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Experimental and Numerical Investigation of Instructions
for Hyperelastic Membrane Inflation Using Fluid

Structure Coupling
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Abstract: During the design process of membrane structure to resist to high pres-
sure loading, and the characterization of hyperelastic material, a structure made up
of thin rubber undergoes large deformation and rotation under high pressure load-
ing out of high pressurized gas. Until recently, to simulate the inflation of the
hyperelastic membrane, a uniform pressure based on thermodynamic model or ex-
perimental tests is applied to the structure, as boundary conditions. From a compu-
tational time point of view, this approach is very fast, since no computational fluid
dynamics is involved in the simulation. However, at the late stage of the mem-
brane inflation, uniform pressure simulations lead to numerical instability due to
the lack of fluid that generates damping effects and prevent numerical instability.
Thus the uniform pressure assumption is unstable at the end phase of the inflation
for long time duration. To simulate accurately the inflation process, computational
fluid dynamics in a moving fluid domain as well as fluid structure interaction (FSI)
algorithms need to be performed for accurate pressure prediction and fluid structure
interface coupling. For the simulation of gas dynamic in a moving domain, Arbi-
trary Lagrangian Eulerian (ALE) formulation is used. Both simulations, uniform
pressure and ALE simulation for computational gas dynamics, were compared to
test data, indicating satisfactory results in terms of correlation for earlier stage of
the inflation. However for late stage inflation, simulation using uniform pressure
show numerical instability leading to the blow up of the structure. With the more
recently developed procedure, ALE theory, shows the greatest accuracy, both in
terms of graphical and schematic comparison, especially at the late stage of the
inflation process. As a result, the new simulation procedure model can be utilised
to research into the effects of changing the designs of the membrane structure to
resist to highly pressure loading on soft rubber material.
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1 Introduction

Simulation of Fluid Structure Interaction (FSI) problems becomes more and more
the focus of computational engineering in the last years. The Lagrangian formula-
tion, where the mesh moves with material is mainly used to solve problems in solid
mechanics, and can be used for FSI problems. For small deformation, Lagrangian
formulation can solve fluid structure interface and material boundary accurately,
the main limitation of this formulation is mesh distortion for large deformation and
moving structure, since the fluid is solved on a moving domain due to the struc-
ture motion. Various approaches have been investigated to solve FSI problems, one
of the commonly used approach to solve these problems is the ALE formulation
which has been used with success in the simulation of fluid with large motion such
as sloshing fuel tank in automotive industry and bird impact in aeronautic industry.
Various approaches have been investigated to solve FSI problems, including ALE
muti-material formulation as in Aquelet et al. (2005) and Lagrangian formulations,
Benson (1992). The ALE multi-material formulation used in this paper, and devel-
oped by the first author in LSDYNA code, has been validated for several academic
and industrial applications. Once simulations are validated by experimental test re-
sults, it can be used as a design tool for the improvement of the structure involved.

In this paper the ALE formulation for the simulation of fluid dynamics problems,
as well as the coupling algorithm are presented. The paper is concentrated on the
validation of the methodology that has been implemented in an explicit finite ele-
ment code for structural dynamic to be able to simulate fluid structure interaction
problems, where the fluid mesh can be defined by an ALE or Eulerian mesh and
the structure mesh as a Lagrangian deformable mesh. From an algorithmic point of
view, a fluid element can contain more than one fluid material, for structure inflation
in ambient air, an element may contain one or two different materials, inside struc-
ture pressurized gas and outside ambient air. During the simulation, state variables
are computed and stored for each material in each element. An interface tracking
algorithm based on Young’s method is used to capture the interface between the two
materials inside the element. This method was used successfully to model many
industrial and academic applications as the sloshing tank problem. For the structure
involved in the coupling a rubber material is used with Mooney–Rivlin constitutive
material. For characterization of Mooney–Rivlin material constants under biaxial
deformation, we consider the problem of bubble inflation described in Erchiqui et
al. (2011). In this technique, applied blowing pressure and height at the hemi-
spheric pole are recorded during testing. Bubble inflation is practical because it
requires relatively simple devices. Moreover, it provides the best representation of
actual deformation during the process. The analytical treatment of inflation is com-
plicated due to non linearities in the material behavior and extensive deformation.
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Numerical methods can be used to simulate and predict the membrane deformation
process by solving nonlinear ordinary differential equations governing bubble mo-
tion, mathematical description of the ordinary differential equations are described
in detail in Erchiqui et al. (2007).

In this paper, we describe in section 2, the ALE formulation of the Navier Stokes
equation in a moving domain, and the advection algorithms used to solve mass,
momentum and energy conservation. The detail of a new coupling method, Eu-
ler Lagrange Coupling algorithm, used at the fluid structure interface for structure
loading is described at the end of section 2.. For the structure, the mechanical
properties of Mooney-Rivlin material under biaxial deformation obtained by using
bubble inflation technique, are described in section 3. The last section is devoted
to validate the capability of the methodology by comparing predicted displacement
time history with experimental data. Once simulations are validated by test results,
it can be used as design tool for the improvement of the system structure involved.

2 ALE formulation and Coupling algorithm

2.1 ALE and Eulerian formulation

Fluid problems, in which interfaces between different materials (gas and ambient
air) are present, are more easily modeled by using a Lagrangian mesh. However, if
an analysis for complex tank geometry is required, the distortion of the Lagrangian
mesh makes such a method difficult to use many re-meshing steps are necessary
for the calculation to continue. Another method to use is the Eulerian formulation.
This change from a Lagrangian to an Eulerian formulation, however, introduces
two problems. The first problem is the interface trackin, Young (1982) and the
second problem is the advection phase or advection of fluid material across element
boundaries.

To solve these problems, an explicit finite element method for the Lagrangian phase
and a finite volume method (flux method) for the advection phase are used. We
can refer to several explicit codes such as Pronto, Dyna3D and LS-DYNA; see
Hallquist (1998) for a full description of the explicit finite element method. The
advection phase has been developed by the first author into the LS-DYNA code,
extending the range of applications that can be used with the ALE formulation.
Current applications include sloshing involving a ‘free surface’, and high velocity
impact problems where the target is modeled as a fluid material, thus providing a
more realistic representation of the impact event by capturing large deformations.

An ALE formulation contains both pure Lagrangian and pure Eulerian formula-
tions. The pure Lagrangian description is the approach that: the mesh moves with
the material, making it easy to track interfaces and to apply boundary conditions.
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Using an Eulerian description, the mesh remains fixed while the material passes
through it. Interfaces and boundary conditions are difficult to track using this ap-
proach; however, mesh distortion is not a problem because the mesh never changes.
In solid mechanics a pure Eulerian formulation it is not useful because it can handle
only a single material in an element, while an ALE formulation is assumed to be
capable of handling more than one material in an element.

In the ALE description, an arbitrary referential coordinate is introduced in addition
to the Lagrangian and Eulerian coordinates. The material derivative with respect
to the reference coordinate can be described in (2.1). Thus substituting the rela-
tionship between the material time derivative and the reference configuration time
derivative derives the ALE equations.

∂ f (Xi, t)
∂ t

=
∂ f (xi, t)

∂ t
+wi

∂ f (xi, t)
∂xi

(2.1)

where Xi is the Lagrangian coordinate, xi the Eulerian coordinate, wi is the relative
velocity. Let denote by v the velocity of the material and by u the velocity of
the mesh. In order to simplify the equations we introduce the relative velocity
w = v−u. Thus the governing equations for the ALE formulation are given by the
following conservation equations (2.2) to (2.4):

(i) Mass equation.

∂ρ

∂ t
=−ρ

∂vi

∂xi
−wi

∂ρ

∂xi
(2.2)

(ii) Momentum equation.

The strong form of the problem governing Newtonian fluid flow in a fixed domain
consists of the governing equations and suitable initial and boundary conditions.
The equations governing the fluid problem are the ALE description of the Navier-
Stokes equations:

ρ
∂vi

∂ t
= σi j, j +ρbi−ρwi

∂vi

∂x j
(2.3)

The stress tensor σi j is described as follows:

Boundary and initial conditions need to be imposed for the problem to be well
posed.

The superscript means prescribed value, ni is the outward unit normal vector on the
boundary, and δi j is Kronecker’s delta function.

(iii) Energy equation.

ρ
∂E
∂ t

= σi jvi, j +ρbivi−ρw j
∂E
∂x j

(2.4)
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Note that the Eulerian equations commonly used in fluid mechanics by the CFD
community, are derived by assuming that the velocity of the reference configura-
tion is zero and that the relative velocity between the material and the reference
configuration is therefore the material velocity. The term in the relative velocity
in (2.3) and (2.4) is usually referred to as the advective term, and accounts for the
transport of the material past the mesh. It is the additional term in the equations
that makes solving the ALE equations much more difficult numerically than the
Lagrangian equations, where the relative velocity is zero.

In the second phase, the advection phase, transport of mass, internal energy and
momentum across cell boundaries are computed; this may be thought of as remap-
ping the displaced mesh at the Lagrangian phase back to its original or arbitrary
position.

From a discretization point of view of (2.2) , (2.3) and (2.4), one point integration is
used for efficiency and to eliminate locking,. The zero energy modes are controlled
with an hourglass viscosity Benson (1992). A shock viscosity, with linear and
quadratic terms, is used to resolve the shock wave, Richtmyer et al. (1967); a
pressure term is added to the pressure in the energy equation (2.4). The resolution
is advanced in time with the central difference method, which provides a second
order accuracy in time using an explicit method in time. For each node, the velocity
and displacement are updated as follows:

un+1/2 = un−1/2 +∆t.M−1.(Fexl +Fint) (2.5a)

xn+1 = xn−1 +∆t.un+1/2 (2.5b)

The multi-material formulation is attractive for solving a broad range of non-linear
problems in fluid and solid mechanics, because it allows arbitrary large deforma-
tions and enables free surfaces to evolve. The Lagrangian phase of the VOF method
is easily implemented in an explicit ALE finite element method. Before advection,
special treatment for the partially voided element is needed. For an element that
is partially filled, the volume fraction satisfies V≤

f 1, and the total stress by σ is
weighed by volume fraction σ f = σ .Vf .

In the second phase, the transport of mass, momentum and internal energy across
the element boundaries is computed. This phase may be considered as a ‘re-
mapping’ phase. The displaced mesh from the Lagrangian phase is remapped into
the initial mesh for an Eulerian formulation, or an arbitrary undistorted mesh for an
ALE formulation.

In this advection phase, we solve a hyperbolic problem, or a transport problem,
where the variables are density, momentum and internal energy per unit volume.
Details of the numerical method used to solve the equations are described in detail
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in Aquelet et al. (2005), where the Donor Cell algorithm, a first order advection
method and the Van Leer algorithm, a second order advection method are used. As
an example, the equation for mass conservation is:

∂ρ

∂ t
+∇.(ρu) = 0 (2.6)

It is not the goal of this paper to describe the different algorithms used to solve
equation (3.1); these algorithms have been described in detail in Benson (1992)
and Aquelet et al. (2005). Figure 1 describes the two phases for a one step explicit
calculation.

 

 
 

  Lagrangian Phase              Advection phase 

Figure 1: Lagrangian and Advection phases in multi-material ALE formulation

2.2 Coupling Algorithm

Several coupling methods between CFD and structural dynamic solvers have been
developed to solve coupling problems. Classical implicit and explicit coupling are
described in detail in Longatte et al. (2003) and Longatte et al. (2009), where
hydrodynamic forces from the fluid solver are passed to the structure solver for
stress and displacement computation. In this paper, a coupling method based on
contact algorithm is used. Since the coupling method described in this chapter is
based on the penalty method for contact algorithms, the contact approach is a good
introduction to this method. In contact algorithms, a contact force is computed
proportional to the penetration vector, the amount the constraint is violated. In an
explicit FEM method, contact algorithms compute interface forces due to impact
of the structure on the fluid, these forces are applied to the fluid and structure nodes
in contact in order to prevent a node from passing through contact interface. In
contact algorithms, one surface is designated as a slave surface, and the second as
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a master surface. The nodes lying on both surfaces are also called slave and master
nodes respectively. The penalty method imposes a resisting force to the slave node,
proportional to its penetration through the master segment , as shown in figure 2a
describing the contact process. This force is applied to both the slave node and the
nodes of the master segment in opposite directions to satisfy equilibrium.

 (a)

 
(b)

Figure 2: a. Description of Penalty Contact algorithm; b. Description of Penalty
Coupling algorithm

Penalty coupling behaves like a spring system and penalty forces are calculated
proportionally to the penetration depth and spring stiffness. The head of the spring
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is attached to the structure or slave node and the tail of the spring is attached to the
master node within a fluid element that is intercepted by the structure, as illustrated
in figure 2b.

Similarly to penalty contact algorithm, the coupling force is described by (2.7):

F = k.d (2.7)

where k represents the spring stiffness, and d the penetration. The force F in figure
2b is applied to both master and slave nodes in opposite directions to satisfy force
equilibrium at the interface coupling, and thus the coupling is consistent with the
fluid-structure interface conditions namely the action-reaction principle.

The main difficulty in the coupling problem comes from the evaluation of the stiff-
ness coefficient k in Eq. (2.7). The stiffness value is problem dependent, a good
value for the stiffness should reduce energy interface in order to satisfy total en-
ergy conservation, and prevent fluid leakage through the structure. The value of the
stiffness k is still a research topic for explicit contact-impact algorithms in struc-
tural mechanics. In this paper, the stiffness value is similar to the one used in
Lagrangian explicit contact algorithms, described in Benson (1992). The value of
k is given in term of the bulk modulus K of the fluid element in the coupling con-
taining the slave structure node, the volume V of the fluid element that contains the
master fluid node, and the average area Aof the structure element connected to the
structure node.

k = p f .
K.A2

V
(2.8)

3 Characterization of constitutive material and experimental setup

3.1 Characterization of constitutive material

First, we need to characterize material data using a bubble inflation technique, Joye
et al. (1972) to fit the constitutive model. To get material properties constants
of the membrane structure, The experimental setup has been described in detail
in Erchiqui et al. (2001), using the experimental setup in figure 3. Hyperelastic
constants were determined by biaxial characterization: membrane is subjected to
free inflation (with a controlled air flow rate) while the forming pressure and bubble
height were measured.

A hyperelastic material is defined as an elastic material in which the stress at each
point can be derived from a scalar function W(F) called the strain energy function.
In order to meet the requirements of objectivity, the strain energy function must be
invariant under changes in the observer frame of reference. It is well known that the
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Cauchy–Green deformation tensor is invariant under changes in the observer frame
of reference. Thus, if the strain energy function can be written as a function of the
right Cauchy–Green tensor C, it automatically meets the objectivity principle. The
general stress–strain relationship is given by the formula (3.1):

Si j = 2
∂W
∂Ci j

(3.1)

where S is the Piola–Kirchhoff stress tensor. The different models in the literature
define the strain energy as a function of the strain field. We considere the Rivlin’s
theory, Rivlin (1948). Rivlin’s theory of isotropic materials describes the energy as
a function of the three Cauchy strain invariants I1, I2, and I3. Assuming material
incompressibility, the stress can be obtained from the following Mooney–Rivlin
form (3.2):

W =
N

∑
i+ j=1

Ci j (I1−3)i (I2−3) j (3.2)

The use of two terms in the series is sufficient to describe the elastic modulus in
both the uniaxial and biaxial deformation modes. The tangential stresses T1 and T2
are deduced from the following expression for the strain energy W.

3.2 Experimental and numerical identification

Erchiqui et al. (2001), and Virk et al. (2009), have investigated experimentally
and numerically inflation behavior in thermoplastic membrane under the combined
effects of applied stress and temperature using bubble inflation tests. The results
were used to identify the material constants embedded in the constitutive models of
polymeric materials in this work. The polymeric material, acrylonitrile-butadiene-
styrene (ABS), was tested under biaxial deformation using bubble inflation tech-
nique. Initial ABS sheet thickness was 1.57 mm. The experimental setup is de-
scribed in figure 3, where a circular membranes were mounted between two metal
disks containing a circular aperture and clamped onto a support. The exposed cir-
cular area of diameter D=15cm cm was heated to softening point in an infrared
heating chamber. When the temperature became uniform over the flat sheet, the
circular area was inflated using compressed air at a controlled flow rate. During
testing, the applied blowing pressure, which was uniform over the membrane, was
measured with a pressure sensor. Height at the hemispheric pole, the center of the
membrane, and time were recorded simultaneously using a video camera and a data
acquisition system.
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For most inflation tests, testing ends when the bubble bursts. Figure 4 shows the
inflation profile of a circular plane membrane. Figure 5 shows the experimental and
fitting bubble height vs. time data at the pole of the membrane for ABS at 145oC.

 
 
 
 

 
 

Rubber Membrane 

Orifice for Gas  

         inflow 

Rigid Tube for  

   Gas inflow 

Figure 3: Description of the experimental Setup

Figure 6 compares the predicted pressure versus bubble height data at the pole of
the bubble using the Mooney–Rivlin model for the experimental measurements of
ABS at 145oC. The measurement error is smaller during the pressure rise (≈5%).
However, the numerical model for ABS provides a better fit to the experimental
data, as can be seen in Figure 5. It should be noted that at maximum pressure the
bubble height is of the order of the initial membrane radius. Beyond this critical
point, the height increases rapidly while the pressure falls. This unstable behavior
continues until the bubble bursts.

4 Numerical simulations

As a validation of the formulation described above, we first consider the problem of
free blowing of a viscoelastic membrane. The geometry of the structure is modeled
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Figure 4: Inflation of a flat circular membrane, ABS

using quarter symmetry model, and meshed with 4 nodes shell elements (2733
nodes and 132 shell elements) is considered as shown in Figure 11.

The measured pressure was interpolated by a polynomial function (Figure 7) and
used in the finite element program (Lagrangian Formulation) to compute the time
evolution of the bubble height at the pole. The predictions obtained with Mooney-
Rivlin model give almost identical results and is shown against experimental data
in Figure 7, at a setting temperature of 143oC. We notice that the Mooney-Rivlin
model predict similar bubble height at the pole, which is close to the experimental
measurements. However, the model gives different results, although close to the ex-
perimental measurements, when the bubble pressure level is close to the maximum
pressure reached during experiments. This phenomenon is related to the models
used and is the subject of several studies. Indeed, for these models there exists a
critical pressure beyond which the system diverges (unstable branch). The work as
presented does not, for now, describe the unstable region of the solution.

To validate the numerical results and to prove the ability of the ALE fluid struc-
ture coupling method to solve problems where the classical pressure boundary
conditions cannot, we use the two types of material with different Moony Rivlin
Coefficients, C01=115590 Pas and C01=105010 Pas. For the first material with
C01=115590 Pas, both formulations give same results and good correlation with
experimental data. The correlation can be seen in figure 8, where the evolution
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Figure 5: Experimental and predicted pressure versus bubble height for ABS at 147
oC

 
 
 
 
 
 
 

 

 

 

 Figure 6: Experimental and predicted pressure versus bubble height for ABS at 147
oC
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of the bubble height at the center of the membrane structure versus time is plot-
ted for experimental test and numerical simulation. For the softer material with
C01=105010 Pas, the solution from the simulation using pressure boundary con-
dition and no fluid, becomes unstable after t=0.6 second. This instability has not
been shown in our experimental tests when using this material. This instability is
due to the lack of damping that can be provided by the fluid. The missing fluid in
the pressure boundary condition simulation creates a lack of damping in the system
that lead the structure to numerical instability. This instability did not show up in
the simulation using fluid structure coupling, since the fluid involved in the simu-
lation has a damping effect during inflation. For this material, with C01=105010
Pas, time evolution of the bubble height for both simulations is plotted in figure 9.
In this figure, we can see the instability after t=0.6 second of the simulation using
pressure boundary condition.

Figures 10 to 12 present the evolution of the extension at 0 sec, 0.129 sec and
0.6 sec, respectively, associated with Mooney-Rivlin model using C01=105010.
In Figure 11, we present the final Von Mises stress distribution at t=0.6 second.
Let us notice that ALE formulation has been used successfully for different fluid
structure coupling applications including metal forming , Gakwaya et al. (2011),
and turbulent flow, Naji et al. (2009)

These simulations are of great interest for the design of monument to resist a blast
and provide protection to the monument and its occupants. Since the ultimate ob-
jective is the design of monument with occupant safety, numerical simulations can
be included in shape design optimization with shape optimal design techniques,
souli et al. (1993), and material optimization, Erchiqui et al. (2007). Once simula-
tions are validated by test results, it can be used as design tool for the improvement
of the system structure involved.

5 Conclusion

In this work, we have presented the application of a Arbitray Lagrangian Eulerian
(ALE) approach ALE for simulating the response of isotropic, incompressible ther-
moplastic material. The experimental validation is performed for an ABS material,
in the case of free inflation of a circular membrane subject to a dynamical pressure
load distribution.

The simulations were compared to test data, indicating satisfactory results in terms
of correlation, with the more recently developed procedure, ALE theory, showing
the greatest accuracy, both in terms of graphical and schematic comparison, es-
pecially in the late stage of the inflation process. We have shown that the fluid
structure coupling method, using ALE formulation where the fluid is represented
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Figure 7: Pressure interpolation versus experimental data and time

 
 
 
 
 
 
 
 
 
 

Bubble height 
       (m) 

Figure 8: Bubble height time evolution C01=115590 Pa
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Figure 8.- Bubble height time evolution C01=115590 Pa 
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Figure 9: Bubble height time evolution C01=105010
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Figure 10: Initial ALE Fluid Mesh overlapping structure mesh

by the full hydrodynamic equations can be more accurate and also more stable that
the Lagrangian method using pressure boundary conditions. Numerical simulation
using coupling method can still be stable for low Young modulus of the structure,
whereas the simulation using Lagrangian formulation with pressure boundary con-
ditions is unstable and cannot represent physical phenomena for soft rubber struc-
ture. As a result, the new simulation procedure model can be utilised to research
into the effects of changing the designs of the membrane structure to resist to highly
pressure loading.
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Figure 11: Fluid Material and structure displacement at t=0.129s

 

 

 

 
 
 

 

Figure 12: Fluid Material and structure displacement at t=0.6s
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