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Higher-Order Green’s Function Derivatives and BEM
Evaluation of Stresses at Interior Points in a 3D Generally

Anisotropic Solid

Y.C. Shiah1 and C. L. Tan2

Abstract: By differentiating the Green function of Ting and Lee (1997) for 3D
general anisotropic elastotatics in a spherical coordinate system as an intermediate
step, and then using the chain rule, derivatives of up to the second order of this
fundamental solution are obtained in exact, explicit, algebraic forms. No tensors
of order higher than two are present in these derivatives, thereby allowing these
quantities to be numerically evaluated quite expeditiously. These derivatives are
required for the computation of the internal point displacements and stresses via
Somigliana’s identity in BEM analysis. Some examples are presented to demon-
strate their successful implementation to this end, in which the numerical results
are compared with corresponding values obtained using the finite element method
(FEM). An assessment of the relative efficiency of the BEM analysis when using
the present exact form of the derivatives versus another previous exact form is also
presented.

Keywords: Boundary element method, Green’s functions, boundary integral equa-
tions, Somigliana’s identity, anisotropic elasticity, Stroh’s eigenvalues.

1 Introduction

The displacements and stresses at interior points of a solid are sometimes required
in elastic stress analysis. Examples include more detailed examination of the vari-
ations of these quantities near stress concentrations and in the determination of
the fracture parameters, J- or M-integrals, in fracture mechanics analysis. As the
boundary element method (BEM) is a boundary solution numerical technique, these
interior point solutions are obtained as a secondary procedure after the boundary
integral equation (BIE) has been solved. It entails evaluating Somigliana’s identity
for displacements; the corresponding identity for the stresses can be obtained by
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differentiating this identity for the strains and invoking Hooke’s law. Although this
is well established in BEM for isotropy and 2D general anisotropy, the authors are
not aware of any similar implementation for 3D general anisotropy in the literature.
This is because of the mathematical complexity of the fundamental solution for the
3D problem and its higher order derivatives required.

In the previous BETEQ2010 meeting, the present authors reported an improved
BEM formulation for 3D generally anisotropic elastic solid based on fundamental
solutions which are real-variable and fully algebraic in form, Shiah et al (2010a).
The availability of the fundamental solution and its derivatives in closed, algebraic
form makes their implementation into an existing BEM code a relatively straight-
forward task, without the need to develop special algorithms for their evaluation.
The Green’s function for displacements employed was that by Ting and Lee (1997);
the corresponding fundamental solution for tractions was obtained by the present
authors using a revised approach that was recently presented by Lee (2009) for an-
alytically obtaining the first derivatives of the Green’s function. The approach for
getting these first derivatives obviate the introduction of high order tensor terms
present in the traction fundamental solution that was used in a similar BEM formu-
lation developed previously, Tan et al (2009). It was found in the course of the work
reported in Tan et al (2009) that the evaluation of these high order tensors expends
a disproportionate amount of the numerical effort. Their absence in the revised
formulation significantly improves the computational efficiency, as demonstrated
in Shiah et al (2010a). The revised approach of Lee (2009) also enables higher or-
der derivatives of the Green’s function to be obtained without introducing the very
high order tensors, although no explicit expression of any of them is analytically de-
rived and presented. It should be noted here, however, that different algorithms for
computing higher order derivatives of the Green’s function for general anisotropy
have also been presented recently by other authors in their BEM work, although
the focus of these works is different from that of the present study. Benedetti et
al (2009) in their development of fast dual BEM for 3D anisotropic, elastic crack
problems employed the non-explicit form of the Green’s function by Lifshitz and
Rosenzweig (1947), and adopted the interpolation algorithm of Wilson and Cruse
(1978) to obtain the approximate numerical values of this fundamental solution and
the derivatives. Buroni and Saez (2010), on the other hand, derived a general al-
gebraic expression for the second order derivatives of the Green’s function by Ting
and Lee (1947) using the approach presented in Shiah et al (2009). As expected,
it contains terms that are 10th order tensors and the fully explicit forms of which
were not presented. These high order tensors are the quantities that the present au-
thors have successfully strived to avoid in developing the algorithm for evaluating
internal point stresses in 3D anisotropic elastic bodies using Somigliana’s identity.
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Using the revised approach of Lee (2009), the present authors have recently de-
rived the explicit algebraic forms of the second derivatives of the Green’s functions
in terms of Stroh’s eigenvalues without the very high order tensors present Shiah et
al (2010b). Together with the first order derivatives, they are required in the eval-
uation of the stresses at the interior point of the body in BEM, using Somugliana’s
identity, and this implementation has been successfully achieved as well for 3D
general anisotropy. The present paper provides further demonstration of this suc-
cess. Two numerical examples are presented in which the solutions are compared
with those obtained by FEM. The relative computational efficiency of the revised
formulation is also examined, when compared with Lee’s previous approach, Tan
et al (2009) to obtain the 2nd derivatives of the Green’s function with a finite dif-
ference scheme. Before this, however, it is useful to first, provide a review of
Somigliana’s identity, the fundamental solution employed and the key steps for ob-
taining its derivatives. As has been explained in previous publications, because of
their fully explicit, real variable forms, there are no special considerations required
for the numerical evaluation of the fundamental solution and its derivatives em-
ployed here. The basic BEM numerical formulation is the same as that developed
for 3D isotropic elasticity; hence details of this will not be presented here.

2 Somigliana’s identity and fundamental solutions of 3D anisotropic elastic
bodies

In BEM linear elastic stress analysis, the displacements and stresses at an interior
point of the solid are obtained as a secondary process after the boundary integral
equation (BIE), which relates the displacements, ui, to the tractions, ti, on the sur-
face S of the domain, has been numerically solved for all their unknown values. For
the displacements at an interior point, p, it involves evaluating the discretised form
of Somigliana’s identity which can be written as follows in the absence of body
forces or thermal loads:

Ci jui(P)+
∫
S

ui(Q)Ti j(P,Q)dS =
∫
S

ti(Q)Ui j(P,Q)dS (1)

where Ui j(P,Q)≡ U, and Ti j(P,Q) represent the fundamental solutions of displace-
ments and tractions, respectively, in the xi-direction at the field point Q due to a
unit load in the x j-direction at P in a homogeneous infinite body. The correspond-
ing stresses may be obtained using the generalized Hooke’s law:

σi j = Ci jmn (um,n +un,m)/2 (2)

in which the 1st-order derivatives of displacements are obtained by differentiating
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Eq. (1)

ui,k(p)+
∫

S
ui(Q)Ti j,k(p,Q) =

∫
S

ti(Q)ui j,k(p,Q)dS (3)

The Green’s function for displacements in 3D anisotropic bodies derived by Ting
and Lee (1997) as implemented by Tan et al. (2009) can be expressed in simple
closed-form as

U(x) =
1

4πr
H[x] =

1
|T|

4

∑
n = 0

qnΓ̂ΓΓ
(n)

, (4)

where r is the radial distance between the load and field point, H[x]is the Barnett-

Lothe tensor, and the expressions for|T|, Γ̂ΓΓ
(n)

and qn may be found in Ting and
Lee (1997) and Tan et al (2009). As has been previously reported, the numerical
evaluation of this Green’s function is relatively straightforward. The numerical
evaluation of Ti j is also required in solving the BIE and when evaluating Eq. (1). It
may be carried out using the following well-known traction-stress and stress-strain
relations, respectively:

T =
i j σ

( j)
ik Nk, (5)

σ
( j)
ik = Cikmn (Um j,n +Un j,m)/2 (6)

In Eq. (5), σ
( j)
ik are the stresses at a field point due to a unit concentrated force

applied in the x j direction at the source point, and Nk are components of the outward
normal of the surface at Q. From Eqs. (3) - (6) above, it is clear that the 1st - and
2nd -order derivatives of Umust be obtained. Upon revisiting this problem following
the work in Shiah et al (2008), Lee (2009) suggested that the partial derivatives be
obtained in a spherical coordinate system as an intermediate step and the chain rule
then employed, instead of directly differentiating the fundamental solution in the
Cartesian coordinate system, as follows,

Ui j,l =
∂Ui j

∂ r
∂ r
∂xl

+
∂Ui j

∂θ

∂θ

∂xl
+

∂Ui j

∂ϕ

∂ϕ

∂xl
(7)

Ui j,kl =
∂Ui j,k

∂ r
∂ r
∂xl

+
∂Ui j,k

∂θ

∂θ

∂xl
+

∂Ui j,k

∂ϕ

∂ϕ

∂xl
. (8)

The partial derivatives above can be expressed as follows:

∂Ui j

∂ r
=
−Ui j

r
,

∂Ui j

∂θ
=

I′i j− J′i j

4π2r
,

∂Ui j

∂ϕ
=

I”
i j− J”

i j

4π2r
(9)



Higher-Order Green’s Function Derivatives 99

∂Ui j,k

∂ r
=

∂ 2Ui j

∂ r2
∂ r
∂xk

+
∂Ui j

∂ r
∂

∂ r

(
∂ r
∂xk

)
+

∂ 2Ui j

∂ r∂θ

∂θ

∂xk

+
∂Ui j

∂θ

∂

∂ r

(
∂θ

∂xk

)
+

∂ 2Ui j

∂ r∂φ

∂φ

∂xk
+

∂Ui j

∂φ

∂

∂ r

(
∂φ

∂xk

)
,

∂Ui j,k

∂θ
=

∂ 2Ui j

∂ r∂θ

∂ r
∂xk

+
∂Ui j

∂ r
∂

∂θ

(
∂ r
∂xk

)
+

∂ 2Ui j

∂θ 2
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(
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)
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∂φ
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∂ r∂φ
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∂xk

+
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(
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(10)

∂ 2Ui j

∂ r2 =
Ui j

r2 −
∂Ui j

∂ r
,

∂ 2Ui j

∂ r∂θ
=− 1

r2
∂Ui j

∂θ
,

∂ 2Ui j

∂ r∂ϕ
=− 1

r2
∂Ui j

∂ϕ
,

∂ 2Ui j

∂θ 2 =
1

4π2r

(
∂ I′i j

∂θ
−

∂J′i j

∂θ

)
,

∂ 2Ui j

∂φ 2 =
1

4π2r

(
∂ I”i j

∂φ
−

∂J”i j

∂φ

)
,

∂ 2Ui j

∂θ∂φ
=

1
4π2r

(
∂ I”i j

∂θ
−

∂J”i j

∂θ

) (11)

It has been shown in Shiah et al (2010a) that the quantities, I′i j, I′′i j, J′i j, J′′i j, which
appear in the equations above can be reduced to relatively direct, algebraic expres-
sions in terms of the Stroh’s eigenvalues. The explicit, algebraic expressions for the
component terms of Ui j,l and Ui j,kl have also been derived by the present authors
and presented in Shiah et al (2010b) very recently. No tensors higher than the sec-
ond order are present in any of the terms in these expressions. They are also easy
and relatively efficient to evaluate because of their simple algebraic forms, but are
nevertheless still fairly elaborate.

3 Numerical examples

Three numerical examples are presented here to further demonstrate the successful
implementation of Somigliana’s identity in BEM for obtaining the displacements
and stresses at an internal point in a 3D generally anisotropic elastic body using
the explicit-form Green’s function and its derivatives describe above. They have
been implemented into an existing BEM code which had been originally written for
isotropic elasticity based on the quadratic isoparametric formulation. The material
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used in both examples is niobium (Nb) crystal that has the following stiffness elastic
constants:

C∗11 = 246GPa; C∗12 = 134GPa; C∗44 = 28.7GPa, (12)

where the asterisks denote properties defined in the directions of the principal axes
of the material.

Figure 1 shows the first example considered. It is a hollow thick-walled sphere with
radius ratio R2/R1=3.0 subjected to uniform radial tensile stress σo= 1 on the outer
surface. The BEM mesh employed has a total of 64 quadratic elements and 156
nodes; the exterior surface was modelled with just 16 triangular elements and 34
nodes. It should be remarked that advantage could have been taken of the symmetry
of the material properties of the cubic medium, and the loading conditions; only a
fraction of the physical problem needs then to be modelled. However, the whole
sphere was modelled here in the BEM analysis as the mesh is employed for other
studies involving more general anisotropic properties.

The problem is no longer axisymmetric in the anisotropic case. For the present

purpose, only the resultant displacements (ut =
√

u2
1 +u2

2 +u2
3) and the von Mises

equivalent stresses σeq are presented here for a few sample internal points on the
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Figure 1: A thick-walled sphere subject to uniform radial stress at outer radius R2.
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equatorial plane, namely, at r/R1=1.4 and 1.6. As a first check of the proper im-
plementation of the formulation, the material is assumed to have isotropic elastic
properties with Young’s modulus E=1000 (units) and Poisson’s ratio ν=0.3. This
isotropic analysis was carried out by both the conventional isotropic formulation
as wellas the present anisotropic algorithm using elastic stiffness constants cor-
responding to the isotropic properties. For comparison of the numerical results,
the problem was also analyzed by the FEM using the commercial code ANSYS,
where advantage was taken of the material symmetry. Only 1/8th of the sphere
was modelled in the FEM analysis, as shown in Fig. 2(b). This relatively refined
mesh comprises of 433800 SOLID186 (quadratic) elements with 877982 nodes;
it yielded exact solution to 4 decimal places in the isotropic case. Tables 1 and
2 show the normalized equivalent stress and resultant displacements, respectively,
computed for the internal points. As can be seen, there is good agreement of the
BEM and FEM results despite the relatively coarse BEM mesh used.

 

 

 

 

 
 

BEM  ANSYS 

Figure 2.  Mesh designs employed in the BEM and FEM analysis 

Figure 2: Mesh designs employed in the BEM and FEM analysis

The next example treated is a relatively short cantilever beam with length 12L and
a square cross-section of side-lengths 2L, subjected to a uniform pressure σ22= -
P on its top surface. For the analysis, the material principal axes are deliberately
rotated successively about the x1-axis, x2-axis, and x3-axis counter-clockwise by
15o, 30o, and 45o, respectively. This serves to demonstrate the capability of the
algorithm to treat general anisotropy, as the rotations of the material principal axes
yield the following fully populated stiffness matrix which has the characteristics of
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Table 1: Normalized equivalent stress at the internal points

σeq/σ0 ANSYS BEM* |%Diff.| BEM**

Isotropic
r/R1=1.4 0.5679 0.5748 1.23 0.5748
r/R1=1.6 0.3803 0.3904 2.66 0.3904

Anisotropic

r/R1 =1.4

θ=0o 0.6328 0.6423 1.51

N/A

θ=15o 0.6190 0.6277 1.41
θ=30o 0.5801 0.5834 0.57
θ=45o 0.5504 0.5494 0.18

r/R1 =1.6

θ=0o 0.4590 0.4756 3.61
θ=15o 0.4377 0.4527 3.44
θ=30o 0.3836 0.3905 1.80
θ=45o 0.3505 0.3523 0.53

*Anisotropic algorithm; **Isotropic algorithm

Table 2: Normalized resultant displacements at the internal points

Normalized displacement ANSYS BEM* |%Diff.| BEM**
(Isotropic) r/R1=1.4 0.9251 0.9295 0.48 0.9295

ut E/σ0 r/R1=1.6 0.9277 0.9323 0.50 0.9323
(Anisotropic)

r/R1=1.4

θ=00 1.8458 1.8219 1.29

N/A

utC∗11/σ0 θ=150 1.7725 1.7566 0.90
θ=300 1.6067 1.6035 0.20
θ=450 1.5108 1.5104 0.03

r/R1=1.6

θ=00 1.7811 1.7545 1.49
θ=150 1.6926 1.6755 1.01
θ=300 1.4982 1.4968 0.09
θ=450 1.3903 1.3932 0.21

*Anisotropic algorithm; **Isotropic algorithm

a generally anisotropic solid:

C =



218.76 153.52 141.72 −10.01 0.40 7.21
153.52 209.89 150.59 −2.21 0.96 −0.18
141.72 150.59 221.69 12.22 −1.36 −7.04
−10.01 −2.21 12.22 45.29 −7.04 0.96

0.40 0.96 −1.36 −7.04 36.42 −10.01
7.21 −0.18 −7.04 0.96 −10.01 48.22

 GPa. (13)

The BEM and FEM meshes employed are shown in Figure 3. With the beam fixed
completely at x3=0, the normalized transverse displacements along the x3-axis ob-
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tained from both methods are shown in Figure 4. The results of σ33/P and von
Mises equivalent stress, σeq/P, for some internal points in the x1= 0 plane at x3=4L
and 6L are listed in Table 3. It can be seen that the agreement between the results
of the two different numerical methods is very good indeed. 
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Figure 3: Numerical models for the anisotropic beam: BEM- 224 elements with
674 nodes; ANSYS- 24576 SOLID186 elements with 108545 nodes.

Table 3: Values of the normalized stress, σ33/P, and normalized equivalent stress,
σeq/P, at some points across the section at x3=4L and 6L; x1= 0.

x2= -L x2=-0.5L x2=0 x2= 0.5L x2= +L

σ33
P

x3= 4L
FEM -47.802 -24.089 -0.852E-04 24.088 47.802
BEM -47.554 -24.013 0.0104 24.033 47.548
|%Diff.| 0.52 0.31 N/A 0.23 0.53

x3= 6L
FEM -26.802 -13.588 -0.358E-06 13.588 26.802
BEM -26.614 -13.543 0.005 13.552 26.607
|%Diff.| 0.70 0.33 N/A 0.26 0.73

σeq
P

x3= 4L
FEM 47.802 25.253 10.431 25.739 48.311
BEM 47.552 25.181 10.394 25.687 48.054
|%Diff.| 0.52 0.28 0.36 0.20 0.53

x3= 6L
FEM 26.803 14.730 7.831 15.207 27.316
BEM 26.614 14.687 7.804 15.173 27.124
|%Diff.| 0.70 0.29 0.36 0.22 0.70
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the x3-axis of the anisotropic beam.

Figure 4: Variations of the normalized displacements along the x3-axis of the ani-
sotropic beam.

To check the relative computational efficiency of the present BEM approach vis-
a-vis that of the previous algorithm given in terms of high order tensors Tan et
al (2009), the CPU-time for the analysis of the cantilever beam problem using a
i7-series desktop PC are compared. With the latter algorithm, the finite difference
scheme is employed to calculate the second-order derivatives of the Green’s func-
tion. The CPU-times recorded for the both approaches are normalized with respect
to that for the computer run for the corresponding isotropic analysis. Figure 5
shows variations of the normalized CPU-times with the number of internal points
for the analysis. It can be seen that the present approach is indeed significantly
more efficient than that using the previous algorithm Tan et al (2009).

The third example considered here is as shown in Figure 6. It is a cylindrical bar
with a spherical cavity fixed at one end and subjected to a uniform unit tensile
load at the other end. The material properties used in the analysis are the same as
those treated in the previous example, as given in Eq. 13. The case considered
is for a/R = 0.4, H/R = 2. The determination of the boundary solutions for this
stress concentration problem using BEM has been presented in Tan et al (2009).
The resultant normalized displacements and the normalized equivalent stresses at
a series of points around the circle at radius r = 0.6R are obtained here. The mesh
designs employed in BEM and FEM are shown in Fig. 7. Table 4 lists the results
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obtained using the two techniques. It can be seen that they are, again, in very good
agreement.

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Normalized CPU-time varying with number of 
internal test points.  

0 20 40 60 80 100

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

No. of internal points 

Isotropic 
        Aniso. (present)
        Aniso. [4] 

N
or

m
al

iz
ed

 C
P

U
-t

im
e 

Figure 5: Normalized CPU-time varying with number of internal test points.

Table 4: Computed resultant displacement and normalized equivalent stress at in-
terior points on a circle at r/R = 0.6 in the x3= 0 plane.

δ =
√

u2
1 +u2

2 +u2
3(*10−9) σeq/σo

θ FEM BEM |%Diff.| FEM BEM |%Diff.|
0o 0.1096 0.1070 2.37 1.2226 1.2140 0.71
45o 0.1209 0.1183 2.14 1.2117 1.1994 1.01
90o 0.1313 0.1286 2.05 1.2008 1.1903 0.87
135o 0.1324 0.1295 2.18 1.2156 1.2049 0.88
180o 0.1180 0.1152 2.31 1.2076 1.1971 0.87
225o 0.1041 0.1013 2.72 1.2242 1.2146 0.78
270o 0.1026 0.0996 2.89 1.232 1.2256 0.52
315o 0.1050 0.1021 2.67 1.2398 1.2325 0.59
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Figure 6: A cylinder with a spherical cavity under remote tension
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
        (a)                                                                  (b) 

Figure 7: Mesh designs: (a) 88 elements with 228 nodes for BEM; (b) 2940
SOLID186 elements with 6826 nodes for ANSYS FEM.
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4 Conclusions

The first- and second-order derivatives of the Green’s function by Ting and Lee
(1997) for the displacements in a 3D generally anisotropic elastic solid have been
derived using a revised approach suggested by Lee (2009).These fundamental so-
lutions are required in the formulation of the BEM; the latter, in particular, are
needed for obtaining the stresses at an interior point of the elastic body upon differ-
entiating Somigliana’s displacement identity. Three numerical examples have been
presented in this paper to further demonstrate their successful implementation into
a BEM code for internal point solutions. The numerical results for these BEM solu-
tions obtained using the present formulations showed very good agreement indeed
with those obtained using ANSYS-FEM analysis. A comparison of the CPU run-
times of the problems treated using the present algorithm and a previous approach
has also been conducted. It clearly shows the superior efficiency of the present
formulation outlined in this paper.
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