, 0 < x < π, 0 < y < 1, (40)

u(x,0) = 0, uy(x,0) = sinx, (41)

u(0,y) = u(π,y) = 0. (42)
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Figure 1: For example 1 displaying numerical errors by using (a) forward and (b) 
backward group-preserving schemes. 
 
 

Figure 1: For example 1 displaying numerical errors by using (a) forward and (b)
backward group-preserving schemes.

The exact solution is u(x,y) = sinxsinhy. Under a large noise with σ = 10%, and
with ∆x = π/100, ∆y = 1/2000 used in the MGPS, the numerical solutions at y = 1
are compared with the exact ones in Fig. 2, where α = 0.165 is used. It can be seen
that the present algorithm is quite robust, which can recover the data on the top side
very accurately, even under a large noise.

Now, we explain the effect of α in the formulation. The original equation for the
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Figure 2: For example 2: (a) comparing numerical and exact solutions, and (b) 
displaying numerical errors of Dirichlet and Neumann data. 
 
 
 
 
 
 

Figure 2: For example 2: (a) comparing numerical and exact solutions, and (b)
displaying numerical errors of Dirichlet and Neumann data.

Laplace equation as discretized for x is

d
dy

[
u
v

]
=
[

0n×n In

Cn×n 0n×n

][
u
v

]
+



0n×1
− u0

(∆x)2

0
...
0

− un+1
(∆x)2


= A1

[
u
v

]
+F1, (43)
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Figure 3: For example 2: (a) comparing the eigenvalues of the original and the 
transformed system, and (b) showing the difference of the eigenvalues. 
 
 
 

Figure 3: For example 2: (a) comparing the eigenvalues of the original and the
transformed system, and (b) showing the difference of the eigenvalues.

where C is the central difference matrix:

C =
1

(∆x)2



2 −1
−1 2 −1

· · ·
· · ·
· · ·
−1 2

 , (44)

and u = (u1, . . . ,un)T and v = (v1, . . . ,vn)T. However, for the transformed equation
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matrix at the first step. 
 
 
 

Figure 4: For example 2 displaying the moduli of the eigenvalues of the mapping
matrix at the first step.

we have

d
dy

[
U
V

]
=
[

0n×n In

Cn×n−α2In −2αIn

][
U
V

]
+



0n×1

− U0
(∆x)2

0
...
0

−Un+1
(∆x)2


= A2

[
U
V

]
+F2,

(45)

where U = (U1, . . . ,Un)T and V = (V1, . . . ,Vn)T. For this case we compare the
eigenvalues of A1 and A2 in Fig. 3(a), of which the eigenvalues of A2 are smaller
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than those of A1 as shown in Fig. 3(b) with a quantity α = 0.165.

More importantly, we can check the stability of the new MGPS algorithm in Eqs. (34)
and (35) for this example. Through some derivations we can obtain

[
U j+1

V j+1

]
=
[

In η1( j)In

η2( j)(Cn×n−α2In) [1−2αη2( j)]In

][
U j

V j

]
+



0n×1

−η2( j)U j
0

(∆x)2

0
...
0

−η2( j)U j
n+1

(∆x)2


= A j

3

[
U j

V j

]
+F j

3. (46)

As we know, the method is stable if the above mapping matrix A j
3 with its eigenval-

ues having the moduli smaller than or equal to unity. By applying a mathematical
code in the MatLab we can compute the eigenvalues of A j

3 for each integration step.
However, as a representative case, we only compute the eigenvalues of A1

3 at the
first step. In Fig. 4, we plot the moduli of the eigenvalues. It can be seen that all the
moduli of the eigenvalues are only slightly greater than 1. This is the main reason
that the present algorithm allows us using a direct integration method to solve the
inverse Cauchy problem.

5.3 Example 3

In this example we apply schemes (34) and (35) to

uxx +uyy = 0, −1 < x < 1, 0 < y < 1,

u(x,y) = exp(y2− x2)cos(2xy). (47)

Under a large noise with σ = 10%, and with ∆x = 2/60, ∆y = 1/1000 used in the
MGPS, the numerical solution at y = 1 is compared with the exact one in Fig. 5,
where α = 0.925 is used. It can be seen that the present algorithm is quite robust,
which can recover the data at the top side very well, even under a large noise.

5.4 Example 4

The following nonlinear Helmholtz equation is investigated:

uxx +uyy = 4u3. (48)
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Figure 5: For example 3: (a) comparing numerical and exact solutions, and (b) 
displaying numerical error of Dirichlet data. 
 
 
 
 
 
 

Figure 5: For example 3: (a) comparing numerical and exact solutions, and (b)
displaying numerical error of Dirichlet data.

The domain is same as that given in Example 2. The analytic solution

u(x,y) =
1

x+ y+4
(49)

is singular on the straight line x + y = −4. Under the noises with σ = 1% and
σ = 2%, and with ∆x = 1/30, ∆y = 1/3000 used in the MGPS, the numerical er-
rors for the solutions at y = 1 are shown in Fig. 6, where α =−0.25 is used. It can
be seen that the present algorithm is quite robust, which can recover the data rather
well.
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Figure 6: For example 4 displaying numerical errors of Dirichlet data. 
 
 
 
 
 
 
 
 
 
 

Figure 6: For example 4 displaying numerical errors of Dirichlet data.

5.5 Example 5

In this example we apply schemes (34) and (35) to the following quasi-linear PDE:

∇ · (eu
∇u) = 0, 0 < x < 1, 0 < y < 1, (50)

u = ln(2+ x2− y2). (51)

Essaouini, Nachaoui and Hajji (2004) have computed this problem by an iterative
boundary element procedure. The required data can be computed from Eq. (51).
Under a noise with σ = 10%, and with ∆x = 1/40, ∆y = 1/5000 used in the MGPS,
the numerical solution at y = 1 is compared with the exact one in Fig. 7, where
α = 0.98 is used. It can be seen that the present algorithm can recover the data
with a reasonable accuracy even under a large noise for the nonlinear problem.

5.6 Example 6

In this example we apply schemes (34) and (35) to a more ill-posed case of

uxx +uyy = y2, 0 < x < 0.05, 0 < y < 0.45, (52)
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Figure 7: For example 5: (a) comparing numerical and exact solutions, and (b) 
displaying numerical error of Dirichlet data. 
 
 
 
 
 
 
 
 
 

Figure 7: For example 5: (a) comparing numerical and exact solutions, and (b)
displaying numerical error of Dirichlet data.

where the exact solution is

u(x,y) = exp(y)(ycosx− xsinx)+
y4

12
. (53)

Under the following conditions:

u(x,0) =−xsinx, uy(x,0) =−xsinx+ cosx, 0 < x < 0.05, (54)

u(0,y) = yexp(y)+
y4

12
, 0 < y < 0.45, (55)

we attempt to recover the Dirichlet data u(x = 0.05,y) and u(x,y = 0.45). It can
be seen that the overspecified data are only given on a small part with only five
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Figure 8: For example 6: (a) comparing numerical and exact solutions, and (b) and (c) 
displaying numerical errors of Dirichlet data. 
 
 
 

Figure 8: For example 6: (a) comparing numerical and exact solutions, and (b) and
(c) displaying numerical errors of Dirichlet data.

percentages of the total boundary, and it is given no data on one-half of the total
boundary.

Under a noise with σ = 1%, and with ∆x = 0.05/14, ∆y = 0.45/200 and α = 1
used in the MGPS, the numerical solution at x = 0.05 is compared with the exact
one in Fig. 8(a), where the maximum error is about 0.02 as shown in Fig. 8(b). In
Fig. 8(c) we show the numerical error of u(x,y = 0.45) where the maximum error
is about 0.016. It can be seen that the present algorithm can recover one-half data
very accurately.
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Figure 9: For example 7 comparing numerical and exact solutions

5.7 Example 7

In this example we consider

uxx +uyy = 0, 0 < x < 2π, 0 < y < 1,

u(x,y) = sinxsinhy+ cosxcoshy. (56)

We attempt to recover the Dirichlet data u(x,y = 1). Under a large noise with
σ = 10%, and with ∆x = 2π/60, ∆y = 1/1000 and α = 1 used in the MGPS, the
numerical solution at y = 1 is compared with the exact one in Fig. 9. In order to
further stabilize this computation we have inserted a factor β = 0.3 before η1 and
η2 in Eqs. (34) and (35).

6 Conclusions

By employing a variable transformation and the mixed group-preserving scheme
(MGPS) we can recover the missing data on the top side very well for a nonlinear
inverse Cauchy problem. The variable α plays both a spring and a damping con-
stant, which can stabilize the numerical solutions. Several numerical examples of
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the inverse Cauchy problem were worked out, which show that our numerical in-
tegration methods are applicable to the inverse Cauchy problem, even for the very
severely ill-posed ones. Under the overspecified data with a quite large noise the
MGPS together with the spring-damping regularization method (SDRM) was also
robust enough to recover other unknown boundary data. The efficiency of SDRM
plus MGPS was rooted in its easy numerical implementation and easy to treat the
nonlinear inverse Cauchy problem.

Acknowledgement: Taiwan’s National Science Council project NSC-100-2221-
E-002-165-MY3 granted to the first author is highly appreciated.
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