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A Wavelet Numerical Method for Solving Nonlinear
Fractional Vibration, Diffusion and Wave Equations

Zhou YH1,2, Wang XM2; Wang JZ1,2 and Liu XJ2

Abstract: In this paper, we present an efficient wavelet-based algorithm for solv-
ing a class of fractional vibration, diffusion and wave equations with strong nonlin-
earities. For this purpose, we first suggest a wavelet approximation for a function
defined on a bounded interval, in which expansion coefficients are just the function
samplings at each nodal point. As the fractional differential equations containing
strong nonlinear terms and singular integral kernels, we then use Laplace transform
to convert them into the second type Voltera integral equations with non-singular
kernels. Certain property of the integral kernel and the ability of explicit wavelet
approximation to the nonlinear terms of the unknown function in the equations en-
able us to numerically decouple complex spatial and temporal dependencies during
solution of these equations, and eventually get a stable, high accuracy and efficient
numerical method without involving any matrix inversions for numerically solving
the nonlinear fractional vibration, diffusion and wave differential equations. Effi-
ciency and accuracy of the proposed method are justified by numerical examples.

Keywords: wavelet; nonlinear fractional differential equation; Laplace transform;
numerical method

Introduction

In recent years, fractional derivatives have been found to be very effective for
describing many physical phenomena such as rheology, damping laws, anoma-
lous random walk, fluid flow and many others [Carpinteri and Mainardi (1997);
Podlubny (1999); Momani (2007); Metzler, Barkai, and Klafter (1999); Hanyga
(2002); Momani (2005)]. These attract extensive studies regarding solutions of
various fractional differential equations including but not limited to the fractional
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Fokker-Planck equations [Metzler, Barkai, and Klafter (1999)], the space-time frac-
tional diffusion-wave equations [Hanyga (2002)], and the fractional KdV equations
[Momani (2005)].

Exact closed form solutions of fractional differential equations are usually rare.
Although based on techniques of integral transforms, we [Liu, Wang, Wang and
Zhou (2011)] have derived a series-form exact solution for the general linear time-
fractional diffusion-wave equations on a bounded space domain, yet there still ex-
ist no methods to analytically solve general nonlinear fractional partial differential
equations. Approximation techniques play an indispensable role in complementing
exact solutions. For example, both the homotopy perturbation [He (2000); He and
Momani (2007)] and homotopy analysis methods [Song and Zhang (2007); Elsaid
(2011)] provide an effective procedure for numerical solutions of differential equa-
tions. These methods are in principle based on Taylor series expansion with respect
to an embedding parameter. However, the rate of convergence of the series solu-
tion depends on the determination of an auxiliary parameter and an initial guess
of the solution, which are not always easy. The Adomian Decomposition Method
(ADM) and the Variational Iteration Method (VIM) have been used by Odibat and
Momani [Odibat and Momani (2006); Odibat and Momani (2008); Odibat and Mo-
mani (2009)] to solve the nonlinear partial differential equations of fractional order.
However, application of the ADM needs to approximately replace a linear operator
with fractional derives by that with integer derivatives, though the solution proce-
dure is simple, but the ADM is not as effective or convenient as the VIM [Odibat
and Momani (2009)]. Application of the VIM does not involve the calculation of
the so-called Adomian polynomials, but a good guess to the initial approximation
of the solution is crucial. Moreover, both the ADM and VIM need a large number
of iterative calculations. By using a finite difference scheme in time and Legendre
spectral methods in space, Lin and Xu [Lin and Xu (2007)] proposed a numerical
procedure to quantitatively solve the fractional diffusion equation. We note that the
adopted finite-difference method only has the accuracy of first order.

Despite the progresses outlined above, the literatures on high accuracy and easy to
implement numerical techniques that are suitable for the solutions of nonlinear frac-
tional vibration, diffusion and wave equations remain rather scarce due to the exis-
tence of strong nonlinearity and singularity in these equations. Wavelets represent
a newly developed powerful mathematical tool, which has been broadly applied
to signal decompositions and reconstructions, Laplace inversions [Wang, Zhou and
Gao (2003)], differential equation solutions [Liu, Wang, Wang and Zhou (2011); Li
(2010)] and active vibration control of piezoelectric smart structures [Zhou, Wang,
Zheng and Jiang (2000)]. However, it is somewhat surprising that only very few
studies have focused on the solution of fractional differential equations by using
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wavelet methods [Lepik (2009)]. In this paper, an efficient wavelet based algorithm
is proposed to solve the fractional differential equations with strong nonlinearities.
This algorithm depends on an explicit wavelet approximation scheme for the non-
linear terms of unknown functions in the equation, in which series coefficients are
just the function samplings at corresponding nodal points, and also depends on the
elimination of singular integral kernels through converting the equations into equiv-
alent nonsingular integral equations by using Laplace transform. Special property
of the convolution kernel and the explicit form of wavelet approximations to non-
linear terms of unknown functions allow us to numerically decouple complex spa-
tial and temporal dependencies in these equations, and eventually develop a stable
and efficient numerical method with high accuracy for the solutions of nonlinear
fractional differential equations.

1 Essential knowledge on wavelet theory

1.1 Approximating a function with Coiflets wavelets

Among compactly supported wavelets, a family known as Coiflets [Daubechies
(1988); Mallat (1998)] has a number of properties that make it particularly useful
in numerical analysis, one of which is the vanishing moments for both the scaling
and wavelet functions. The shifted vanishing moments for scaling function can be
used to construct one point quadratures in wavelet representation of a function. In
this study, we choose the scaling functions of Coiflets that satisfy the following
conditions:

φ(x) =
3γ−1

∑
k=0

pkφ(2x− k), (1)

∫
∞

−∞

φ(x)dx = 1, (2)

∫
∞

−∞

(x−M1) j
φ(x)dx = 0 (3)

where even integer γ is the maximum order of vanishing moments which insures
that the compact support interval of φ(x) is [0,3γ − 1], j = 1,2, . . . ,γ − 1, integer
M1 =

∫
∞

−∞
xφ(x)dx the first order moment of the scaling function, and pk the filter

coefficients, which have been listed in Table 1 [Wang, Zhou and Gao (2003)] for
γ = 2,4,6. As an illustrating example, Fig. 1 shows the scaling function for γ = 6
and M1 = 7. The general establishing method for Coiflets with different γ and M1
has been given by Wang in [Wang (2001)].
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Table 1: Coefficients pk for γ=2, 4 and 6.
k (γ=2) (γ=4) (γ=6)
0 5.456145913796356e-02 1.689380907695821e-03 −2.392638657280051e-03
1 -1.795614591379636e-01 -1.816639282073453e-02 −4.932601854180402e-03
2 -1.091229182759271e-01 3.507862062605389e-02 2.714039971139949e-02
3 83591229182759271e-01 7.074394036809258e-02 3.064755594619984e-02
4 1.054561459137964e+00 -2.197082915811749e-01 −1.393102370707997e-01
5 3.204385408620364e-01 -1.013118304071172e-01 −8.060653071779983e-02
6 8.067593419102440e-01 6.459945432939942e-01
7 1.061135780078056e+00 1.116266213257999e+00
8 3.968448038803485e-01 5.381890557079980e-01
9 -1.047986487449172e-02 −9.961543386239989e-02

10 -2.066385574316280e-02 −7.992313943479994e-02
11 -1.921632058008399e-03 5.149146293240031e-02
12 1.238869565706006e-02
13 −1.583178039255944e-02
14 −2.717178600539990e-03
15 2.886948664020020e-03
16 6.304993947079994e-04
17 −3.058339735960013e-04
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Figure 1: Scaling function of Coiflet wavelet with support interval [0,17].
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Any function f (x)∈ L2(R) can be approximated by its orthogonal projection to the
subspace Vn formed by the orthonormal basis {φn,k(x) = 2n/2φ(2nx− k),k ∈ Z} as

f (x)≈ Pn f (x) =
∞

∑
k=−∞

cn,kφn,k(x) (4)

in which

cn,k =
∫

R
f (x)φn,k(x)dx. (5)

Approximation accuracy of Eq. (4) can be estimated as [Sweldens and Piessens
(1994)]

‖ f (x)−Pn f (x)‖= O(2−nγ). (6)

Following Eqs. (1-3), we have a good approximation of coefficients of f (x) in the
expansion, i.e., Eq. (5) can be approximated as [Zhou and Wang (1999)]

cn,k =
∫

R
f (x)φn,k(x)dx≈ 2−n/2 f (

M1 + k
2n ). (7)

Further, we have

f (x)≈
∞

∑
k=−∞

f (
M1 + k

2n )φ(2nx− k). (8)

Here, we have assumed that the function f (x) is smooth enough. It can be seen
from Eq. (6) that the approximation error decays very fast as the resolution level
n and integer γ increase. Moreover, such a single-point reconstruction formula of
f (x) has several very interesting characteristics [Zhou and Wang (1999)]: For any
composite function of f (x), Π[ f (x)]∈L2(R), by treating Π[ f (x)] as a new function
and applying Eq. (8), we have

Π[ f (x)]≈
∞

∑
k=−∞

Π[ f (
M1 + k

2n )]φ(2nx− k). (9)

Notice that approximations like (8) or (9) are not valid for Fourier or Fourier-like
bases. Such form of series expansion is very useful when we use Galerkin type
method to solve nonlinear differential/integral equations. For example, if u(x) is
an unknown function in an equation with nonlinear term exp[u(x)], when we use
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Galerkin method to numerically solve such a nonlinear equation, we first approxi-
mate the unknown function u(x) as

u(x)≈∑
k

akhk(x). (10)

When we substitute Eq. (10) into the nonlinear term exp(u(x)), we have

exp(u(x))≈ exp(∑
k

akhk(x)). (11)

It can be seen from this equation that it will be very difficult to convert the govern-
ing equation into algebraic equations of the unknown coefficients ak by performing
weighted integration as the Galerkin method usually does. However, if we use Eq.
(9) to approximate both the function u(x) and its nonlinear composite exp[u(x)], we
have

exp(u(x))≈∑
k

exp(u(xk))φ(2nx− k) (12)

where xk = (k + M1)/2n. After performing weighted integration, algebraic equa-
tions containing exp(u(xk))can thus be obtained. Then unknown coefficients u(xk)
can be determined by solving the nonlinear algebraic equations. This analysis
shows that approximation in the form of Eqs. (8) and (9) is very useful when
applying Galerkin method to solve differential/integral equations with nonlinear
terms.

1.2 Approximating functions defined on a bounded interval

As we know, orthogonal scaling functions originally form a function basis on the
whole real line. If one wants to use them in the solution of a boundary value
problem defined on a bounded interval by simply taking restrictions of each ba-
sis function to the interval, some instability problems may arise, so one needs to
introduce extra treatments to avoid this drawback. Typical treatments include zero-
, symmetric- and periodic- extensions near the boundaries of the interval, which
usually introduce an artificial “jump” to the function value or its derivatives at the
edges. In this paper, we consider a natural extension treatment on the function de-
fined on a finite interval by using Taylor series expansion at each boundary [Wang
(2001)]. This method can make the extension to be smooth enough. In addition,
boundary values and boundary derivatives of the function to be approximated can
be explicitly embedded in the resulting scaling function expansions, when bound-
ary conditions need to be imposed during the solution of a differential equation.
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Consider a function g(x) ∈ L2[0,b] without loss of generality. Applying Taylor
series expansions at each side of the interval [0,b] leads to

g(x) =



M
∑

i=0

1
i!

dig(0)
dxi xi x ∈ (−∞, 0)

g(x) x ∈ [0, b]
M
∑

i=0

1
i!

dig(b)
dxi (x−b)i x ∈ (b, ∞)

(13)

In the case that some of the values dig(0)/dxi and dig(b)/dxi are known by the
boundary conditions or/and initial conditions if applicable, we can simply insert
them into Eq. (13). For those unknown derivatives at each border, applying numer-
ical difference with equidistant knots at endpoints 0, b gives

dig(0)
dxi =

α

∑
k=0

ζL,i,kg(
k
2n ),

dig(b)
dxi =

α

∑
k=0

ζR,i,kg(b− k
2n ) (14)

where ζL,i,k,ζR,i,k are the coefficients associated with the numerical difference. In
the case that α = 3, M = 3, according to the four-point-Malkoff numerical differ-
ence formulae [Sweldens (1995)], these coefficients can be given by

ζL,0
ζL,1
ζL,2
ζL,3

=


1 0 0 0
−11

6 3 −3
2

1
3

2 −5 4 −1
−1 3 −3 1

 ,


ζR,0
ζR,1
ζR,2
ζR,3

=


1 0 0 0
11
6 −3 3

2 −1
3

2 −5 4 −1
1 −3 3 −1

 (15)

where ζL = {2−inζL,i,k}, ζR = {2−inζR,i,k}, i,k = 0,1,2,3. Substituting the induced
results or Eq. (15) into Eq. (14) then the resulting results into Eq. (13), one gets

g(x) =



3
∑

k=0
g( k

2n )TL,k(x,βββ L), x ∈ (−∞, 0)

g(x), x ∈ [0, b]
3
∑

k=0
g(b− k

2n )TR,k(x,βββ R), x ∈ (b, ∞)

(16)

in which

TL,k(x) =
M

∑
i=0

βL,i
ζL,i,k

i!
xi, TR,k =

M

∑
i=0

βR,i
ζR,i,k

i!
(x−b)i. (17)

βββ L = {βL,i}, βββ R = {βR,i}, i = 0,1,2,3.
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We note that the introduction of βββ L and βββ R aims to assign boundary conditions to
the function g(x). For example, in the case that x = 0: dig(0)

/
dxi = 0, and other

boundary derivatives are unknown, we can just need to set βL,i = 0, and all other
elements of βββ L and βββ R equal to 1.

Under the consideration of extension function introduced above, we use the exten-
sion function of Eq. (16) into the wavelet transform of Eq. (8). Then, one obtains

g(x)≈
b2n+M1−1

∑
k=2−3N+M1

g
(

k
2n

)
φ(2nx+M1− k). (18)

Further rearrangement gives

g(x)≈
b2n

∑
k=0

gn,kΦb,n,k(x) (19)

where

gn,k = g(
k
2n ), (20)

Φb,n,k(x) =
φ(2nx+M1− k)+

−1
∑

j=2−3N+M1

TL,k(
j

2n ,βββ L)φ(2nx+M1− j), 0≤ k ≤ 3

φ(2nx+M1− k), 4≤ k ≤ b2n−4

φ(2nx+M1− k)+
b2n+M1−1

∑
j=1+b2n

TR,b2n−k(
j

2n ,βββ R)φ(2nx+M1− j), b2n−3≤ k ≤ b2n

(21)

Eq. (19) provides a modified wavelet expansion of a function defined on a bounded
interval with specified boundary values and derivatives. The corresponding coeffi-
cients appeared in Eq. (17) is just the function samplings at each nodal point, which
is very convenient for dealing with nonlinear differential equations.

2 Solution method

By using the modified wavelet approximation scheme for functions defined on
bounded intervals developed in the previous section, here, we consider the numeri-
cal solutions of both fractional initial-value and initial-boundary-value problems.
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2.1 Initial-value problem

For simplicity and without loss of generality, we consider a single degree of free-
dom vibration system with fractional derivative type damping and a nonlinear restor-
ing force. Governing equation and initial conditions for such a system can be given
by [Enelund and Olsson (1999)]

c1ÿ(t)+ c2Dα
t y(t)+g(y(t)) = f (t), t > 0, (22)

y(0) = y0, ẏ(0) = y1 (23)

where c1ÿ(t) represents the inertia force, c2Dα
t y(t) is the damping force, f (t) is the

external excitation, g(y(t)) is the nonlinear restoring force, 0 < α < 2, and Dα
t y(t)

is the Caputo fractional derivative of y(t), defined as [Caputo and Mainardi (1971)]

Dα
t y(t) =

{
y(n)(t), α = n ∈ N

1
Γ(n−α)

∫ t
0

y(n)(τ)
(t−τ)α+1−n dτ, n−1 < α < n

(24)

in which y(n)(t) = dny(t)/dtn, and Γ(·) is the Gamma function. By denoting the
Laplace transform of y(t) by Y (s), i.e., L[y(t)] = Y (s), the Laplace transform of
Dα

t y(t) can be expressed as [Caputo and Mainardi (1971)]

L[Dα
t y(t)] = sαL[y(t)]−

n−1

∑
m=0

sα−1−my(m)(0+), n−1 < α ≤ n, n ∈ N. (25)

Applying Laplace transform to the governing Eq. (22) and taking the initial condi-
tions of Eq. (23) into account, we have

(c1s2 + c2sα)Y (s)+L[g(y(t))− f (t)] =
1

∑
n=0

c1snyn +
[α]

∑
n=0

c2sα−1−nyn, (26)

or

Y (s)+R(s){L[g(y(t))− f (t)]}= Q(s) (27)

in which R(s) = 1/(c1s2 + c2sα), Q(s) = R(s)(
1
∑

n=0
c1snyn +

[α]
∑

n=0
c2sα−1−nyn), [α]

represents the maximal integer less than α , and Eq. (25) has been used.

Applying inverse Laplace transform to Eq. (27), we get

y(t)+
∫ t

0
r(t− τ)[g(y(τ))− f (τ)]dτ = q(t). (28)
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From the Ref. [Hong, Kim and Wang (2006)], we know

r(t) = L−1[R(s)] =
1
c1

tE2−α,2(−
c2

c1
t2−α), q(t) = L−1[Q(s)] (29)

where E2−α,2(−c2t2−α/c1) is the generalized Mittag–Leffler type functions defined
in the power series

Ea,b(z) =
∞

∑
k=0

zk

Γ(ak +b)
. (30)

It can be seen from Eq. (29) that the integral kernel r(t) is a non-singular smooth
function with property of r(0) = 0 when 0 < α < 2.

Applying Eq. (19) to approximate the term r(t− τ)[g(y(τ))− f (τ)] with τ ∈ [0, t]
in Eq. (28), we have

r(t− τ)[g(y(τ))− f (τ)]≈
t2n

∑
k=0

r(t− tk)[g(yk)− fk]Φt,n,k(τ) (31)

where tk = k/2n, g(yk) = g(y(tk)), and fk = f (tk). Integrating both sides of Eq.
(31), we obtain∫ t

0
r(t− τ)[g(y(τ))− f (τ)]dτ ≈

t2n

∑
k=0

r(t− tk)[g(yk)− fk]Φ
∫
t,n,k(t) (32)

where Φ
∫
t,n,k(ti) ≡

∫ ti
0 Φt,n,k(τ)dτ can be exactly obtained according to Zhou and

Wang [Liu, Wang and Zhou (2011)]. Inserting Eq. (32) into Eq. (28), and then set
t = ti yields

yi +
i

∑
k=0

ri−k[g(yk)− fk]Φ
∫
ti,n,k(ti)≈ qi (33)

Where yi = y(ti), ti = i/2n (i = 1,2,3, ...), ri−k = r(ti−tk), and qi = q(ti). According
to Eq. (29), there should be r(0) = 0 for 0 < α < 2, which implies that r(ti−
tk)[g(yk)− fk]Φ

∫
ti,n,k(ti) = 0 when k = i, thus, Eq. (33) can be further simplified into

the form

yi ≈
i−1

∑
k=0

ri−k[ fk−g(yk)]Φ
∫
ti,n,k(ti)+qi. (34)

It can be seen from Eq. (34), the solution yi can be directly obtained step-by-step
as the index i increases. In this process, no matrix inversion is needed.
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2.2 Initial-boundary-value problem

To verify if the above method is still valid for the solution of a fractional differ-
ential equation with both space and time variables, here, we consider a fractional
diffusion-wave equation with a nonlinear term and an inhomogeneous source terms
as follows

c1
∂ 2

∂ t2 u(x, t)+ c2Dα
t u(x, t)− ∂ 2u

∂x2 + χ(x, t,u) = ψ(x, t), 0 < x < b, t > 0, (35)

with the initial and boundary conditions,

u(x,0) = g0(x), ut(x,0) = g1(x), 0≤ x≤ b, (36)

u(0, t) = 0, u(b, t) = 0, t ≥ 0 (37)

where 0 < α < 2, c1 and c2 are constants, χ(x, t,u) stands for a nonlinear term of
unknown function u(x, t), and ψ(x, t) is an inhomogeneous source term.

Similar to our previous treatment for the initial value problem, we denote the
Laplace transform of u(x, t) by U(x,s), i.e., L[u(x, t)] = U(x,s). Applying Laplace
transform to the fractional diffusion-wave Eq. (35) and taking into account the
initial conditions in Eq. (36), we have

(c1s2 + c2sα)U(x,s)−L[H(x, t)] =
1

∑
n=0

c1sngn(x)+
[α]

∑
n=0

c2sα−1−ngn(x) (38)

Where we denote

H(x, t) =
∂ 2

∂x2 u(x, t)−χ(x, t,u)+ψ(x, t). (39)

Further, Eq. (38) can be rewritten as

U(x,s)−R(s){L[H(x, t)]}= Q(x,s). (40)

By denoting Q(x,s)= R(s)(
1
∑

n=0
c1sngn(x)+

[α]
∑

n=0
c2sα−1−ngn(x)), and R(s)= 1/(c1s2 + c2sα).

Apply inverse Laplace transform to Eq. (40), we have

u(x, t)−
∫ t

0
r(t− τ)H(x,τ)dτ = q(x, t) (41)

where r(t) is given by Eq. (29), which is a non-singular smooth function with prop-
erty of r(0) = 0 due to 0 < α < 2 and q(x, t) = L−1[Q(x,s)]. Obviously, function
q(x, t) can be easily obtained once the initial conditions in Eq. (36) are specified.
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Using Eq. (29) to approximate the function r(t− τ)H(x,τ) with τ ∈ [0, t], we have

r(t− τ)H(x,τ)≈
t2n

∑
k=0

r(t− tk)H(x, tk)Φt,n,k(τ). (42)

Inserting Eq. (42) into Eq. (41), and set t = ti, we obtain

u(x, ti)≈
i−1

∑
k=0

ri−kH(x, tk)Φ
∫
ti,n,k(ti)+q(x, ti). (43)

On the other hand, we have

u(x, tk)≈
b2m−1

∑
l=1

u(xl, tk)Φb,m,l(x) (44)

where xl = l/2m, and βL,0 = 0, βR,0 = 0 and all other elements of βββ L and βββ R being
equal to 1 have been assigned into Eqs. (19) and (21) to specify Φb,m,l(x). Denote

H j,k ≡ H(x j, tk)≈
b2m−1

∑
l=1

ul,kΦ
′′
b,m,l(x j)+ψ(x j, tk)−χ(x j, tk,u j,k) (45)

where ul,k = u(xl, tk), f
′′
(x)≡ d2 f (x)/dx2. We further have

u j,i ≈
i−1

∑
k=0

ri−kH j,kΦ
∫
ti,n,k(ti)+q j,i. (46)

To clearly show the method applied in the time-space problem, let us summarize
the procedure of the method as follows

When t = 0 or i = 0, we have u j,0 = g0(x j).
When t = 1/2n or i = 1, we have

H j,0 ≈
b2m−1

∑
l=1

ul,0Φ
′′
b,m,l(x j)+ψ(x j, t0)−χ(x j, t0,u j,0),

u j,1 ≈ r1H j,0Φ
∫
1/2n,n,0(

1
2n )+q j,1. (47)

When t = i0/2n or i = i0, we have already known u j,i<i0 ,H j,i<i0−1, and

H j,i0−1 ≈
b2m−1

∑
l=1

ul,i0−1Φ
′′
b,m,l(x j)+ψ(x j, ti0−1)−χ(x j, ti0−1,u j,i0−1),
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thus, we can obtain

u j,i0 ≈
i0−1

∑
k=0

ri0−kH j,kΦ
∫
ti0 ,n,k(ti0)+q j,i0 . (48)

The process a), b), c) can be proceeded to any time t.

It can be seen that such a solution procedure decouples the complicated spatial-
temporal dependences, making the solution of the nonlinear fractional differential
Eqs. (35-37) very simple. And no inversion of matrix and special solution tech-
nique are needed to deal with the nonlinear spatial and temporal operators.

3 Numerical examples

In this section we shall give a few numerical examples to demonstrate the efficiency
of the proposed method.

Example 1: We consider the following fractional equation given by Li [Li (2010)],

D2y(t)+D1.234y(t)+D0.333y(t)+ y3(t) = f (t), t > 0, (49)

y(0) = 0, ẏ(0) = 0, (50)

where

f (t) =
2

Γ(2)
t +

2
Γ(2.766)

t1.766 +
2

Γ(3.667)
t2.667 +(

1
3

t3)3,

and the exact solution y(t) = 1
3 t3. Eq. (49) can be converted into the form of Eq.

(27) and the corresponding convolution kernel r(t) can be calculated as

r(t) = L−1[R(s)], R(s) =
1

s2 + s1.234 + s0.333 . (51)

Here, we adopt an efficient and robust method of Laplace inversion via wavelet ex-
pansion of functions in the transform domain developed by Wang et al. [Wang,
Zhou and Gao (2003)]. This wavelet-based approach of Laplace inversion has
been justified by successful applications in vibration problems associated with ran-
domness [Koziol and Hryniewicz (2006); Koziol, Cristinel and Ibrahim (2008);
Hryniewicz (2011)] and fractional damping [Liu, Wang, Wang and Zhou (2011);
Wang, Zhou and Gao (2003)]. For Eq. (51), we have

r(t) = lim
q→∞

{
et

2q+1π
φ̂(− t

2q )
∞

∑
k=−∞

R(1+ i
M1 + k

2q )eitk/2q

}
(52)
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where φ̂(ξ ) is the Fourier transform of the scaling function φ(x), which can be
obtained by a product formula as shown in [Wang, Zhou and Gao (2003)].

By considering Eqs. (34) and (52), we obtain

yi ≈
i−1

∑
k=0

ri−k( fk− y3
k)Φ

∫
ti,n,k(ti) (53)

where r(t) is given by Eqs. (51) and (52), and Φt,n,k(t) is given by Eq. (21).
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Figure 2: Comparison between the numerical and exact solutions of Example 1.

Fig. 2 shows the comparison between the exact result of this problem and its nu-
merical approximation according to Eq. (53) when n = 4 corresponding to a time
step of 1/16. It can be seen from Fig. 2 that the approximate result almost coin-
cides with the exact one. Li [Li (2010)] solved the same equation by using a method
based on the so-called Chebyshev wavelets. Such a method needs numerical solu-
tion of a set of nonlinear algebraic equations. In [Li (2010)], the absolute error
of the approximate solution at t = 0.5 obtained by numerically solving 48 nonlin-
ear algebraic equations is 1.269211e-04, which is larger than the absolute error by
using Eq. (53) when n ≥ 4 as shown in Table 2. We should note that the approxi-
mate solution Eq. (53) does not involve any inversion of matrixes and solutions of
algebraic equations, saving a lot of computing time.

Example 2: Following Wang et al. [Wang, Hong and Huang (2002)], we consider
a single degree of freedom nonlinear vibration system with fractional damping

D2y(t)+
8
10

D1/2y(t)+ y3(t) = f (t), t > 0, (54)
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Table 2: Absolute error of numerical solutions of Example 1 under different reso-
lution level n.

t n = 4 n = 5 n = 6
0.25 6.1702945e-05 1.0564871e-06 1.9098283e-07
0.50 5.2252928e-06 2.1596250e-06 9.0243531e-08
0.75 8. 2326125e-06 4.2263352e-06 8.2589488e-08
1.00 1.0274991e-05 7.6263066e-06 1.1919017e-07

y(0) = 0, ẏ(0) = 0 (55)

where

f (t) = 2(t− 9
10)(t− 7

10)+4t(t− 7
10)+4t(t− 9

10)+2t2+
8

10Γ(1/2)(
128
35

√
t7− 128

25

√
t5 + 42

25

√
t3)+ [t2(t− 9

10)(t− 7
10)]3 .

For this equation, one easily verifys that the exact solution is of the form y(t) =
t2(t − 9/10)(t − 7/10) [Wang, Hong and Huang (2002)]. Following the solution
procedure suggested above, we convert Eq. (54) into the form of Eq. (34). The
corresponding convolution kernel r(t) in Eq. (34) can be given by Eq. (28) with
parameters c1 = 1,c2 = 8/10,α = 1/2, which is

r(t) = tE1.5,2(−
8
10

t1.5). (56)

Then, the approximate solution of Eqs. (54) and (55) can be expressed as

yi ≈
i−1

∑
k=0

ri−k( fk− y3
k)Φ

∫
ti,n,k(ti). (57)

Fig. 3 shows the comparison between the exact result and the approximate result
obtained by Eq. (57) for n = 7. A good agreement between the exact and approxi-
mate results can be observed from Fig. 3. Saha Ray et al. [Saha Ray, Chaudhuri and
Bera (2006)] also solved Eqs. (54) and (55) by using the modified Adomain De-
composition Method (ADM), and Atanackovic et al. [Atanackovic and Stankovic
(2008)] solved the same equation by using a different numerical scheme with an
expansion formula for fractional derivative. Table 3 gives a quantitative compari-
son between the exact results and some existing approximate results. From Table
3, we can see that the approximate results given in this paper have accuracy of at
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Figure 3: Comparison between the numerical and exact solutions of Example 2.

Table 3: Comparison of numerical solutions of Example 2 with the exact results.

t Exact This paper Saha Ray et al. (2006) Atanackovic et al. (2008)
0.25 0.01828130 0.01828127 0.0182813 0.0182531908
0.50 0.02000000 0.02000003 0.020026 0.0198515236
0.75 -0.00421875 -0.00421871 -0.0419593 -0.004492587
1.00 0.03000000 0.0300000 0.0300995 0.0293800105

least 5 effective numbers, and the other results obtained by, e.g., Saha Ray et al.
[Saha Ray, Chaudhuri and Bera (2006)] and Atanackovic et al. [Atanackovic and
Stankovic (2008)] have only two effective numbers.

Example 3: As has been discussed in Rashidinia et al. [Rashidinia, Ghasemi and
Jalilian (2010)], we consider a nonlinear fractional diffusion-wave equation.

∂ αu
∂ tα
−µ

∂ 2u
∂x2 + χ(x, t,u) = ψ(x, t), 0≤ x≤ 1,1 < α ≤ 2,t > 0 (58)

which subjects to the initial and boundary conditions

u(x,0) = 0,ut(x,0) = 0, 0≤ x≤ 1, (59)

u(0, t) = 0,u(1, t) = t3, t≥ 0, (60)

where χ(x, t,u) = u2, ψ(x, t) = 6tx3 + (tx)6− 6t3x, µ = 1, when α = 2, the ex-
act solution of Eqs. (58)-(60) in a closed form is u(x, t) = x3t3. In order to
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change the inhomogeneous boundary condition in this example into homogeneous,
we introduce an auxiliary function v(x, t) that satisfies u(x, t) = v(x, t)+ x5t3. In-
serting u(x, t) = v(x, t) + x5t3 into Eqs. (58)-(60) yields an equation of unknown
function v(x, t) with homogeneous boundary conditions and a new source term
ψ̃(x, t) = 6x3t +(xt)6−6xt3−6x5t +20x3t3. For such a reduced equation of v(x, t),
we have

r(t) = L−1[
1
sα

] =
t−1+α

Γ(α)
, (61)

and

v j,i ≈
i−1

∑
k=0

ri−kH j,kΦ
∫
ti,n,k(ti) (62)

in which H j,k ≈
2m−1

∑
l=1

vl,kΦ′′1,m,l(x j)+ ψ̃ j,k− (v j,k + x5
jt

3
k )2, ψ̃ j,k = ψ̃(x j, tk).

Fig. 4 (a) and (b) show, respectively, the calculated time responses at space point,
x = 0.25, and the displacement configurations at the instant t = 0.25 under different
fractional order α . Fig. 4 also shows the comparison of the exact results for the
case of α = 2 to corresponding numerical results when wavelet resolution levels for
time- and space- variables chosen as n = 8 and m = 4, respectively. From Fig. 4,
we find that the time-response (displacement configuration) increases as the factor
α decreases from α = 2 through α = 1.9 to α = 1.75, and the approximate solution
for α = 2 is in good agreement with the exact solution of u(x, t) = x3t3.

Example 4: We consider a nonlinear fractional Sine-Gordon equation with a non-
polynomial nonlinear term as follows

Dα
t u−uxx + sinu = f (x, t), 0≤ x≤ 1, t > 0. (63)

In the case that α = 1.8, f (x, t) = 10
Γ(0.2) t

0.2 sin(πx)+π2t2 sin(πx)+ sin(t2 sin(πx)),
and the initial and the boundary conditions

u(x,0) = 0, ut(x,0) = 0, 0≤ x≤ 1, (64)

u(0, t) = 0, u(1, t) = 0, t ≥ 0, (65)

we can obtain an analytical solution u(x, t) = t2 sin(πx) that satisfies Eqs. (63-65).
Following a similar procedure as that has been applied to Eqs. (58-60), we can
obtain the numerical solution of Eqs. (63-65) as

u j,i ≈
i−1

∑
k=0

ri−kH j,kΦ
∫
ti,n,k(ti) (66)



154 Copyright © 2011 Tech Science Press CMES, vol.77, no.2, pp.137-160, 2011

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Time t

R
es

po
ns

e 
u(

0.
25

, t
)

Numerical, α=1.75
Numerical, α=1.9
Numerical, α=2
Exact solution, α=2

 

(a) Time-responses at space point 25.0=x  
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(b) Displacement configurations at instant 25.0=t  
 

Figure 4: Numerical solutions of Example 3 for α = 1.75, α = 1.9, α = 2 under
scaling factors n = 8,m = 4.
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(a) Time-response at point 0.5x =  
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(b) Displacement configuration at instant 0.5t =  
 

Figure 5: Comparison between the numerical and exact solutions of Example 4.
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(a) For the time-response at point 0.5x =  
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(b) For the displacement configuration at instant 0.5t =  
 

Figure 6: Relative error of the wavelet-based numerical solutions comparing with
the exact solution to Example 4.
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where r(t) = t0.8/Γ(1.8), H j,k ≈
2m−1

∑
l=1

ul,kΦ
′′
1,m,l(x j) + f j,k − sin(u j,k) and f j,k =

f (x j, tk).
Fig. 5 gives the comparison of numerical results obtained in terms of Eq. (66) under
parameter choice of n = 9, m = 5 to the corresponding exact solution at space point
x = 0.5 and instant t = 0.5. The relative error is below 1% as demonstrated by Fig.
6.

4 Conclusions

In this study, we have proposed a numerical method for the solution of a class
of nonlinear fractional differential equations originated from engineering problems
related to phenomena of vibration, diffusion and wave motion etc. This method
has been realized by using a Coiflets-based function approximation scheme which
enables nonlinear terms in an equation being explicated expressed, and by applying
Laplace transform which converts the fractional differential equations with singular
integral kernels into equivalent integral equations with non-singular convolution
kernels, r(t). The property of the non-singular integral kernel, r(0) = 0, together
with the Coiflets-based function expansion scheme, allow us to establish a solution
procedure that decouples the complex spatial and temporal dependencies in the
equation. Such a solution procedure does not involve any matrix inversions and
can be implemented like the linear multi-step method for initial value problems.
We note that the method proposed in the present study can also be applied to more
general nonlinear fractional differential equations.
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