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Application of the Differential Transform Method for
Solving Periodic Solutions of Strongly Non-linear
Oscillators

Hsin-Ping Chu! and Cheng-Ying Lo’

Abstract: This paper presents the application of the differential transform method
to solve strongly nonlinear equations with cubic nonlinearities and self-excitation
terms. First, the equations are transformed by the differential transform method
into the algebra equations in terms of the transformed functions. Secondly, the
higher-order transformed functions are calculated in terms of other lower-order
transformed functions through the iterative procedure. Finally, the solutions are
approximated by the n-th partial sum of the infinite series obtained by the inverse
differential transform. Two strongly nonlinear equations with different coefficients
and initial conditions are given as illustrative examples.
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1 Introduction

Perturbation methods have been the main methods to solve the weakly nonlinear
equations of the following form [Nayfeh (2000)]

i+ cpx = £g(,x, %), (1)

where c| is a positive constant, € is a small positive parameter, g is a polynomial
function, and U is a control parameter. Classical perturbation methods such as the
harmonic balance (HB) method, the Lindstedt-Poincare (LP) method, the Krylov-
Bogolioubov-Mitropolski (KBM) method, the averaging method and the multiple-
scale method (MSM) are widely used to obtain approximate periodic solutions of
Eq. (1). However, the aforementioned methods are seldom used to solve strongly
nonlinear equations with nonlinear terms in unperturbed systems. The main reason
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is that it may become too complicated and difficult when applying the perturbation
methods to strongly nonlinear equations. The Jacobian elliptic functions are intro-
duced in many classic perturbation methods to extend their applications to strongly
nonlinear systems. For example, Lakrad and Belhaq (2000) presented the gener-
alized elliptic multiple scales method to solve the strongly nonlinear equation as
below

.5C.+C1X+C2f(x) = Sg([.t,x,x), (2)

where ¢y, ¢, are constants, f (x) includes quadratic or cubic terms and g is a polyno-
mial function. The solutions are expressed in terms of Jacobian elliptic functions.

The integral transform methods such as Laplace transform and Fourier transform
are also widely used for solving engineering problems by transforming governing
differential equations into algebraic equations which are easier to deal with [Tsai
and Chen (2009)]. However, they often require an elaborate process when applying
these integral transform techniques to nonlinear systems. The differential transfor-
mation method provides a different approach to solve strongly nonlinear equations
[Chen and Liu (1998); Chen and Chen (2009); Ho and Chen (2006); Jang, Wang
and Shie (2004)]. The differential transform method is a numerical method based
on Taylor’s series expansion. It can construct analytical solutions in the form of
polynomials. Not like traditional high order Taylor series method that requires
symbolic computation, the differential transform method relies on an iterative pro-
cedure to obtain Taylor’s series solutions. In this paper, the differential transform
method is applied to solve the strongly nonlinear equations in the form of Eq. (2)
with different coefficients and initial conditions. The characteristics of solutions
for each case are illustrated and discussed.

2 Differential Transform Method

The differential transform method is applied mainly to solve initial value problems.
The basic principles of the differential transformation method are briefly described
as follows: Let x () be an analytic function in the time domain D. The Taylor series
expansion of x(¢) is of the form

x(t) = i (r—10)" (dkx(t)> ., W€D 3)

=k dik

When #y = 0, Eq. (3) is called the Maclaurin series of x (¢) which takes the form of

o Lk dk
x(r)=Y) % ( CZ@){_O, Vt € D. )

k=0




Application of the Differential Transform Method 163

The differential transform of x (), denoted by X (k) or T [x(¢)], is defined as

k k
X(k):T[X(f)]:IZ'<dd);§f)> 07 k:172737 VkEK, (5)
! =

where K is the set of non-negative integers. X (k) is the transformed function,
also called the spectrum function, of x(¢) in the transformation domain, or the K
domain. His the time interval. Furthermore, the original function x(¢), also called
the inverse transform of X (k), is expressed, by substituting Eq.(5) into Eq. (4). as

0 k

x(1) = kgo (é) X (k) (6)
n k

x(t) = k;o (é) X (k). )

Nevertheless, in practice, x(¢) is usually approximated by the n-th partial sum
of power series in Eq. (6). The concept of the differential transform method
is derived from the Taylor series expansion. Therefore, let X (k) = T [x(¢)] and
Y (k) =T [y(¢)], the differential transforms of basic function operations below fol-
low immediately from the definition of the Taylor series expansion

Addition:

T [x(t) +y(1)] = X (k) +Y (k) (®)
Derivative:

| = R X g
Convolution:

Tlx(0)y (0] = X (k) +¥ (8 =liox<z>y<k—z> (10

Basically, the procedure of applying the differential transform method to solving
differential equations includes three major steps. Step 1: The differential equations
to be solved are transformed by the differential transform method from the time do-
main into the transformation domain. The resultant equations are algebra equations
in terms of the transformed function X (k). Step 2: The values of the transformed
function X (k) for each k are calculated through an iterative procedure, starting with
the first few values determined directly from initial conditions. Step 3: The original
function x (¢) is approximated through the inverse differential transform.



164 Copyright © 2011 Tech Science Press ~ CMES, vol.77, no.3, pp.161-172, 2011

3 Numerical Procedure

Two second-order nonlinear differential equations with cubic nonlinearity and dif-
ferent initial conditions are solved in the present study as numerical examples. The
solving procedures are described for both examples.

Example 1:
. 3 B 2.
X+Xx = &X+ ExXX, (11)

where €, & are constants. The initial conditions are x(0) = ¢, x(0) = B, where
o, B are constants. Apply the differential transform to Eq. (11) with respect to time
to obtain the transformed equation in the following iterative form

k )
WX(kJr@ LY X(k—1) Y X (1 - m)X(m)
]ﬁZO m=0 (12)
- slk:IlX(k+ Dt+eY X(k-0)Y X(l—m)mTHX(m—l— 1
=0 m=

The above equation gives the algebraic relationship between the transformed func-
tions X (k) fork=1,2,--- ,k+2. The highest order transformed function, X (k +2),
is expressed in terms of other lower order transformed functions as

2 k l
X(k+2) :MIM(—IZ‘()X(k—I) ZOX(l—m)X(m)-f-Slk;lX(k-i- 1)
k i ”;;Jrl
+eY Xk-1)Y, X(I=m)=——X(m+1))
=0 m=0

13)

The iterative procedure based on the above equation can be used to calculate X (k)
for k > 2 once the first two transformed functions, X (0) and X (1), are determined
directly from the following initial conditions

X(0)=a and X(1)=Hp. (14)

After the first n+1 transformed functions are solved, the solution of x(¢) is approx-
imated by the n-th partial sum of Eq. (6) as

w0 =Y (L) % (1)

k=0
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Usually, it is necessary to increase n to achieve a good approximation when the
time interval H is large. In practical applications, in order to avoid a large n value
and speed up the convergence rate, the entire time domain is often split into several
sub-intervals such that the solutions are solved sequentially in each sub-interval.
The values of the transformed function at the end of previous sub-interval are then
used as the initial conditions of the next sub-interval. By repeating the similar
procedure, the differential equation over the entire time domain can be solved.

Example 2:
F—x+x = ex+ e’k (16)

where € and &, are also arbitrary constants. The initial conditions are x (0) = «,
x(0) = B, where o, 3 are constants. Apply the differential transform to Eq. (16)
with respect to time to obtain the transformed equation in the following iterative
form

(k+1)(k+2) k !

B X(k+2)=X(k)+ Y. X(k—1) Y X(I1—m)X(m)
. =0 l m=0 (17)
- 81k;1X(k+ Dre Y X(k-) Y X(t—m) " xmi1)
=0 m=0

Again, the above equation can be rearranged in the way such that the highest order
transformed function, X (k+2), is expressed in terms of other lower order trans-
formed functions as

2 k I
X(k+2) :MM(X(k) =Y X(k—1) ) X(I—m)X(m)
l:(])( m:? (18)
+elk;1xa<+ DteY X(k-0)Y x(z—m)k%lx(er 1)

=0 m=0

The rest of procedures are similar to those of example 1.

4 Results and Discussions

Two self-excitation terms are included in the nonlinear equations, Eq. (11) and
Eq. (16), of both examples. Since no external forces exist in both examples, the
responses of these two equations solely depends on their initial conditions. The
time response and the phase plot of the solutions of example 1 with & =0, & =0
and initial conditions @ = 1, B = 0 are shown in Fig. 1 and Fig. 2, respectively.
Initial point (@, B) is defined by the initial conditions x (0) = «, x(0) = B. Fig. 3
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is the phase plot of the solution of example 1 with the same coefficients, & = 0,
& = 0, but with different initial conditions, o = 0.5, § = 0. Fig. 2 and Fig. 3
show the phase plot within the same time interval, 0 <7 < 10. A smaller initial
value a reduces the size and the oscillating frequency of the solution curves. As
shown in Fig. 2 and Fig. 3, within the same period of time, the solution curve for
a =1 forms a larger loop and goes about one and a half cycles around the loop,
on the other hand, the solution curve for &« = 0.5 can not circle around a smaller
loop completely. Fig. 4 shows the phase plot of example 1 with large initial values,
o =35, B =5. As expected, the solution curve forms a large loop and encircles it
many times when 0 <¢ < 10. The folds of the path are due to the discrete sampling
and regenerating of the data curve.

initial gt (1,0)

0s \ /
— 0.4
=0
=

as 0.8
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Figure 1: Example 1, time response Figure 2: Example 1, phase plot with
withe; =0, e,=0anda=1,8=1. e=0,=0anda=1,=0for0<
t <10.

Fig. 5-8 show the solution curves of example 1 with different &;, &. Although
they all start from the same initial point (1,0), the solution curves exhibit quite
different characteristics. For €, = —1 and & = 0, the solution converges to the
origin gradually from the initial point (1,0) as shown in Fig. 5. Fig.6 shows the
solutions goes along a twisted path from the initial point outward to infinite when
e =16=0. If g =0, & = —1, the solution converges to the origin again as
shown in Fig. 7. But, unlike the solution in Fig. 5, in which the solution move
directly toward to the origin in the third quadrant, the solution encircles the origin
and moves along a spiral curve toward the origin. The computation time span is
0<r<5inFig. 6 and 0 <r <100 in Fig.7. It is noted that, hereafter, in order to
clearly demonstrate the characteristics of the solutions, different computation time
span may be used in each individual figure. Fig.8 is the phase plot of the solution of
example 1 with & = 1, & = —1 and initial conditions, & = 1, = 0. The solution
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Figure 3: Example 1, phase plot with  Figure 4: Example 1, phase plot with
e=0,=0andx=05B=0for £ =0,&=0anda=35,=5for0<
0<r<10. t < 10.

curve converges to a twisted limit orbit from inside. In Fig. 9, if the initial point is
moved outside of the limit orbit, say, &« = 5, and 8 = 5, then the solution curves,
starting from the initial point (5,5), converges from outside toward the same limit
orbit as in Fig.8.

ohe/dt

=] *iE)
Figure 5: Example 1, phase plot with  Figure 6: Example 1, phase plot with
g=-1,=0anda=1,=0,0< ¢g=1,=0anda=1,8=0,0<
t <10 <5

The phase plots of example 2 are shown in Fig. 10-18 with different constants
€|, & .and initial conditions ¢, 3. Example 2 has trivial solutions if the initial
conditions are chosen to be & =1, B =0 or @ = —1, f = 0 because Eq. (15)
reduces to ¥ = x = 0. No system response will occur under such initial conditions.
Fig. 10 and Fig. 11 show two phase plots with €, =0, & = 0. Initial conditions are
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Figure 7: Example 1, phase plot with
g=0,=—landa=1,=0,0<
t <100

T T
1 intial &t (5)5)

Figure 9: Example 1, phase plot with
g=lL=—landa=5,p=50<
t <20.
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Figure 8: Example 1, phase plot with
g=lLg=—landa=1,$=0,0<
1 <20
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Figure 10: Example 2, phase plot with
e=0,=0anda=0,B8=1,0<
t <10.

a=0,8=1and @ =0.2, B =0.2in Fig. 10 and Fig.11, respectively. The solution
curves make a periodic motion along the close loops that are symmetric about the
horizontal axis (dx/dt = 0). This results are obvious since the acceleration,X, is the
function of x only. In Fig. 11, the center region shrinks to a small neck. Under
certain conditions, the solution curves will break into two parts at x = 0. Fig.12
shows such a result for o = 0.5, = 0 that the solution curve remains in the region
x > 0. It is expected that if the initial condition is changed to oo = —0.5, B =0,
the solution will follow a reflection path of Fig.12 with respect to the vertical axis

(x=0).
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Fig. 13 shows the phase plot for coefficients €, = —1, & = 0, and Fig.14 shows
that for €, = 0, & = —1, respectively. The solution curves converge to different
points with different coefficients initial conditions. In Fig. 13, the solution curve,
starting from the initial point (0,1), converges to the point (1,0), following a spiral
path. In Fig. 14, if the initial point moves to (-2,1), the solution curve converges
to a different point (0,-1) in the similar way. Fig. 15 and Fig. 16 show that the
solution curves starting from the same initial point (0,1) converge to different limit
orbits. When € =1 and & = —1, the solution curve moves outward to approach
the twisted orbit in Fig. 15. On the other hand, when &, = —1 and & = 1, the
solution curve approaches a slightly deformed elliptic orbit from outside in Fig.
16.

initial ati0.202)
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Figure 11: Example 2, phase plot with  Figure 12: Example 2, phase plot with
e=0,=0and x=02,=02, =0, =0and x=0.5, =02,
0<r<20. 0<r<10.

Fig.17-18 show, starting with different initial conditions, the phase plots of Eq.
(15) with smaller coefficients,e; = —1, & = 0. If the initial conditions are &« = 0
and B = 1, the solution at first moves along a shrinking orbit, which has a small
necking area at the center near x=0 and encircles the origin. Then, later on, the
solution curve shifts to the left, approaching a limit egg-shaped orbit that encircles
the point (-1,0), shown in Fig. 17. The phase plot with the initial conditions o = 0,
B =2 is shown in Fig. 18. However, it is interesting that, instead of converging
inward to a limit orbit, the solution moves outward if the initial point moves to (0,2)
from (0,1). There seems to have a saddle line between these two sets of solutions
shown in Fig.17 and Fig.18.

The solutions of the above two examples demonstrate the ability of the differential
transform method to solve strongly nonlinear equations with cubic nonlinearities
and self-excitation terms. The differential transformation method uses the itera-
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Figure 13: Example 2, phase plot with  Figure 14: Example 2, phase plot with
eg=-1,=0anda=0,=1,0< g =0,&=—-1land oo =-2, f =1,
t <20. 0<t<20.
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Figure 15: Example 2, phase plot with  Figure 16: Example 2, phase plot with
eg=lLg=—landa=0,=1,0< g=-1l,g=landa=0,=1,0<
t < 100. t <30.

tive process that consumes very short computing time when dealing with ordinary
differential equations. The number of iterations required for convergent solutions
depends on the complexity of solutions and the length of time increments. For av-
erage problems, the solutions may converge in about ten to twenty iterations. In
the present two examples, the iteration number of differential transform is 30, i.e.,
the order of Taylor expansion of the approximation solution is n=30. To increase
the convergence rate in the present examples, the time domain is divided into sev-
eral sub-intervals. The values of x(t) and X(¢) in at the end of each sub-interval
are adopted as the initial values of the next domain. The time increment of each
interval is chosen to be Ar = 0.05 or At = 0.02. If the solution goes to infinite as
shown in Fig. 6, a smaller time increment is necessary. Otherwise, the time incre-
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ment doesn’t have to be very small to achieve good results. This paper shows that
the differential transformation method can solve these nonlinear equations effec-
tively. This method is a useful tool in the investigation of the behavior of strongly
nonlinear equations.

|r||l|:eI at(01) 1

Figure 17: Example 2, phase plot with  Figure 18: Example 2, phase plot with
eg=-1,&=0landa=0,B=1, &=-0.1,=0I1l=andax=0,p=2,
0 <t <60. 0<tr<20.

5 Conclusions

The differential transformation method is used to solve two strongly nonlinear
equations with cubic nonlinearities and self-excitation terms. Different coefficients
and initial conditions are adopted to verify the capability of this method. It is shown
that the solutions of the strongly nonlinear equations are very sensitive to their ini-
tial conditions. Also shown is that the differential transformation method can solve
these nonlinear equations effectively.
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