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Acoustic Design Shape and Topology Sensitivity
Formulations Based on Adjoint Method and BEM
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Abstract: Shape design and topology sensitivity formulations for acoustic prob-
lems based on adjoint method and the boundary element method are presented and
are applied to shape sensitivity analysis and topology optimization of acoustic field.
The objective function is assumed to consist only of boundary integrals and quan-
tities defined at certain number of discrete points. The adjoint field is defined so
that the sensitivity of the objective function does not include the unknown sensitiv-
ity coefficients of the sound pressures and particle velocities on the boundary and
in the domain. Since the final sensitivity expression does not have the sensitivity
coefficients of the sound pressure and particle velocity on the boundary, BEM anal-
yses only for the primary acoustic field and the adjoint field are needed to calculate
the sensitivities of the objective function. The derived formulations are applied to
shape sensitivity analyses and a topology optimization of a sound scatterer placed
in an infinite space. The level-set method is utilized to control the shape of the
domain in the iterative process of obtaining the optimum shape of the scatterer.

Keywords: Acoustics sensitivity analysis, adjoint method, topology optimiza-
tion, level-set method.

1 Introduction

Due to the development of fast computation algorithms [Rokhlin (1985)], BEM
can be considered as a strong analysis tool for shape optimization problems that re-
quires re-meshing in the shape modification process. Shape optimization problems
are usually solved by minimizing an appropriately defined objective function. In
order to calculate the value of objective function and its sensitivities with respect
to design variables, we can use boundary element method (BEM) based on either
the direct differentiation method [Matsumoto, Tanaka, Miyagawa, and Ishii (1993);
Matsumoto, Tanaka, and Yamada (1995); Koo (1997); Zheng, Matsumoto, Taka-
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hashi, and Chen (2011)] or the adjoint variable method [Haug, Choi, and Komkov
(1986)]. Direct differentiation method uses a boundary integral equation for the
sensitivity coefficients of the boundary quantities. Hence, when the number of de-
sign variables are large, we have to repeat calculations of the sensitivities of the
boundary quantities for all the design variables. On the other hand, because the
adjoint method defines a system that can eliminate the unknown sensitivities of the
quantities on the boundary and in the domain, we have to solve only the original
acoustic problem and the adjoint problem when calculating the sensitivities of the
objective function.

In this study, an adjoint method approach is shown for shape and topology opti-
mization of acoustic field. The objective function is assumed to be defined with
the sound pressure and the particle velocity on the boundary and with quantities at
a finite number of internal points. The boundary element method is used for the
analysis of the original acoustic problem and the corresponding adjoint problem.
The adjoint problem and the sensitivity expression are derived for a typical form of
objective function that is appropriate for using BEM. The derived topological sen-
sitivity is used in the topology optimization procedure [Yamada, Izui, Nishiwaki,
and Takezawa (2010)] based on the geometric modeling using level-set function
[Wang, Lim, Khoo, and Wang (2007)]. Some numerical examples are shown to
demonstrate the effectiveness of the present approach.

2 Boundary integral equations

The governing differential equation for the propagation of time-harmonic acoustic
waves in a homogeneous and isotropic acoustic medium is the following Helmholtz
equation:

∇
2 p(x)+ k2 p(x)+ s(x) = 0 (1)

where p(x) is the sound pressure at point x, ∇2 is the Laplace operator, k = 2π f /C
is the wavenumber with is the frequency f and sound speed C, and f (x) is sound
source.

The boundary conditions are

p(x) = p̄(x) on Γp (2)

q(x) =
∂ p
∂n

(x) =−iωρ v(x) = q̄(x) on Γq (3)

where n denotes the outward normal direction, i the imaginary unit, ω the circular
frequency, ρ the density of the medium, and v the particle velocity. An over-scribed
bar ( ¯) indicates that the value is given on the boundary.
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The integral representation of the solution to the Helmholtz equation is given by

p(x)+
∫

Γ

q∗(x,y)p(y)dΓ(y) =
∫

Γ

p∗(x,y)q(y)dΓ(y)+
∫

Ω

p∗(x,y)s(y)dΩ(y) (4)

where x is the collocation point, y is the source point, Γ is the boundary of the
acoustic field, Ω is the domain, and p∗(x,y) is the fundamental solution, for 2-D
problems given by

p∗(x,y) =− i
4

H(2)
0 (kr) (5)

with r = |x− y|, and for 3-D given by

p∗(x,y) =
eikr

4πr
(6)

where H(2)
0 is the Hankel function of the second kind of order 0. Also, q∗(x,y) is

the normal derivative of p∗(x,y).
Although Eq.(4) has a domain integral originated from the sound source distribu-
tion s(x), it results in a summation of the values of the fundamental solution at some
discrete points in the field when the sound source is the summation of concentrated
sources as

s(x) = ∑
α

Iα
δ (x− zα) (7)

where α counts for concentrated sound sources, Iα is the intensity of the sound
source at zα , and δ (x− zα) is Dirac’s delta function. In this case, the domain
integral in Eq.(4) becomes as∫

Ω

p∗(x,y)s(y)dΩ(y) =
∫

Ω

p∗(x,y)∑
α

Iα
δ (y− zα)dΩ(y) = ∑

α

Iα p∗(x,zα) (8)

Also, the gradients of the sound pressure at an internal points can be calculated by
using the following representation:

p,i(x)+
∫

Γ

∂q∗(x,y)
∂xi

p(y)dΓ(y) =
∫

Γ

∂ p∗(x,y)
∂xi

q(y)dΓ(y)

+
∫

Ω

∂ p∗(x,y)
∂xi

s(y)dΩ(y) (9)

The boundary integral equation is obtained by taking the limit of point x to the
boundary Γ, as follows:

C(x)p(x)+−
∫

Γ

q∗(x,y)p(y)dΓ(y) =
∫

Γ

p∗(x,y)q(y)dΓ(y)+
∫

Ω

p∗(x,y)s(y)dΩ(y)

(10)
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where C(x) is a constant that becomes 1/2 when x lies on a smooth part of the
boundary. The integral symbol −

∫
denotes that the integral is evaluated in the sense

of Cauchy’s principal value.

Also, an additional boundary integral equation is combined with Eq.(10) for exte-
rior problems to avoid computation errors occurring at fictitious eigen-frequencies.
It is obtained as the normal derivative of Eq.(10) at x, as follows:

C(x)q(x)+ =
∫

Γ

q̃∗(x,y)p(y)dΓ(y) =−
∫

Γ

p̃∗(x,y)q(y)dΓ(y)+
∫

Ω

p̃∗(x,y)s(y)dΩ(y)

(11)

where ˜( ) = ∂ ()/∂n(x), and the integral symbol =
∫

denotes that the integral is eval-
uated in the sense of finite part of divergent integral.

For exterior acoustic problems, a linear combination of Eqs.(10) and (11) is used
[Burton and Miller (1971)] so that the solutions do not suffer from errors at the
fictitious eigen frequencies of the corresponding interior problem.

In particular, when x lies on a smooth, and flat part of the boundary of a three-
dimensional field, Cauchy’s principal value and the finite part of the singular inte-
grals of Eqs.(10) and (11) can be evaluated analytically, and we have the following
integral representations [Zheng, Matsumoto, Takahashi, and Chen (2011)].

1
2

p(x)+
∫

Γ−Γx

q∗(x,y)p(y)dΓ(y) =
∫

Γ−Γx

p∗(x,y)q(y)dΓ(y)

+
∫

Ω

p∗(x,y)s(y)dΩ(y)+
i

2k

(
1−

∫
∂Γx

eikR εi jmsin jR,m

2πR
dl
)

q(x) (12)

and

1
2

q(x)+
∫

Γ−Γx

q̃∗(x,y)p(y)dΓ(y) =
∫

Γ−Γx

p̃∗(x,y)q(y)dΓ(y)

+
∫

Ω

p̃∗(x,y)s(y)dΩ(y)−
(

ik
2
−
∫

∂Γx

eikR εi jmsin jR,m

4πR2 dl
)

p(x) (13)

where R denotes the distance between the collocation point x and a point x0 on the
edge ∂Γx of the boundary Γx in the neighborhood of the collocation point as shown
in Fig. 1, dl the differential arc length along ∂Γx, εi jm the permutation symbol, si

the unit tangential vector along ∂Γx at x0, n j the unit outward normal vector to the
boundary Γ at x0, and R,m is the derivative of R with respect to xm component of
the coordinate of x0. Einstein’s summation convention is applied to the repeated
indices in Eqs.(12) and (13).



Acoustic Design Shape and Topology Sensitivity Formulations 81

Figure 1: A neighborhood of the collocation point lying on a smooth part of the
boundary of a three-dimensional space.

The linear combination of Eqs.(10) and (11), or (12) and (13), are discretized em-
ploying appropriate boundary elements, and then results in the following system of
linear algebraic equation.

Hp = Gq+ f (14)

After applying the boundary condition, by rearranging Eq.(14) so that the unknown
nodal values come on the left-hand side, we obtain

Ax = y (15)

By solving Eq.(15), we obtain all the boundary quantities and by using them in
Eq.(9), we can calculate gradients of sound pressure at internal points.
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3 Sensitivity analysis

3.1 Shape sensitivity

We assume the objective functions of shape and topology optimization problems
can be written in the following form:

I =
∫

Γ

f (p, p̄,q, q̄)dΓ+
∫

Ω

g(p, p̄)dΩ (16)

where f is a function defined with boundary sound pressure and its normal deriva-
tive, g is a function defined with internal sound pressure, and an over-scribed bar
( ¯) denotes a complex conjugate.

Then, the sensitivity of I with respect to an arbitrary shape parameter becomes

I′ =
∫

Γ

(
∂ f
∂ p

ṗ+
∂ f
∂ p̄

˙̄p+
∂ f
∂q

q̇+
∂ f
∂ q̄

˙̄q
)

dΓ+
∫

Γ

f ˙(dΓ)

+
∫

Ω

(
∂g
∂ p

ṗ+
∂g
∂ p̄

˙̄p
)

dΩ+
∫

Ω

g ẋi,i dΩ (17)

where a dot ( ˙) denotes a material derivative [Haug, Choi, and Komkov (1986);
Arora (1993)].

Notice that we implicitly assume

∂ f
∂ p̄

=
(

∂ f
∂ p

)
,

∂ f
∂ q̄

=
(

∂ f
∂q

)
,

∂g
∂ p̄

=
(

∂g
∂ p

)
(18)

Then, we have

I′ = 2Re
[∫

Γ

∂ f
∂ p

ṗdΓ+
∫

Γ

∂ f
∂q

q̇dΓ+
∫

Ω

∂g
∂ p

ṗdΩ

]
+
∫

Γ

f ˙(dΓ)+
∫

Ω

g ẋi,i dΩ

≡ 2Re[ I′1 ]+2Re
[∫

Ω

∂g
∂qi

q̇i dΩ

]
+
∫

Γ

f ˙(dΓ)+
∫

Ω

g ẋi,i dΩ (19)

where

I′1 ≡
∫

Γ

∂ f
∂ p

ṗdΓ+
∫

Γ

∂ f
∂q

q̇dΓ+
∫

Ω

∂g
∂ p

ṗdΩ (20)

We now augment the objective function, as shown below, so that the sound pressure
satisfies the Helmholtz equation.

J = I +R+ R̄ = I +2Re[R] (21)
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where

R≡
∫

Ω

λ (x)
[
p,ii(x)+ k2 p(x)+ s(x)

]
dΩ (22)

and λ (x) is a Lagrange multiplier.

We can use J as the objective function instead of I because p is the solution of
Eq.(1) thus R identically equals zero.

Integrating R by parts once yields

R =
∫

Γ

λqdΓ−
∫

Ω

λ,i p,i dΩ+
∫

Ω

k2
λ pdΩ+

∫
Ω

λ sdΩ (23)

The sensitivity of R with respect to an arbitrary shape change parameter is

R′ =
∫

Γ

λ q̇dΓ+
∫

Γ

λ,iqẋi dΓ+
∫

Γ

λq ˙(dΓ)

−
(∫

Ω

λ,i p,i dΩ

)′
+
(∫

Ω

k2
λ pdΩ

)′
+
(∫

Ω

λ sdΩ

)′
(24)

Recall that we have the following relationships concerning material derivative [Haug,
Choi, and Komkov (1986); Arora (1993)]:

ṗ = p′+ p,i ẋi (25)
˙(p,i) = (p,i)′+ p,i j ẋ j = p′,i + p,i j ẋ j (26)
˙(p),i = (p′+ p, j ẋ j),i = p′,i + p,i j ẋ j + p, j ẋ j,i (27)
˙(p,i) = ˙(p),i− p, j ẋ j,i (28)

where in this case a prime ( ′ ) denotes a differentiation at the original position, and
for Lagrange multiplier (adjoint variable), λ , as follows:

λ̇ = λ
′+λ, j ẋ j = λ, j ẋ j (29)

˙(λ,i) = (λ,i)′+λ,i j ẋ j = λ,i j ẋ j (30)

λ̇,i = λ,i j ẋ j +λ, j ẋ j,i (31)
˙(λ,i) = λ̇,i−λ, j ẋ j,i (32)

Also, the material derivatives of differential area dΓ and differential volume dΩ are
as follows:

˙(dΓ) = (ẋi,i− ẋi, j nin j)dΓ (33)
˙(dΩ) = ẋi,i dΩ (34)
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Then, after some manipulations, the last three sensitivity terms of Eq.(24) become(∫
Ω

λ,i p,i dΩ

)′
=
∫

Ω

˙(λ,i)p,i dΩ+
∫

Ω

λ,i
˙(p,i)dΩ+

∫
Ω

λ,i p,i
˙(dΩ)

=
∫

Γ

λ,i p,i ẋ jn j dΓ+
∫

Γ

µ ṗdΓ−
∫

Γ

µ p, jẋ j dΓ

−
∫

Ω

λ,ii ṗdΩ+
∫

Ω

λ,ii p, j ẋ j dΩ (35)

where µ ≡ ∂λ/∂n, and(∫
Ω

k2
λ pdΩ

)′
=
∫

Ω

k2
λ̇ pdΩ+

∫
Ω

k2
λ ṗdΩ+

∫
Ω

k2
λ p ẋ j, j dΩ

=
∫

Ω

k2
λ ṗdΩ+

∫
Γ

k2
λ p ẋ jn j dΓ−

∫
Ω

k2
λ p, j ẋ j dΩ (36)

(∫
Ω

λ sdΩ

)′
=
∫

Ω

λ,i s ẋi dΩ+
∫

Ω

λ ṡ dΩ+
∫

Ω

λ s ẋ j, j dΩ (37)

Therefore, we have

R′ =
∫

Γ

λ,iq ẋi dΓ+
∫

Γ

λq ˙(dΓ)−
∫

Γ

λ,i p,i ẋ jn j dΓ+
∫

Γ

µ p, j ẋ j dΓ

−
∫

Ω

(λ,ii + k2
λ )p, j ẋ j dΩ+

∫
Γ

k2
λ p ẋ jn j dΓ+

∫
Ω

λ,i s ẋi dΩ+
∫

Ω

λ ṡ dΩ

+
∫

Ω

λ s ẋ j, j dΩ+
∫

Γ

λ q̇dΓ−
∫

Γ

µ ṗdΓ+
∫

Ω

(λ,ii + k2
λ )ṗdΩ (38)

Then, we observe

I′1 +R′ =
∫

Γp∪Γq

(
λ +

∂ f
∂q

)
q̇dΓ−

∫
Γp∪Γq

(
µ− ∂ f

∂ p

)
ṗdΓ

+
∫

Ω

(
λ,ii + k2

λ +
∂g
∂ p

)
ṗdΩ

+
∫

Γ

λ,i q ẋi dΓ+
∫

Γ

λq ˙(dΓ)−
∫

Γ

λ,i p,i ẋ jn j dΓ

+
∫

Γ

µ p, j ẋ j dΓ−
∫

Ω

(λ,ii + k2
λ )p, j ẋ j dΩ+

∫
Γ

k2
λ p ẋ jn j dΓ

+
∫

Ω

λ,is ẋi dΩ+
∫

Ω

λ ṡ dΩ+
∫

Ω

λ s ẋ j, j dΩ (39)
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Here we assume λ satisfies the following differential equation and the boundary
conditions:

λ,ii + k2
λ +

∂g
∂ p

= 0 in Ω (40)

λ =−∂ f
∂q

on Γ (41)

µ =
∂λ

∂n
=

∂ f
∂ p

on Γ (42)

Then, Eq.(39) becomes

I′1 +R′ =
∫

Γq

(
λ +

∂ f
∂q

)
q̇dΓ−

∫
Γp

(
µ− ∂ f

∂ p

)
ṗdΓ

+
∫

Γ

λ,i q ẋi dΓ+
∫

Γ

λq ˙(dΓ)−
∫

Γ

λ,i p,i ẋ jn j dΓ

+
∫

Γ

µ p, j ẋ j dΓ+
∫

Ω

∂g
∂ p

p, j ẋ j dΩ+
∫

Γ

k2
λ p ẋ jn j dΓ

+
∫

Ω

λ,i s ẋi dΩ+
∫

Ω

λ ṡ dΩ+
∫

Ω

λ s ẋ j, j dΩ (43)

Thus, the gradient of the augmented objective function becomes as follows:

J′ = I′+2Re[R′] = 2Re[I′1 +R′]+2Re
[∫

Ω

∂g
∂ p

ṗdΩ

]
+
∫

Ω

g ẋi,i dΩ

= 2Re
[∫

Γq

(
λ +

∂ f
∂q

)
q̇dΓ−

∫
Γp

(
µ− ∂ f

∂ p

)
ṗdΓ+

∫
Γ

λ,i q ẋi dΓ+
∫

Γ

λq ˙(dΓ)

−
∫

Γ

λ,i p,i ẋ jn j dΓ+
∫

Γ

µ p, j ẋ j dΓ+
∫

Γ

k2
λ p ẋ jn j dΓ

+
∫

Ω

∂g
∂ p

p, j ẋ j dΩ+
∫

Ω

λ,i s ẋi dΩ+
∫

Ω

λ ṡ dΩ+
∫

Ω

λ s ẋ j, j dΩ

]
+
∫

Γ

f ˙(dΓ)+
∫

Ω

g ẋi,i dΩ (44)

Assume that there are concentrated sound sources located in the field, and s can be
written in the form given by Eq.(7). Then, the sensitivity coefficient of s becomes
as

ṡ = ∑
α

sα
δ,i(x− zα) ẋi (45)
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provided that the positions of the concentrated sound sources do not change through
shape changes. Then, we find

(∫
Ω

λ sdΩ

)′
= ∑

α

sα

∫
Ω

[
λ,i δ (x− zα) ẋi +λδ (x− zα),i ẋi +λδ (x− zα) ẋi,i

]
dΩ

= ∑
α

sα

∫
Ω

[
λδ (x− zα) ẋi

]
,i dΩ

= ∑
α

sα

∫
Γ

λδ (x− zα) ẋi ni dΓ

= 0 (46)

Next, we assume that g(p, p̄) is also defined at discrete points in the domain as

g = ∑
β

G(p, p̄)δ (x− zβ ) (47)

Then, the related terms in Eq.(44) become as follows:

2Re
[∫

Ω

∂g
∂ p

p, j ẋ j dΩ

]
+
∫

Ω

g ẋi,i dΩ

= 2Re
[
∑
β

∫
Ω

∂G
∂ p

p, j ẋ j δ (x− zβ )dΩ

]
+∑

β

∫
Ω

Gẋi,iδ (x− zβ )dΩ

= 2Re
[
∑
β

∂G
∂ p

(zβ )p, j(zβ ) żβ

]
+∑

β

G(zβ ) żβ

i,i = 0 (48)

because zβ are assumed to be the measuring points and may not move under shape
change, that is, żβ

j = 0, żβ

i,i = 0.

In these cases, we finally obtain

J′ = 2Re
[∫

Γq

(
λ +

∂ f
∂q

)
q̇dΓ−

∫
Γp

(
µ− ∂ f

∂ p

)
ṗdΓ

+
∫

Γ

λ,i q ẋi dΓ+
∫

Γ

λq ˙(dΓ)−
∫

Γ

λ,i p,i ẋ jn j dΓ

+
∫

Γ

µ p, j ẋ j dΓ+
∫

Γ

k2
λ p ẋ jn j dΓ

]
+
∫

Γ

f ˙(dΓ) (49)
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where λ , adjoint variable, is the solution of the following boundary value problem:

λ,ii(x)+ k2
λ (x)+∑

β

∂G
∂ p

δ (x− zβ ) = 0 in Ω (50)

λ (x) =−∂ f
∂q

(x) on Γp (51)

µ(x) =
∂λ

∂n
(x) =

∂ f
∂ p

(x) on Γq (52)

4 Topology optimization

4.1 Level-set method

We use a level-set method approach [Yamada, Izui, Nishiwaki, and Takezawa
(2010)] for controlling the shape and topology of the domain. Level-set function is
a scalar function of the point in the domain. In order to obtain an optimum topol-
ogy, a fixed design domain, in which the optimum domain is included, is usually
defined. The level-set function φ(x) is defined in the fixed-design space and takes
the value as follows:

0 < φ(x)≤ 1, ∀x ∈Ω\∂Ω (53)

φ(x) = 0, ∀x ∈ ∂Ω (54)

−1≤ φ(x) < 0, ∀x ∈ D\Ω (55)

By considering this level-set function as the design variable, we can control the
shape and topology of the domain. In the level-set approach in [Yamada, Izui,
Nishiwaki, and Takezawa (2010)], the objective function is again augmented by
adding a regularization term, as follows:

F = J +
∫

D
τ |∇φ |2 dΩ (56)

The variation of the level set function with respect to fictitious time t is assumed to
be proportional to the gradient of the objective function, i.e.,

∂φ

∂ t
=−K(φ)

dF
dφ

=−K(φ)
(

dJ
dφ
− τ∇

2
φ

)
(57)

Once dJ/dφ is obtained by BEM, the distribution of φ can be obtained by solving
the above Eq.(57) by using FEM for a fixed design domain for which the level-set
function φ is defined [Yamada, Izui, Nishiwaki, and Takezawa (2010)]. The fixed
design domain is usually of simple geometry like a rectangular solid domain, and
can be discretized with simple structured mesh. Therefore, FEM analysis for the
fixed design domain is very simple and can be done efficiently.
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4.2 Topological sensitivity

When using the boundary element method for topology optimizations of acoustic
fields, topological sensitivity of the objective function is required. The topological
sensitivity can be used as the sensitivity of the augmented objective function with
respect to the level set function [Yamada, Izui, Nishiwaki, and Takezawa (2010)].

Let us assume that an infinitesimal spherical obstacle Ωε with a radius ε is placed
in the domain. Let the boundary of Ωε be denoted by Γε . Then the augmented
objective function Eq.(21) for Ω\Ωε becomes as

J +δJ =
∫

Γ∪Γε

[
f (p, p̄,q, q̄)+

∂ f
∂ p

δ p+
∂ f
∂ p̄

δ p̄+
∂ f
∂q

δq+
∂ f
∂ q̄

δ q̄
]

dΓ

+
∫

Ω\Ωε

[
g(p, p̄)+

∂g
∂ p

δ p+
∂g
∂ p̄

δ p̄
]

dΩ

+
[∫

Γ∪Γε

λ (q+δq) dΓ−
∫

Ω\Ωε

λ,i (p,i +δ p,i) dΩ

+
∫

Ω\Ωε

k2
λ (p+δ p)dΩ+

∫
Ω\Ωε

λ sdΩ

]
(58)

while, in view of Eqs.(21) and (23), J is given as

J =
∫

Γ

f (p, p̄,q, q̄)dΓ+
∫

Ω

g(p, p̄)dΩ

+2Re
[∫

Γ

λqdΓ−
∫

Ω

λ,i p,i dΩ+
∫

Ω

k2
λ pdΩ+

∫
Ω

λ sdΩ

]
(59)

By subtracting Eq.(59) from Eq.(58) and rearranging it appropriately, we obtain the
variation of the augmented objective function as follows:

δJ = 2Re
[∫

Γε

λqdΓ+
∫

Ωε

λ,i p,i dΩ−
∫

Ωε

k2
λ pdΩ

+
∫

Γp∪Γq∪Γε

(
λ +

∂ f
∂q

)
δqdΓ−

∫
Γp∪Γq∪Γε

(
µ− ∂g

∂ p

)
δ pdΓ

+
∫

Ω\Ωε

(
λ,ii + k2

λ +
∂g
∂ p

)
dΩ

]
(60)

where it is assumed that f and g are not defined on Γε and Ωε , respectively, and s
is the summation of concentrated sound sources and does not exist within Ωε .

Now, we consider an adjoint field λ obtained as the solution of the following bound-
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ary value problem:

λ,ii + k2
λ +

∂g
∂ p

= 0 in Ω (61)

λ =−∂ f
∂g

on Γp (62)

µ =
∂λ

∂n
=

∂ f
∂ p

on Γq (63)

Also, δ p and δq should be zero on Γp and Γq, respectively, because they are the
quantities specified as the boundary condition on these parts of the boundary. Then,
we have

δJ = 2Re
[∫

Γε

λqdΓ+
∫

Ωε

λ,i p,i dΩ−
∫

Ω

k2
λ pdΩ

]
(64)

When Ωε is a infinitesimal sphere, we can evaluate the integrals in Eq.(64), as
follows:∫

Γε

λqdΓ =
∫ 4π

0
λ

0 p0
,ini ε

2 dσ = λ
0 p0

,i ε
2
∫ 4π

0
ni dσ = 0 (65)

where σ is the solid angle of the sphere surface, a superscript 0 denotes that the
quantity is at the center of the infinitesimal sphere, and∫

Ωε

λ,i p,i dΩ =
4
3

πε
3

λ
0
,i p0

,i (66)

∫
Ωε

k2
λ pdΩ =

4
3

πε
3 k2

λ
0 p0 (67)

Therefore, the topological sensitivity of the augmented objective function finally
becomes as

J′ = 2Re
[
λ

0
,i p0

,i− k2
λ

0 p0] (68)

In Fig. 2 is shown a flow diagram of the topology optimization of acoustic field
using the present boundary element topology sensitivity analysis.

The field where an acoustic field having the optimum topology is designed is called
a fixed design space and is discretized with cubic structured mesh. By using the
initial shape of the boundary of the field, initial values of the level-set function at the
grid points of the structured mesh is determined. Then, boundary element analyses
for the acoustic field and for the adjoint field are performed, and the value of the
objective function and the topological sensitivities at the grid points are calculated.
Eq.(57) is then solved for the fixed design domain using FEM and the distribution
of the level-set function is updated. This process is repeated until the convergence
is achieved.
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Start

Generate level-set function

Evaluate objective function

Converged?

Acoustic analysis using BEM

Adjoint field analysis using BEM

Evaluate sensitivities

Update level-set functions using FEM

Generate boundary mesh

End
Yes

No

Figure 2: A flow diagram of topology optimization of acoustic field.

5 Numerical examples

5.1 2D example

We consider a rectangular region as shown in Fig. 3 as a test example model for
2-D sensitivity analysis. We define the following objective function to make the
sound pressure at the center of the cavity close to a certain value p0.

J =
∫

Ω

1
2
|p(x,y)− p0|2 δ (x−2.5)δ (y−0.5)dΩ (69)

The design variable is assumed to be the width L of the rectangular cavity. We di-
vide the boundary of the rectangular cavity into 120 quadratic elements uniformly.
The exact solution of the sound pressure is given as

p(x) = tan(kL)sin(kx)+ cos(kx) (70)

where k is the wave number.

We assume that the target sound pressure is given as p0 = 0. Then, the sensitivity
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Figure 3: A rectangular cavity model.

of J with respect to L becomes

dJ
dL

=
[
tan(kL)sin(kx)+ cos(kx)

] k sin(kx)
cos2(kL)

(71)

The governing equation and the boundary condition of the adjoint problem be-
comes, as follows:

λ,ii(x,y)+ k2
λ (x,y)+(p(x,y)− p0)δ (x−2.5)δ (y−0.5) = 0, (x,y) ∈Ω (72)

λ = 0 on Γp (73)

µ =
∂λ

∂n
= 0 on Γq (74)

We show in Fig. 4 the distribution of the adjoint solution obtained by BEM and
in Tab. 1 the sensitivity values and their errors obtained for various discretization
models. The sensitivity errors are found to decrease in accordance with the increase
of the number of elements and become accurate.

Table 1: Obtained sensitivity values and their errors.

Number of elements Sensitivity Error [%]
48 −1.88909×10−1 5.677
120 −1.79874×10−1 0.623
240 −1.78997×10−1 0.132
480 −1.78841×10−1 0.045
960 −1.78814×10−1 0.030
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Figure 4: Distribution of the obtained adjoint variable λ .

5.2 3D example for topology optimization

Next we consider a sound scatterer to reduce the sound pressure at an observation
point shown in Fig. 5 as an example of topology optimization. The fixed design
space is the same as the initial sound scatterer. Hence, optimum topology of the
scatterer is sought within this fixed design space. We also added a minimum vol-
ume constraint, 40% of the fixed design space, to the objective function. Fig. 6
shows the initial boundary mesh of the sound scatterer. Fast-multipole BEM for
wide-band frequencies [Gumerov and Duraiswami (2009); Wolf and Lele (2010)]
is used to calculate the original acoustic problem and the adjoint problem. We
show in Fig. 7 the obtained geometry of the scatterer for 340Hz. We find that the
present approach can be applied to such a practical problem with three-dimensional
complicated geometry.

Sound source
Observation
point

5m

1m

1m1m

1m

Fixed design domain D

Figure 5: A sound scatterer model to reduce the sound pressure at the observation
point.

6 Concluding remarks

An adjoint method approach based on BEM has been shown for shape and topology
optimization of acoustic field. Because the BEM is based on boundary only dis-
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Figure 6: Boundary mesh of the initial shape of the sound scatterer.

Figure 7: Obtained scatterer geometry.

cretization, the objective function is assumed to be a functional defined only with
boundary sound pressure and particle velocity, and with quantities only at a finite
number of internal points. An adjoint system is defined so that the unknown sen-
sitivities of the sound pressure and particle velocity on the boundary and unknown
quantities in the domain are eliminated from the gradient of the objective function.
Then, the shape sensitivity and topological sensitivity expressions defined only with
the original acoustic field and adjoint field are derived. On each calculation step of
the gradient of the objective function, BEM calculations are repeated only for the
original problem and the adjoint problem. Some numerical examples have been
provided, and have demonstrated the effectiveness of the present approach.
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