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A simple locking-free discrete shear triangular plate
element

Y.C. Cai1,2,3, L.G. Tian1 and S.N. Atluri3

Abstract: A new three node triangular plate element, labeled here as DST-S6
(Discrete Shear Triangular element with 6 extra Shear degrees of freedom), is pro-
posed for the analyses of plate/shell structures comprising of thin or thick members.
The formulation is based on the DKT (Discrete Kirchhoff Technique) and an appro-
priate use of the independent shear DOF(Degrees Of Freedom). The shear locking
is completely eliminated in the DST-S6, without any numerical expediencies such
as the reduce integration, the use of assumed strains/stresses, or the need for the
stabilization of the attendant zero energy modes. It is shown that the present DST-
S6 is much simpler than the triangular shear-deformable plate elements currently
available which pass the patch test for thick to very thin plates. The DST-S6 has
two extra shear DOF per node, but the extra shear DOF are the rotations caused by
the transverse shear deformation, and there is no difficulty in applying the essen-
tial boundary conditions for the present DST-S6. It is also demonstrated that the
solution of a pressure-loaded simply-supported circular plate of the DST-S6 avoids
the so-called polygon-circle Paradox. Various numerical examples indicate that the
DST-S6 is a robust and high-performance element for thick and thin plates.

Keywords: plate/shell element, locking-free, discrete Kirchhoff theory, triangu-
lar element, shear degrees of freedom

1 Introduction

Plate/Shell structures play an important role in civil, naval and airspace engineer-
ing. There has been a great interest in high performance coupled with simple for-
mulation, in the field of finite elements for plates and shells over the past several
decades (Gal and Levy 2006; Cai, Paik and Atluri 2010; Iura and Atluri 2003).
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The existing Mindlin plate elements can be broadly divided into two main groups.
The first group is the displacement model based on the assumed displacement func-
tion of the element, while the second group uses the mixed/hybrid element method.
The Mindlin-Reissner plate theory for the analyses of thin and thick plates requires
only a C0 continuity for the transverse displacement as well as the normal rotations,
and the difficulties of C1 continuity requirement for the transverse displacement
for the Kirchhoff elements can be avoided. However, the Mindlin-Reissner plate
elements based on the displacement approach give poor results in thin plate limit
because of the shear locking phenomenon. In order to eliminate the shear locking
in the Mindlin-Reissner plate elements, reduced integration, assumed natural stain
(ANS) approach, and assumed stress elements (or mixed/hybrid stress elements)
are used. For example, the reduced integration method by Zienkiewicz, Taylor
and Too(1971), and Pugh, Hinton and Zienkiewicz (1978), the selective integra-
tion method by Malkus and Hughes(1978), and Hughes Cohen and Haroun (1978),
the MITC family by Bathe and Dvorkin (1985), the MISC element by Nguyen,
Rabczuk, Stephane and Debongnie (2008), the DST family by Batoz and Lardeur
(1992), and Batoz and Katili (1992), the RDKTM by Chen and Cheung (2001),
the hybrid-Trefftz plate elements by Choo, Choi and Lee (2010), the assumed
stress/strain elements by Lee and Pian (1978), Katili(1993), and Brasile (2008).
Most of these elements are free from shear locking and are very useful for practical
applications. However, these popular elements always involve very complex for-
mulations to take the transverse shear effects into account for thick plates, and thus
lead to complexity in the form, and difficulty in the programming, of the stiffness
matrix.

In this work, we present a simple three node triangular plate element, labeled here
as DST-S6 (Discrete Shear Triangular element with 6 extra Shear degrees of free-
dom), for the analyses of plate/shell structures comprising of thin or thick members.
The formulation is based on the DKT (Discrete Kirchhoff Technique) (Batoz, Bathe
and Ho 1980; Dhatt 1969) and an appropriate use of the independent shear DOF
(Atluri 2005; Li, Soric, Jarak and Atluri 2005). The shear locking is completely
eliminated in the DST-S6, without any numerical expediencies such as the reduced
integration, the use of assumed strains/stresses, or the need for the stabilization of
the attendant zero energy mode. It is shown that the present DST-S6 is much sim-
pler than the triangular shear-deformable plate elements currently available, which
also pass the patch test for thick to very thin plates.
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2 Interpolation functions

2.1 The DKT element in brief

Consider a linear elastic triangular plate element undergoing infinitesimal deforma-
tion, as shown in Fig.1. The derivatives of the transverse displacement w around
two independent axes (not including the influence of the transverse shear deforma-
tion) are

θ̃x =
∂w
∂x

, θ̃y =
∂w
∂y

(1)
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where ( )iii yx ,=x  are the coordinates of the node i ; s  and n  indicate the tangent and normal 

of the element side ij  respectively; kl  is the length of side ij ; 3,2,1=i  and 1,3,2=j  when 

6,5,4 =k . 

Figure 1: Triangular element

The constraints of the zero-transverse-shear Kirchhoff plate theory are presented in
the following discrete way:

at the corner nodes i (i = 1,2,3)

θ̃xi =
∂w
∂x

∣∣∣∣
x=xi

, θ̃yi =
∂w
∂y

∣∣∣∣
x=xi

(2)

at the mid-side points k (k = 4,5,6)

θ̃nk =
1
2
(
θ̃ni + θ̃n j

)
(3)

θ̃sk =
∂w
∂ s

∣∣∣∣
x=xk

=
1.5
lk

(w j −wi)−
1
4
(
θ̃si + θ̃s j

)
(4)

where xi = (xi,yi) are the coordinates of the node i; s and n indicate the tangent and
normal of the element side i j respectively; lk is the length of side i j; i = 1,2,3 and
j = 2,3,1 when k = 4,5,6.
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Along each side i j we have{
θ̃sk
θ̃nk

}
=
[

mk nk
−nk mk

]{
θ̃xk
θ̃yk

}
(5)

where mk = cosαk and nk = sinαk when k = 4,5,6.

The rotations θ̃x and θ̃y of the element can be defined as follows:

θ̃x =
6

∑
i=1

Niθ̃xi, θ̃y =
6

∑
i=1

Niθ̃yi (6)

where

N j = (2L j −1)L j ( j = 1,2,3)
N4 = 4L1L2,N5 = 4L2L3,N6 = 4L3L1

(7)

Li are the area coordinates of the three-node triangular plate element and can be
expressed as

Li =
1

2A
(ai +bix+ ciy) (8)

ai = x jym− xmy j, bi = y j − ym, ci =−x j + xm (9)

where A is the area of the triangular element, and i = 1,2,3; j = 2,3,1;m = 3,1,2.

Finally, the following DKT displacements in each plate element are obtained by
using Eqs.(2) to (6):

θ̃x =
3

∑
i=1

(
Riwi +Rxiθ̃xi +Ryiθ̃yi

)
θ̃y =

3

∑
i=1

(
Hiwi +Hxiθ̃xi +Hyiθ̃yi

) (10)

where

R1 = 1.5(m6N6/l6−m4N4/l4) , R2 = 1.5(m4N4/l4−m5N5/l5) ,

R3 = 1.5(m5N5/l5−m6N6/l6) ,

Rx1 = N1 +N4
(
0.5n2

4−0.25m2
4
)
+N6

(
0.5n2

6−0.25m2
6
)
,

Rx2 = N2 +N4
(
0.5n2

4−0.25m2
4
)
+N5

(
0.5n2

5−0.25m2
5
)
,
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Rx3 = N3 +N5
(
0.5n2

5−0.25m2
5
)
+N6

(
0.5n2

6−0.25m2
6
)
,

Ry1 =−0.75(m4n4N4 +m6n6N6) ,

Ry2 =−0.75(m4n4N4 +m5n5N5) ,

Ry3 =−0.75(m5n5N5 +m6n6N6) ;

H1 = 1.5(n6N6/l6−n4N4/l4) , H2 = 1.5(n4N4/l4−n5N5/l5) ,

H3 = 1.5(n5N5/l5−n6N6/l6) , Hx1 = Ry1, Hx2 = Ry2, Hx3 = Ry3,

Hy1 = N1 +N4
(
0.5m2

4−0.25n2
4
)
+N6

(
0.5m2

6−0.25n2
6
)
,

Hy2 = N2 +N4
(
0.5m2

4−0.25n2
4
)
+N5

(
0.5m2

5−0.25n2
5
)
,

Hy3 = N3 +N5
(
0.5m2

5−0.25n2
5
)
+N6

(
0.5m2

6−0.25n2
6
)

2.2 The displacement functions of the proposed element DST-S6

For the three node element DST-S6 as shown in Fig.2, the shear strains are assumed
as

γx =
3

∑
i=1

(Liγxi),γy =
3

∑
i=1

(Liγyi) (11)

where γxi and γyi are the independent shear DOF of node i.
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where xiγ  and yiγ  are the independent shear DOF of node i . 
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where 

Figure 2: Three-node triangular plate element

The total rotations θx and θy of the thick plate (including the influence of the trans-
verse shear deformation) can be given by

θx = θ̃x− γx, θy = θ̃y− γy (12)
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Substituting Eqs.(10) and (11) into Eq.(12), and noticing that θ̃xi = θxi + γxi and
θ̃yi = θyi + γyiat node i, one obtains

θx =
3
∑

i=1
[Riwi +Rxiθxi +Ryiθyi +(Rxi−Li)γxi +Ryiγyi]

θy =
3
∑

i=1
[Hiwi +Hxiθxi +Hyiθyi +Hxiγxi +(Hyi−Li)γyi]

(13)

Thus, the matrix form of the generalized displacement functions of the DST-S6 can
be expressed as

U = Φa =
[
Φ1 Φ2 Φ3

]
a1
a2
a3

 (14)

where

U =
[
θx θy γx γy

] T (15)

ai =
[
wi θxi θyi γxi γyi

] T (16)

Φi =


Ri Rxi Ryi Rxi−Li Ryi

Hi Hxi Hyi Hxi Hyi−Li

0 0 0 Li 0
0 0 0 0 Li

 (17)

Notice that γxi and γyi in Eq.(16) are retained as independent shear DOF of node
i, which lead to a locking-free element which remains uniformly valid for either
thick or thin plates/shells, without using such numerical expediencies as selec-
tive/reduced integrations and without the need for stabilizing the attendant spurious
modes of zero-energy.

3 Stiffness matrix of the DST-S6

For deriving the element stiffness matrix of DST-S6 element, the strain energy in
an element can be written as (Chen and Cheung 2001)

Πp =
1
2

∫
Ae

(
χχχ

T Dbχχχ +γγγ
T Dsγγγ

)
dxdy (18)

in which χχχ is the bending stain, γγγ is the shear strain

χχχ =
[

∂θx
∂x ,

∂θy
∂y , ∂θx

∂y + ∂θy
∂x

]T
,γγγ =

[
γx γy

]T (19)
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and

Db =
Eh3

12(1−ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 ,Ds =
5Eh

12(1+ν)

[
1 0
0 1

]
(20)

where E is the elastic modulus, ν is the Poisson ratio, and h is the thickness of the
plate element.

Substituting Eq.(14) into Eq.(18), the element stiffness matrix of the DST-S6 can
be written as

Ke = Ke
b +Ke

s (21)

in which the bending part and the shear transverse-strain part of the element stiff-
ness matrix can be respectively written as

Ke
b =

∫
Ae

BT
b DbBbdxdy,Ke

s =
∫

Ae

BT
s DsBsdxdy (22)

where

Bb =
[
Bb1 Bb2 Bb3

]
(23)

Bbi =

 Ri,x Rxi,x Ryi,x Rγi,x Ryi,x

Hi,y Hxi,y Hyi,y Hxi,y Hγi,y

Ri,y +Hi,x Rxi,y +Hxi,x Ryi,y +Hyi,x Rγi,y +Hxi,x Ryi,y +Hγi,x

 (24)

where (),x denotes a differentiation with respect to x, Rγi = Rxi − Li and Hγi =
Hyi−Li.

Bs =
[
Bs1 Bs2 Bs3

]
(25)

Bsi =
[

0 0 0 Li 0
0 0 0 0 Li

]
(26)

3.1 Comments on element DST-S6

(1) It is clear that if the transverse shear effects are not important (for thin plates)
the DST-S6 will convergence to the DKT. The DST-S6 is completely locking free
and passes all constant patch tests exactly.

(2) It is clear from the above procedures that the formulation and the numerical im-
plementation of the present stiffness matrices of the DST-S6 are much simpler than
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that of the existing shear-deformable triangular plate elements currently available,
which also pass the patch test for thin and thick plates.

(3) The DST-S6 has five DOF per node, which increases the computational cost of
the final set of algebraic equations in the present method. However, the computa-
tional cost for generating the element stiffness matrix of the DST-S6 is much less
than that of the other shear-deformable triangular plate elements, e.g., the DST-BL
and DST-BK. In practical applications, the DST-S6 is more favorable than the other
shear-deformable plate elements since it leads to a much simpler explicit expression
and more efficient evaluation of the stiffness matrix.

(4) The DST-S6 has five DOF per node, but the two extra shear DOF (γxi and γyi)
are actually rotations causing by the transverse shear deformation, as shown in
Fig.3, and thus there is no difficulty to apply the essential boundary condition for
the present DST-S6. For example, for the symmetric boundary shown in Fig.4, the
boundary conditions of DST-S6 can be imposed in a weaker sense as follows

x = 0 : θxi = 0, γxi = 0

y = 0 : θyi = 0, γyi = 0
(27)
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Figure 3: The transverse shear strain

4 Numerical examples

In this section, several problems have been solved to demonstrate the performance
of the present DST-S6. The T3, DST-BL and RDKTM elements have been selected
for comparison with the proposed DST-S6, where
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Figure 4: Symmetric boundary condition

T3: The triangular displacement element with full integration.

DST-BL: Discrete Mindlin triangular plate element proposed by Baotz and Lardeur(1989).

RDKTM: Re-constituting discrete Kirchhoff triangular plate element by Chen and
Cheung (2001).

4.1 Eigenvalues and rank

Only three eigenvalues corresponding to the three rigid body modes (not including
the shear DOF γxi and γyi) are always zero for various element shapes and for very
thin to thick plates. The element has always a proper rank.

4.2 Constant curvature patch tests

The element stiffness matrix must satisfy the patch test in order to give reliable
results. To check the performance of the element, we start with the patch test
suggested in Batoz and Katili (1992), and Katili (1993).

We consider a patch of four elements as shown in Fig.5. The assumed material
properties of the plate are E = 1000 and ν = 0.3. The thickness of the plate is
h. The characteristic length of the plate is l. The patch tests are performed by
enforcing the following boundary conditions which lead to constant curvatures and
zero transverse shear

Case A: w = x2/2; θx = x; θy = 0; γx = 0; γy = 0

Case B: w = y2/2; θx = 0; θy = y; γx = 0; γy = 0

Case C: w = xy/2; θx = y/2; θy = x/2; γx = 0; γy = 0
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Figure 5: Mesh for the patch test

For the element DST-S6 exact results are obtained for any aspect ratio. But for the
element DST-BL small errors appear for h/l > 0.1. The errors on the displacement
w at node 5 are reported on Fig.6.

4.3 Constant shear patch tests

For verification of the constant shear deformation condition and zero curvature of
the DST-BL and DST-S6, the following fields have been imposed on the boundary
nodes in Fig.5:

Case A: w = x/2; θx =−1/2; θy = 0; γx = 1; γy = 0

Case B: w = y/2; θx = 0; θy =−1/2; γx = 0; γy = 1

Fig.7 shows the displacement w of node 5 for different thickness/length ration. It
can be seen that the displacements approached the pure shear line at high values of
h/l, and thus the elements DST-BL and DST-S6 pass the constant shear patch tests.

4.4 Square plate under uniform load

A simply supported or clamped square plate under uniform load q is considered for
linear elastic analysis. The side length and the thickness of the square plate are l
and h. A quarter of the plate is modeled due to the symmetry as shown in Fig.8.

The results for the central displacement w0 and for the central bending moment M0
for the simply supported plate are listed reported in Tabs.1 and 2. The results for
the central displacement w0 for the clamped plate are reported in Tab.3. As can be
seen, the displacement solutions of the DST-S6 based on primal methods converge
from "BELOW", and overall good results are obtained for the new locking-free
element DST-S6 compared to T3, DST-BL and RDKTM.
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 Figure 6: Constant curvature patch tests
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Table 1: Central deflection
(
×ql4/100D

)
for a simply supported square plate

loaded by uniform load

h/l 1.0e-5 0.001 0.01 0.10 0.15 0.20
DST-S6(2×2) 0.3681 0.3681 0.3684 0.3998 0.4333 0.4751
DST-S6(4×4) 0.3973 0.3973 0.3976 0.4230 0.4489 0.4834
DST-S6(8×8) 0.4040 0.4041 0.4044 0.4259 0.4505 0.4846

DST-S6(16×16) 0.4057 0.4057 0.4060 0.4260 0.4505 0.4848
DST-BL(16×16) 0.4057 0.4057 0.4059 0.4254 0.4498 0.4840
RDKTM(16×16) 0.4057 0.4057 0.4059 0.4256 0.4501 0.4844

T3(16×16) —– —– 0.0616 0.3999 0.4367 0.4755
Exact 0.4062 0.4062 0.4064 0.4273 0.4536 0.4906

Table 2: Central moment
(
×ql2/10

)
for a simply supported square plate loaded by

uniform load
h/l 1.0e-5 0.001 0.01 0.10 0.15 0.20

DST-S6(2×2) 0.4637 0.4637 0.4638 0.3998 0.4874 0.4963
DST-S6(4×4) 0.4633 0.4633 0.4634 0.4689 0.4707 0.4717
DST-S6(8×8) 0.4614 0.4614 0.4615 0.4637 0.4640 0.4641

DST-S6(16×16) 0.4607 0.4607 0.4608 0.4614 0.4615 0.4615
DST-BL(16×16) 0.4607 0.4607 0.4604 0.4589 0.4585 0.4584
RDKTM(16×16) 0.4607 0.4607 0.4606 0.4605 0.4606 0.4606

T3(16×16) —– —– —– 0.4186 0.4402 0.4482
Exact 0.4789

Table 3: Central deflection
(
×ql4/100D

)
for a clamped square plate loaded by

uniform load
h/l 1.0e-5 0.001 0.01 0.10 0.15 0.20

DST-S6(2×2) 0.1212 0.1212 0.1214 0.1341 0.1498 0.1710
DST-S6(4×4) 0.1257 0.1257 0.1259 0.1428 0.1634 0.1914
DST-S6(8×8) 0.1263 0.1263 0.1266 0.1463 0.1702 0.2025

DST-S6(16×16) 0.1265 0.1265 0.1267 0.1478 0.1730 0.2073
DST-BL(16×16) 0.1265 0.1265 0.1267 0.1473 0.1723 0.2069
RDKTM(16×16) 0.1265 0.1265 0.1267 0.1486 0.1750 0.2108

T3(16×16) —– —– 0.0277 0.1425 0.1714 0.2081
Exact 0.1265 0.1265 0.1265 0.1499 0.1798 0.2167
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Figure 7: Constant shear patch tests

4.5 Clamped circular plate under uniform load

A clamped circular plate subjected to uniformly distributed load q is considered.
The radius of the plate is r = 100 and the thickness of the plate is h. The material
properties are E = 100 and ν = 0.3. Due to the double symmetry, only one quarter
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Fig.8 Model of a clamped square plate 

Tab.1 Central deflection ( )Dql 1004×  for a simply supported square plate loaded by uniform load 

h/l 1.0e-5 0.001 0.01 0.10 0.15 0.20 

DST-S6(2×2) 0.3681 0.3681 0.3684 0.3998 0.4333 0.4751 

DST-S6(4×4) 0.3973 0.3973 0.3976 0.4230 0.4489 0.4834 

DST-S6(8×8) 0.4040 0.4041 0.4044 0.4259 0.4505 0.4846 

DST-S6(16×16) 0.4057 0.4057 0.4060 0.4260 0.4505 0.4848 

DST-BL(16×16) 0.4057 0.4057 0.4059 0.4254 0.4498 0.4840 

RDKTM(16×16) 0.4057 0.4057 0.4059 0.4256 0.4501 0.4844 

T3(16×16) ----- ----- 0.0616 0.3999 0.4367 0.4755 

Exact 0.4062 0.4062 0.4064 0.4273 0.4536 0.4906 

Tab.2 Central moment ( )102ql×  for a simply supported square plate loaded by uniform load 

h/l 1.0e-5 0.001 0.01 0.10 0.15 0.20 

DST-S6(2×2) 0.4637 0.4637 0.4638 0.3998 0.4874 0.4963 

DST-S6(4×4) 0.4633 0.4633 0.4634 0.4689 0.4707 0.4717 

DST-S6(8×8) 0.4614 0.4614 0.4615 0.4637 0.4640 0.4641 

DST-S6(16×16) 0.4607 0.4607 0.4608 0.4614 0.4615 0.4615 

DST-BL(16×16) 0.4607 0.4607 0.4604 0.4589 0.4585 0.4584 

RDKTM(16×16) 0.4607 0.4607 0.4606 0.4605 0.4606 0.4606 

T3(16×16) ----- ----- ----- 0.4186 0.4402 0.4482 

Exact 0.4789 

Tab.3 Central deflection ( )Dql 1004×  for a clamped square plate loaded by uniform load 

h/l 1.0e-5 0.001 0.01 0.10 0.15 0.20 

DST-S6(2×2) 0.1212 0.1212 0.1214 0.1341 0.1498 0.1710 

DST-S6(4×4) 0.1257 0.1257 0.1259 0.1428 0.1634 0.1914 

DST-S6(8×8) 0.1263 0.1263 0.1266 0.1463 0.1702 0.2025 

DST-S6(16×16) 0.1265 0.1265 0.1267 0.1478 0.1730 0.2073 

DST-BL(16×16) 0.1265 0.1265 0.1267 0.1473 0.1723 0.2069 

RDKTM(16×16) 0.1265 0.1265 0.1267 0.1486 0.1750 0.2108 

T3(16×16) ----- ----- 0.0277 0.1425 0.1714 0.2081 

Exact 0.1265 0.1265 0.1265 0.1499 0.1798 0.2167 

Figure 8: Model of a clamped square plate

of the plate is discretized as shown in Fig. 9. Four distributions of 25, 81 and 289
nodes are employed for the convergence studies. Similar good results are obtained
by the present element DST-S6, as listed in Tab. 4. Numerical results also indicate
that, although the primal methods are used, the displacement solutions of the ex-
ample converge from "UP" for the DST-S6, DST-BL and RDKTM (except for the
element T3).
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4.5 Clamped circular plate under uniform load 

A clamped circular plate subjected to uniformly distributed load q  is considered. The radius 

of the plate is 100=r  and the thickness of the plate is h . The material properties are 

100=E  and 3.0=ν . Due to the double symmetry, only one quarter of the plate is discretized 

as shown in Fig. 9. Four distributions of 25, 81 and 289 nodes are employed for the 

convergence studies. Similar good results are obtained by the present element DST-S6, as 

listed in Tab. 4. Numerical results also indicate that, although the primal methods are used, the 

displacement solutions of the example converge from "UP" for the DST-S6, DST-BL and 

RDKTM (except for the element T3). 

 

Fig. 9 Mesh of one quarter of a clamped circular plate (81 nodes) 

Tab.4 Central deflection ( )Dqr 1004×  for a clamped circular plate loaded by uniform load 

h/r 1.0e-5 0.001 0.01 0.10 0.15 0.20 

DST-S6(25) 1.6126 1.6126 1.6133 1.6759 1.7550 1.8656 

DST-S6(81) 1.5758 1.5758 1.5765 1.6425 1.7259 1.8426 

DST-S6(289) 1.5659 1.5659 1.5666 1.6348 1.7209 1.8415 

DST-BL(289) 1.5659 1.5659 1.5666 1.6458 1.7395 1.8678 

RDKTM(289) 1.5659 1.5659 1.5666 1.6368 1.7261 1.8513 

T3(289) ----- ----- 0.1609 1.5009 1.6600 1.8112 

Exact 1.5625 1.5625 1.5632 1.6339 1.7232 1.8482 

4.6 Simply supported circular plate under uniform load 

A simply supported circular plate subjected to uniformly distributed load q  is considered. 

The geometry and the material properties of the plate are the same as the clamped circular plate. 

The method proposed by Rhee and Atluri (1986) is employed to impose the geometrical 

boundary conditions for the simply supported circular plate when a polygonal domain 

approximation is used. Tab. 5 demonstrates that the solution of the present DST-S6 avoids the 

so-called Babuska Paradox, by imposing the correct boundary condition. Numerical results 

also indicate that the displacement solutions of the DST-S6 based on primal methods converge 

from "BELOW", and overall good results are obtained for the new locking-free element 

DST-S6 compared to T3, DST-BL and RDKTM. 

Figure 9: Mesh of one quarter of a clamped circular plate (81 nodes)
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Table 4: Central deflection
(
×qr4/100D

)
for a clamped circular plate loaded by

uniform load
h/r 1.0e-5 0.001 0.01 0.10 0.15 0.20

DST-S6(25) 1.6126 1.6126 1.6133 1.6759 1.7550 1.8656
DST-S6(81) 1.5758 1.5758 1.5765 1.6425 1.7259 1.8426
DST-S6(289) 1.5659 1.5659 1.5666 1.6348 1.7209 1.8415
DST-BL(289) 1.5659 1.5659 1.5666 1.6458 1.7395 1.8678
RDKTM(289) 1.5659 1.5659 1.5666 1.6368 1.7261 1.8513

T3(289) —– —– 0.1609 1.5009 1.6600 1.8112
Exact 1.5625 1.5625 1.5632 1.6339 1.7232 1.8482

4.6 Simply supported circular plate under uniform load

A simply supported circular plate subjected to uniformly distributed load q is con-
sidered. The geometry and the material properties of the plate are the same as the
clamped circular plate. The method proposed by Rhee and Atluri (1986) is em-
ployed to impose the geometrical boundary conditions for the simply supported
circular plate when a polygonal domain approximation is used. Tab. 5 demon-
strates that the solution of the present DST-S6 avoids the so-called Babuska Para-
dox, by imposing the correct boundary condition. Numerical results also indicate
that the displacement solutions of the DST-S6 based on primal methods converge
from "BELOW", and overall good results are obtained for the new locking-free
element DST-S6 compared to T3, DST-BL and RDKTM.

Table 5: Central deflection
(
×qr4/100D

)
for a simply supported circular plate

loaded by uniform load

h/r 1.0e-5 0.001 0.01 0.10 0.15 0.20
DST-S6(25) 6.3014 6.3014 6.3021 6.3734 6.4634 6.5894
DST-S6(81) 6.3535 6.3535 6.3542 6.4252 6.5148 6.6402
DST-S6(289) 6.3661 6.3661 6.3668 6.4376 6.5270 6.6521
DST-BL(289) 6.3661 6.3661 6.3668 6.4505 6.5468 6.6773
RDKTM(289) 6.3661 6.3661 6.3667 6.4369 6.5263 6.6514

T3(289) —– —– 1.3514 6.2084 6.4245 6.5953
Exact 6.3702 6.3702 6.3709 6.4416 6.5309 6.6559
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5 Conclusions

A new locking-free triangular plate element DST-S6 having three nodes, and five
DOF per node, has been proposed. The two extra transverse shear strains (γxi and
γyi) are introduced as additional shear DOF to eliminate the shear locking phe-
nomenon for shear-deformable plates, but the extra shear DOF of the DST-S6 can
be treated as rotations caused by the transverse shear deformation, and there is no
difficulty to impose the essential boundary condition for the present DST-S6. The
most promising feature of the DST-S6 is the simplicity of its formulation and its
numerical implementation. Numerical examples indicate that the proposed DST-
S6 passes the curvature patch tests and the shear patch tests exactly, and has high
convergence rates and high accuracy.

A whole family of shear-deformable triangular and quadrilateral plate elements can
in fact be derived with the similar formulation of the DST-S6. The present element
can be applied to the linear/nonlinear analysis of composite plates and shells as
well.

Acknowledgement: The authors gratefully acknowledge the support of Na-
tional Basic Research Program of China (973 Program: 2011CB013800), Program
for Changjiang Scholars and Innovative Research Team in University(PCSIRT,
IRT1029), and Kwang-Hua Fund for College of Civil Engineering, Tongji Uni-
versity. This research was also supported in part by an agreement of UCI with
ARL/ARO with D.Le and A.Ghoshal as cognizant collaborators, and by the World
Class University (WCU) program through the National Research Foundation of
Korea funded by the Ministry of Education, Science and Technology (Grant no.:
R33-10049).

References

Atluri, S.N. (2005): Methods of Computer Modeling in Engineering & Science.
Tech Science Press.

Batoz, J.L.; Bathe, K.J.; Ho, L.W.(1980): A study of three-node triangular plate
bending elements. International Journal for Numerical Methods in Engineering,
Vol.15, pp.1771-1812.

Bathe, K.J.; Dvorkin, E.N.(1985): A four-node plate bending element based on
Mindlin/Reissner plate theory and a mixed interpolation. International Journal for
Numerical Methods in Engineering, Vol.21, pp.367–383.

Batoz, J.L.; Katili, I.(1992): On a simple triangular Reissner/Mindlin plate ele-
ment based on incompatible modes and discrete constraints. International Journal



A simple locking-free discrete shear triangular plate element 237

for Numerical Methods in Engineering, Vol.35, pp.1603–1632.

Batoz, J.L.; Lardeur, P.(1989): A discrete shear triangular nine d.o.f. element
for the analysis of thick to very thin plates. International Journal for Numerical
Methods in Engineering, Vol.29, pp.533–560.

Brasile, S.(2008): An isostatic assumed stress triangular element for the Reissner–
Mindlin plate-bending problem. International Journal for Numerical Methods in
Engineering, Vol.74, pp.971–995.

Cai, Y.C.; Paik, J.K.; Atluri S.N. (2009a): Large Deformation Analyses of Space-
Frame Structures, with Members of arbitrary Cross-Section, Using Explicit Tan-
gent Stiffness Matrices, Based on a von Karman Type Nonlinear Theory in Rotated
Reference Frames. CMES: Computer Modeling in Engineering & Sciences, Vol.
53, No. 2, pp. 123-152.

Cai, Y.C.; Paik, J.K.; Atluri S.N. (2009b): Large Deformation Analyses of
Space-Frame Structures, Using Explicit Tangent Stiffness Matrices, Based on the
Reissner variational principle and a von Karman Type Nonlinear Theory in Ro-
tated Reference Frames. CMES: Computer Modeling in Engineering & Sciences,
Vol. 54, No. 3, pp. 335-368.

Cai, Y.C.; Paik, J.K.; Atluri S.N. (2010a): Locking-free Thick-Thin Rod/Beam
Element for Large Deformation Analyses of Space-Frame Structures, Based on the
Reissner Variational Principle and A Von Karman Type Nonlinear Theory. CMES:
Computer Modeling in Engineering & Sciences, Vol. 58, No. 1, pp. 75-108.

Cai, Y.C.; Paik, J.K.; Atluri S.N. (2010b): A triangular plate element with
drilling degrees of freedom, for large rotation analyses of built-up plate/shell struc-
tures, based on the Reissner variational principle and the von Karman nonlinear
theory in the co-rotational reference frame. CMES: Computer Modeling in Engi-
neering & Sciences, Vol. 61, pp.273-312.

Chen, W.J. and Cheung, Y. K.(2001): Refined 9-Dof triangular Mindlin plate
elements. International Journal for Numerical Methods in Engineering, Vol.51,
pp.1259–1281.

Choo, Y. S.; Choi, N.; Lee, B.C.(2010): A new hybrid-Trefftz triangular and
quadrilateral plate elements. Applied Mathematical Modelling, Vol.34, pp.14–23.

Dhatt, G.(1969): Numerical analysis of thin shells by curved triangular elements
based on discrete Kirchhoff hypothesis. Proc. ASCE Symp. on Applications of
FEM in Civil Engineering, Vanderbilt University, Nashville, Tenn., pp. 255-278.

Gal, E.; Levy, R.(2006):Geometrically nonlinear analysis of shell structures using
a flat triangular shell finite element. Arch. Comput. Meth. Engng., Vol. 13, pp.
331-388.



238 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.221-238, 2011

Hughes, T.J.R.; Cohen, M.; Haroun, M.(1978): Reduced and selective integra-
tion techniques in finite element analysis of plates. Nuclear Engineering and De-
sign, Vol.46, pp.203–222.

Iura, M.; Atluri, S.N.(2003): Advances in finite rotations in structural mechanics.
CMES: Computer Modeling in Engineering & Sciences, Vol.4, pp.213-215.

Katili, I. (1993): A new discrete Kirchhoff-Mindlin element based on Mindlin-
Reissner plate theory and assumed shear strain fields—part I: an extended DKT el-
ement for thick-plate bending analysis. International Journal for Numerical Meth-
ods in Engineering, Vol.36, pp.1859–1883.

Lee, S.W.; Pian, T.H.H.(1978): Improvement of plate and shell finite elements by
mixed formulation. AIAA Journal, Vol.16, pp.29–34.

Li, Q.; Soric, J.; Jarak, T.; Atluri, S.N. (2005): A locking-free meshless local
Petrov–Galerkin formulation for thick and thin plates. Journal of Computational
Physics. Vol. 208, pp.116–133.

Malkus, D.S.; Hughes, T.J.R.(1978): Mixed finite element methods-reduced and
selective integration techniques: a unification of concepts. Computer Methods in
Applied Mechanics and Engineering, Vol.15, pp.63–81.

Nguyen, X.H.; Rabczuk, T.; Stephane, B.; Debongnie, J.F.(2008): A smoothed
finite element method for plate analysis. Computer Methods in Applied Mechanics
and Engineering, Vol.197, pp.1184–1203.

Pugh, E.D.; Hinton, E., Zienkiewicz, O.C.(1978): A study of triangular plate
bending element with reduced integration. International Journal for Numerical
Methods in Engineering, Vol. 12, pp.1059 –1078.

Rhee, H.C.; Atluri, S.N. (1986): Polygon-circle paradox in the finite element
analysis of bending of a simply supported plate. Computers & Structures, Vol.22,
pp.553-558.

Zhu, H.H.; Cai, Y.C.; Paik, J.K.; Atluri S.N. (2010): Locking-free Thick-Thin
Rod/Beam Element Based on a von Karman Type Nonlinear Theory in Rotated
Reference Frames For Large Deformation Analyses of Space-Frame Structures.
CMES: Computer Modeling in Engineering & Sciences, Vol. 57, No. 2, pp. 175-
204.

Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M. (1971): Reduced integration tech-
nique in geneal analysis of plates and shells. International Journal for Numerical
Methods in Engineering, Vol. 3, pp.275–290.


