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Generalized Westergaard Stress Functions as
Fundamental Solutions
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Abstract: A particular implementation of the hybrid boundary element method
is presented for the two-dimensional analysis of potential and elasticity problems,
which, although general in concept, is suited for fracture mechanics applications.
Generalized Westergaard stress functions, as proposed by Tada, Ernst and Paris in
1993, are used as the problem’s fundamental solution. The proposed formulation
leads to displacement-based concepts that resemble those presented by Crouch and
Starfield, although in a variational framework that leads to matrix equations with
clear mechanical meanings. Problems of general topology, such as in the case of
unbounded and multiply-connected domains, may be modeled. The formulation,
which is directly applicable to notches and generally curved, internal or external
cracks, is specially suited for the description of the stress field in the vicinity of
crack tips and is an easy means of evaluating stress intensity factors and of check-
ing some basic concepts laid down by Rice in 1968. The paper focuses on the
mathematical fundamentals of the formulation. One validating numerical example
is presented.

Keywords: Westergaard stress functions, Hellinger-Reissner potential, hybrid
boundary element, variational methods.

1 Introduction

Tada, Ernst, and Paris (1993, 1994) proposed a simple and efficient method of de-
veloping Westergaard stress functions for the analysis of displacement-prescribed
and stress-prescribed crack problems. Their intervention was restricted to the math-
ematical means of arriving at the stress functions and the illustration of several
forms of crack openings – always in terms of analytical developments.

The present paper makes use of Tada, Ernst and Paris’ method and shows that such
stress functions may be implemented as fundamental solutions of a generalized,
two-dimensional boundary element method, and applied to problems that can be
1 PUC-Rio, Brazil
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completely unrelated to fracture mechanics. On the other hand, the formulation
can be directly and advantageously applied to fracture mechanics [Dumont and
Lopes (2003); Mamani (2011)].

Tada, Ernst and Paris’ basic idea is extremely simple, as shown in Section 3. Al-
though there is no claim of originality in the developments of the next Sections
([Dumont (2008)], see [Crouch and Starfield (1983)], for instance), they highlight
some relevant mathematical aspects that Westergaard-like potential functions must
satisfy to be applicable in the framework of an integral statement. Initially, a fun-
damental solution for potential problems is constructed and singularity issues are
discussed [Dumont and Mamani (2011b)]. Then, the formulation is generalized to
two-dimensional problems of elasticity [Dumont and Mamani (2011a)].

The traditional developments based on Westergaard stress functions work for a
potential functional of the type Φ = σ∞z/

√
z2−a2, which yields a constant stress

σ∞ 6= 0 at infinity. Results related to displacements are usually given in terms of
the integral Φ∗ of Φ. This potential function is also sometimes characterized as Z.

In the present outline, the method proposed by Tada, Ernst and Paris is used to
define a non-dimensional potential function Φ that may have an in principle arbi-
trary configuration, depending on the local geometrical assumptions that are made,
with all developments obtained in terms of Φ and its derivatives. Several configu-
ration possibilities of Φ have been previously studied for the modeling of potential
problems in a variational framework [Dumont (2008)]. In this paper, the poten-
tial function corresponds to the superposition of two elliptical half cracks, for a
homogeneous slab of constant thickness under plane strain. The locally generated
stresses and displacements (the latter ones evaluated except for rigid body displace-
ments) tend to zero at a point that goes increasingly farther from the crack (σ∞ = 0).

The primary motivation to the present theoretical developments was the evaluation
of stress intensity factors in fracture mechanics. In spite of the superior analytical
tools provided by the generalized Westergaard stress functions in the framework
of a variational method [Lopes (2002); Dumont and Lopes (2003)], there seems
to be no definitive answer to the question whether stress intensity factors can be
automatically obtained within an arbitrarily high precision for an arbitrarily com-
plicated elasticity problem. This issue was recently resumed by Mamani (2011)
and is presently under investigation, although it is not the subject of the present
paper.

This paper starts with a very brief outline of the hybrid boundary element method,
as a representative formulation that can make use of the generalized Westergaard
stress functions. In fact, there are several development possibilities of boundary
element methods (variationally-based or not) in the present context, also in com-
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bination with the Kelvin fundamental solution [Dumont and Lopes (2003)]. Then,
the proposition by Tada, Ernst and Paris is briefly presented and developed for a
general, rotated (semi-) crack configuration, which includes the assessment of all
possible singularities. The formulation is initially applied to the solution of the
Laplace equation. The core of the paper are the subsequent developments for plane
elasticity, which are shown to be of exactly the same mathematical nature of the
ones for potential problems. Numerical integration is outlined in an Appendix. A
few academical, numerical examples are shown in order to validate the proposed
developments and highlight some convergence issues.

2 Brief outline of the hybrid boundary element method

The hybrid boundary element method (HBEM) was introduced in 1987 on the ba-
sis of the Hellinger-Reissner potential and as a generalization of Pian’s hybrid finite
element method [Pian (1964); Dumont (1989)]. The formulation requires evalua-
tion of integrals only along the boundary and makes use of fundamental solutions
(Green’s functions) to interpolate fields in the domain. Accordingly, an elastic
body of arbitrary shape may be treated as a single finite macro-element with as
many boundary degrees of freedom as desired. In the meantime, the formulation
has evolved to several application possibilities, including time-dependent problems,
fracture mechanics, non-homogeneous materials and strain gradient elasticity [Du-
mont and de Oliveira (2001); Dumont and Lopes (2003); Dumont, Chaves, and
Paulino (2004); Dumont and Huamán (2009)].

2.1 Problem Formulation

Let an elastic body be submitted to tractions t̄i on part Γσ of the boundary Γ and to
displacements ūi on the complementary part Γu. For the sake of brevity, body forces
are not included [Dumont (2011)]. One is attempting to find the best approximation
for stresses and displacements, σi j and ui, such that
σ ji, j = 0 in the domain Ω, (1)

ui = ūi along Γu and ti = σi j n j = t̄i along Γσ (2)

in which n j is the outward unit normal to the boundary. Indicial notation is used.

2.2 Stress and Displacement Assumptions

Two independent trial fields are assumed [Pian (1964); Dumont (1989)]. The dis-
placement field is explicitly approximated along the boundary by ud

i , where ()d

means displacement assumption, in terms of polynomial functions uim with com-
pact support and nodal displacement parameters d = [dm] ∈ Rnd

, for nd displace-
ment degrees of freedom of the discretized model. An independent stress field σ s

i j,
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where ()s stands for stress assumption, is given in the domain in terms of a series
of fundamental solutions σ∗i j m with global support, multiplied by force parameters
p∗ = [p∗m] ∈ Rn∗ applied at the same boundary nodal points m to which the nodal
displacements dm are attached (n∗ = nd).1 Displacements us

i are obtained from σ s
i j.

Then,

ud
i = uim dm on Γ such that ud

i = ūi on Γu and (3)

σ
s
i j = σ

∗
i jm p∗m such that σ

∗
jim, j = 0 in Ω (4)

⇒ us
i = u∗im p∗m +ur

isCsm p∗m in Ω (5)

where u∗im are displacement fundamental solutions corresponding to σ∗i jm. Rigid
body motion is included in terms of functions ur

is multiplied by in principle arbitrary
constants Csm [Dumont (2003, 2011)].

2.3 Governing Matrix Equations

The Hellinger-Reissner potential, based on the two-field assumptions of the latter
section, as implemented by Pian (1964) and generalized by Dumont (1989), leads
to two matrix equations that express nodal equilibrium and compatibility require-
ments. Dumont (2011) shows that the simplest, and still mathematically consistent,
means of laying out these equations is in terms of two separately virtual works prin-
ciples, as briefly presented in the following.

2.3.1 Displacement Virtual Work

In the absence of body forces, equilibrium is weakly enforced by∫
Ω

σ
s
i j δud

i, j dΩ =
∫

Γσ

t̄i δud
i dΓ (6)

for σ s
i j = σ s

j i. Assuming that σ s
i j is approximated according to Eq. (4) and that δud

i
is given by Eq. (3), integration by parts of the term at the left-hand side of Eq. (6)
and application of Green’s theorem yield

δdn

[∫
Γ

σ
∗
i jm n j uin dΓ−

∫
Ω

σ
∗
i jm, j uin dΩ

]
p∗m = δdn

[∫
Γ

ti uin dΓ

]
(7)

1 The denomination “fundamental solution” is used in a very broad sense, which comprises Green’s
and Trefftz functions. For Kelvin fundamental solutions, as in the conventional boundary element
method and in the basic version of the HBEM, p∗m are point forces. In the present outline, p∗m are
the resultants of forces applied at crack faces. The problem has the same mathematical format,
although with different singularity issues. In a more generalized formulation, p∗m may be just
parameters with no special mechanical meaning [Dumont (2011); Dumont and Huamán (2009)].
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Then, for arbitrary nodal displacements δdn one obtains the matrix equilibrium
equation

Hmn p∗m = pn or HT p∗ = p (8)

in which H = [Hnm] ∈Rnd×n∗ , given by the first expression in brackets in Eq. (7), is
the same double layer potential matrix of the collocation boundary element method
[Brebbia, Telles, and Wrobel (1984)], and p = [pn] ∈Rnd

, given as the second term
in brackets in Eq. (7), are equivalent nodal forces obtained as in the displacement
finite element method. The domain integral of Eq. (7) is actually void, since σ∗i jm
are fundamental solutions, as in Eq. (4).

2.3.2 Stress virtual work

On the other hand, the displacement field ud
i , explicitly approximated only along Γ

according to Eq. (3), is made compatible with the domain displacement field us
i in

terms of the following virtual work principle:∫
Ω

(
us

i , j−ud
i , j

)
δσ

s
i j dΩ = 0 (9)

for a virtual stress field δσ s
i j that is in equilibrium in Ω, according to Eq. (4).

Applying integration by parts and Green’s theorem to the integral on the left-hand
side of Equation (9), one arrives at∫

Γ

(
us

i −ud
i

)
δσ
∗
i jη jdΓ−

∫
Ω

(
us

i −ud
i

)
δσ
∗
i j, j dΩ = 0 (10)

This equation leads, after assuming that δσ s
i j is approximated according to Eq. (4)

and that ud
i is given by Eq. (3), to

F∗mn p∗n = Hmndn or F∗p∗ = Hd (11)

where H, which already appeared in Eq. (8), is recognized as performing a kine-
matic transformation, and F∗ = [F∗nm] ∈ Rn∗×n∗ is a symmetric, flexibility matrix.
The domain integration term in Eq. (11) is void, according to Eq. (4). The matrices
H and F∗ may be compactly defined as

[Hmn F∗mn] =
∫

Γ

σ
∗
i jmn j 〈uin u∗in〉dΓ (12)
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2.4 Problem solution with the hybrid boundary element method

Solving for p∗ in Eqs. (8) and (11), one arrives at the matrix system

HTF∗(−1)Hd = p (13)

where HTF∗(−1)H≡K is a stiffness matrix. The inverse F∗(−1) must be carried out
in terms of generalized inverses, as F∗ is singular for a finite domain Ω [Dumont
(2011)]. Results at internal points are expressed in terms of Eqs. (4) and (5) after
evaluation of p∗ in either Eq. (8) or (11).

For Neumann boundary conditions, only Eq. (8) is required, as occurs in the anal-
ysis of almost all fracture mechanics problems posed in the literature. This is the
reason why in Sections 5.2 and 6.8 only the numerical integration of H is dealt
with.

This Section presented a framework in which the generalized Westergaard func-
tions of the subsequent Sections can be handled and applied. Alternative boundary
element developments compatible with the use of Westergaard functions are possi-
ble [Dumont and Lopes (2003); Dumont (2011)].

3 Dislocation-based formulation by Tada, Ernst and Paris

Tada, Ernst, and Paris (1993) show that, for a prescribed crack opening of shape
f (x) in the interval [x1,x2] along the x axis and symmetric with respect to this axis
in the Cartesian coordinate system (x,y), one can define a potential function Φ(z)
of the complex argument z = x+ iy,

Φ(z) =− 1
2π

∫ x2

x1

f (x)
z− x

dx (14)

and then obtain the corresponding stress and displacement functions, as a general-
ization of Westergaard’s initial proposition in the frame of the fracture mechanics.
Several crack and stress configurations are investigated by Tada, Ernst, and Paris
(1993), as translation and superposition of effects can always be applied to com-
pose intrincated crack patterns. Westergaard’s developments for an elliptic crack
opening of length 2a are obtained if one chooses the function

f (x) =

√
a2− x2

a
(15)

and then carries out the integration of Eq. (14) in the interval [−a,a].
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4 Basics on a rotated semicrack

A very simple, although apparently original generalization of the above develop-
ments is obtained for a semicrack of length a1 along a straight line that is rotated
in the counter clock direction by an angle θ1, Fig. 1, with which it is possible to
compose kinked cracks of any length [Dumont (2008)], as developed in the rest of
this paper. To make calculations as simple as possible, the crack shape function
of Eq. (15), or any other shape, is initially defined for a semicrack length a = 1
and the integration of Eq. (14) is carried out in the interval [0,1]. Although the
crack shape may be rather general, as given by Tada, Ernst, and Paris (1993) and
as already explored in the present framework [Dumont (2008)], the ensuing de-
velopments are given for the elliptic semicrack corresponding to Eq. (15). The
corresponding expression of Eq. (14) for the semicrack 1 is

Φ1 ≡Φ(Z1) =−Z1

4
− 1

2π

1−
√

1−Z2
1 ln

−1+
√

1−Z2
1

Z1

 (16)

already given as argument of

Z1 = zT1 ≡
z

a1
e−iθ1 ≡ x+ iy

a1
e−iθ1 ≡ r

a1
ei(θ−θ1) (17)

from which the definition of the rotation and normalization term T1 is inferred. The
leading terms of Φ1 at Z1 = 0 (i. e., terms that are different from zero) are obtained
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Figure 1: Semicrack of length a1 rotated by an angle θ1.
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by series expansion,

lim
r→0

Φ1 =
1

2π

−1+ ln(2)− ln(Z1)+ iπ csgn

 i
(

1+
√

1−Z2
1

)
Z1


 (18)

from which the real and imaginary parts are obtained, using Z1 =
r
a1

ei(θ−θ1):

lim
r→0

ReΦ1 =
− ln(r)−1+ ln(2a1)

2π
(19)

lim
r→0

ImΦ1 =


π−θ +θ1

2π
for θ1 ≤ θ ≤ θ1 +π

−π−θ +θ1

2π
for θ1 +π < θ < θ1 +2π

(20)

The first derivative of Φ(Z1) with respect to Z1 is

Φ
′
1 ≡

∂Φ(Z1)
∂Z1

=− 1
2π

Z1 ln

−1+
√

1−Z2
1

Z1

 1√
1−Z2

1

+
1
Z1

+
π

2

 (21)

The leading terms of Φ′1 at Z1 = 0 are

lim
r→0

Φ
′
1 =− 1

2πZ1
− 1

4
(22)

from which the real and imaginary parts are obtained:

lim
r→0

Re Φ
′
1 =−cos(θ −θ1)a1

2πr
− 1

4
(23)

lim
r→0

Im Φ
′
1 =

sin(θ −θ1)a1

2πr
(24)

The second derivative of Φ(Z1) with respect to Z1 is

Φ
′′
1 ≡

∂ 2Φ(Z1)
∂Z2

1
=− 1

2π
ln

−1+
√

1−Z2
1

Z1

(1−Z2
1
)−3/2− 1

2πZ2
1

(
−1+Z2

1

)
(25)
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The leading term of Φ′′1 at Z1 = 0 is

lim
r→0

Φ
′′
1 =

1
2π

 1
Z2

1
+lnZ1+1− ln2−iπ csgn

 i
(

1+
√

1−Z2
1

)
Z1


≡ 1

2πZ2
1
−lim

r→0
Φ1

(26)

and the corresponding real and imaginary parts are

lim
r→0

Re Φ
′′
1 =

cos(2θ −2θ1)a2
1

2πr2 − lim
r→0

ReΦ1 (27)

lim
r→0

Im Φ
′′
1 =−sin(2θ −2θ1)a2

1
2πr2 − lim

r→0
ImΦ1 (28)

The functions Φ1 and Φ′1 present at Z1 = 1 singularities of the types (Z2
1 − 1)1/2

and (Z2
1 −1)−1/2, as expected for the tip of an elliptic crack. This issue as well as

the singularity of Φ′′1 at Z1 = 1 are investigated later on in the opportune context.

5 Developments for a potential problem

The above developments are now applied to the derivation of a fundamental so-
lution that can be used in the context of a hybrid boundary element method for
potential problems. The developments in this Section are per se relevant and self
contained. However, they serve as motivation to the more involved – and less intu-
itive – problem of elasticity.

5.1 Construction of a fundamental solution

A solution of the Laplace equation
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, say, for the steady-state heat

transfer in a homogeneous plate of uniforme thickness t with coefficient of con-
ductivity k, can be obtained from Φ1, as introduced in Eq. (16), in terms of the
potential

u1 =
1
k

ImΦ1 (29)

with fluxes referred to the global Cartesian system (x,y)

qx1 =−k
∂u1

∂x
=−Im (T1Φ′1)

qy1 =−k
∂u1

∂y
=−Re (T1Φ′1)

(30)
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and normal flux

qn1 =−qx1nx−qy1ny along Γ (31)

where nx and ny are the projections of the boundary outward unit normal~n.

As formulated, u1 is the temperature at a point (x,y) of the plate and qx1 and qy1 are
heat fluxes – rate of heat transfer per unit surface area of the body – for a total heat
flow input per plate thickness Q/t = 1, which comes out in the discussion after Eq.
(40). The rotated Cartesian system of coordinates (x1,y1), as indicated in Fig. 1, is
introduced with the purpose of arriving at a formal manipulation of the problem:{

x1
y1

}
=
[

cosθ1 sinθ1
−sinθ1 cosθ1

]{
x
y

}
, or x1 = T1x (32)

Then, the fluxes introduced in Eqs. (30) may also be expressed as{
qx1

qy1

}
=
[

cosθ1 −sinθ1
sinθ1 cosθ1

]{
qx1(0)

qy1(0)

}
, or q1 = TT

1 q1(0) (33)

where the subscript ()1(0) indicates that the fluxes are referred to the Cartesian
system (x1,y1) rotated by the angle θ1:

qx1(0) =−k
∂u1

∂x1
=− 1

a1
Im (Φ′1)

qy1(0) =−k
∂u1

∂y1
=− 1

a1
Re (Φ′1)

(34)

Let two segments of lengths a1 and a2 rotated by angles θ1 and θ2, respectively,
compose lines of potential jumps (which correspond to lines of displacement dis-
continuities – cracks – in the elasticity case) along the boundary Γ of a body of
domain Ω, with segment 1 coming before segment 2, in such a way that all phe-
nomena along Γ are described in terms of a local variable ξ that runs in the counter
clock direction, as illustrated in Fig. 2. The combined effect of the potential field
is proposed as

u = u1−u2 (35)

with mathematical justification that follows immediately. According to Eq. (20),
the latter equation leads to

lim
r→0

u≡ 1
k

lim
r→0

Im(Φ1−Φ2) =
1
k



θ1−θ2

2π
for 0≤ θ < θ1

1+
θ1−θ2

2π
for θ1 ≤ θ ≤ θ2

θ1−θ2

2π
for θ2 < θ ≤ 2π

(36)
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Figure 2: Representation of two semicracks that compose the crack element # 3
related to node # 4.

This is the same as expressing

lim
r→0

u≡ 1
k

lim
r→0

Im(Φ1−Φ2) =
1
k


θ1−θ2

2π
for a point outside Ω

1+
θ1−θ2

2π
for a point inside Ω

(37)

The practical way to evaluate lim
r→0

u =
1
k

+
θ1−θ2

2πk
for a point inside Ω, and

for θ1 and θ2 in any quadrant, whenever required, is by writing lim
r→0

u =

frac
(

1+
θ1−θ2

2π

)
1
k

, observing that 0 < lim
r→0

u <
1
k

.

5.1.1 Behavior of the normal flux along a crack or jump segment

One checks that, for the superposition of effects given in Eq. (35),

lim
r→0

(
T1Φ

′
1−T2Φ

′
2
)

=−e−iθ1

4a1
+

e−iθ2

4a2
(38)

which is not only finite, but also independent from the angle θ along which the
point r = 0 is approached.

The projections of the outward unit normal ~n, for Γ rotated by θ1, are nx = sinθ1
and ny = −cosθ1. Then, for the combined effect of the potential field, as in Eq.
(35), the normal flux qn on Γ is

lim
r→0

qn = lim
r→0

(−qxnx−qyny) =
1

4a1
− cos(θ2−θ1)

4a2
along segment 1 (39)

lim
r→0

qn = lim
r→0

(−qxnx−qyny) =
1

4a2
− cos(θ2−θ1)

4a1
along segment 2 (40)
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Observe that there is a jump in the value of qn as one goes from one segment to
the other. If θ2 = θ1 + π , that is, segments 1 and 2 constitute a straight boundary,

both limits above result in lim
r→0

qn =
1

4a1
+

1
4a2

, which means that there is no longer

a jump, although qn varies along the segments. Additionally, if a1 = a2, qn is
constant along the entire boundary segment and the integration of qn along the
segment results in a source of unit intensity, Q/t = 1.

Although there are no singularities at r = 0, the expressions of the potential u and
of the flux qn must be carefully assessed around the origin and at the opposite
extremities of the segments 1 and 2, as numerical integrations are to be ultimately
carried out for the evaluation of the matrices that result from a boundary element
formulation. This is outlined in the Appendix.

5.1.2 Behavior of the first derivative of the potential function along a crack or
jump segment

The derivative Φ′ may be split for Z = x in the interval 0 < x < 1 into the following
real and imaginary parts:

Φ
′ =− 1

2π

(
x ln

(
1+
√

1− x2

x

)
1√

1− x2
+

1
x

+
π

2

)
∓ i

x

2
√

1− x2
, 0 < x < 1

(41)

As shown in the former Section, the term 1/Z, corresponding to 1/x above, cancels
out when two segments are juxtaposed. The (∓) sign above depends on whether
y = 0+ or y = 0−, with a jump at y = 0. From this equation and from the de-
velopments in the preceding sections one infers that ReΦ′ presents a logarithmic
singularity at x = 0, as dealt with numerically in Section A.1, but tends smoothly to
zero as the extremity x = 1 is reached, that is, ReΦ′ can be approach by a low-order
polynomial close to the right extremity of the interval 0 < x < 1. The imaginary
part ImΦ′ has the opposite behavior, with a 1/

√
1− x singularity for 0 < x < 1, but

tending smoothly to zero as the extremity x = 0 is approached.

The following Section presents an algorithm for the numerical evaluation of Eq.
(42) step by step along a segment i j, for i varying from 1 to nn, the total number
of boundary nodes, and j characterizing the node that succeeds i when one moves
counterclockwise around the domain. When k = i or k = j, the segment i j coincides
with either kk+ or k−k and there are in principle singularities on both extremities
of the segment i j, as a combination of the cases outlined in Sections A.1 and A.3.
However, a simplification occurs for potential problems (as well as for elasticity,
according to Section 6.7). For segment 1, for instance, the projections of the out-
ward unit vector~n are nx = sinθ1 and ny =−cosθ1. Then, one checks with use of



Generalized Westergaard Stress Functions as Fundamental Solutions 121

Eq. (33) that, in Eq. (42),−qx1nx−qy1ny = qy1(0) =− 1
a1

Re (Φ′1), which presents an

implicit logarithmic singularity at x1 = 0, but can be approximated by a low-order
polynomial as x1 = a1 is approached. The fact that no singularity exists either at
x1 = a1 along the segment 1 or at x2 = a2 along the segment 2 leads to the simple
algorithm to be outlined next for the cases that k = j or k = i.

5.2 Numerical integration of the double-layer potential matrix H for potential
problems

The general expression of the double-layer potential matrix H is

H≡ Hki =−
∫

Γ

(qxk nx +qyk ny)Ni|J|dξ (42)

where k is the node of application of the potential source, i. e., the common node
of two adjacent boundary segments, k−k on the left (segment 1, rotated by an angle
θ1) and kk+ on the right (segment 2, rotated by an angle θ2), as described in Section
5.1, and i is the node at which a potential of unit intensity is applied. The applied
boundary potential varies linearly, according to the interpolation function Ni, from
node i to the adjacent nodes on the left and on the right. Then, the integration
interval indicated in the above equation comprehends, for the matrix coefficient
Hki, the two boundary segments that have i as common node (see Fig. 3). In this
particular case, |J| is the corresponding element length, for the natural boundary
variable ξ ∈ [0,1].

5.2.1 Algorithm for the numerical integration of H

Let nn be the total number of nodes of a discretized model, which coincides with
the total number of discretized boundary segments, as illustrated in Fig. 3. A body
of any topology, with reentrant corners, holes and, after a slight modification of the
basic code, also one-dimensional internal obstacles (which correspond to cracks in
an elastic medium), can be simulated. The simulation of an internal crack is ob-
tained as the modeling of a hole in the domain (then with node numbering running
clockwise), as illustrated in the general numerical example of Fig. 6. However, as
illustrated in Fig. 4 for a crack with n nodes, a fictitious node n + 3 is introduced.
After the numerical evaluation of all matrices, the rows and columns correspond-
ing to nodes 1, n + 2 and n + 3 are removed and the effect of the internal crack is
consistently taken into account [Mamani (2011); Dumont and Mamani (2011b,a)].

Define the matrices of potential functions and the matrix N of shape functions

Φ
′ =
[
Φ′1 Φ′2

]
, Φ

′
ln =

[
Φ′1 Φ′2

]
ln , Φ

′
reg =

[
Φ′1 Φ′2

]
reg (43)
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Figure 3: Illustration of a body discretized with 12 linear boundary elements and
the corresponding definition of the crack segments.

N =
[
Ni N j

]
≡
[
1−ξ ξ

]
(44)

The subscripts ()ln and ()reg above indicate that the functions in the matrix coeffi-
cients are the ones defined in Eqs. (A.6) and (A.7), for the logarithmic singularity,
and (A.18) and (A.19), for the

√
1/ξ singularity. Moreover, define the nn× nn

matrix H with all coefficients initially set as zero.

For the purpose of having the following algorithm as ready as possible for code
writing, the coefficients of all matrices are referred to in brackets, whereas the
primary variable is given in parentheses, such as Φ

′(ξ )[c], where c = 1,2 for the
first matrix in Eq. (43).

External loop for the potential jumps – corresponding to the source cracks in
elasticity – with k varying from 1 to nn. Determine the adjacent nodes k− and
k+, for the nodes numbered counterclockwise. Next, obtain cosθ1, sinθ1, cosθ2,
sinθ2, according to Section 4.
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Figure 4: Fictitious node n+3 for the simulation of a curved crack with n segments.

Define the array of constants

C =
[
T1 −T2

]
(45)

Internal loop for the integration segments with i varying from 1 to nn. Deter-
mine the subsequent node j, as integration will be carried out along the segment
i j.

Evaluate x(ξ ) and y(ξ ) along the segment i j as well as the derivatives dx/dξ and
dy/dξ and the Jacobian |J|. Observe that, in Eq. (42), nxdΓ = dy and nydΓ =−dx.
Next, evaluate Z1(ξ ) and Z2(ξ ), according to Eq. (17).

Carry out the numerical evaluation of the 2× 2 complex array h in the following
logical if structure using the procedures lnproc() and sqrt proc() given in the Ap-
pendix. In the loops to be presented, c = 1,2 refers to either semicrack 1 or 2, and
n = 1,2 refers to either extremity i or j of a segment.

If i = k, then there is an embedded logarithmic singularity at the extremity ξ = 0
of the segment i j caused by the potential jumps along both segments kk+ and k−k:
case (a) of Fig. 5.

For c and n varying from 1 to 2 in two nested loops,

Define f = Φ
′(ξ )[c]N(ξ )[n], fln = Φ

′
ln(ξ )[c]N(ξ )[n], freg = f − fln lnξ and obtain

h[n,c] = lnproc().
End of the nested loops with control variables c,n.

Else if j = k, then there is an embedded logarithmic singularity at the extremity
ξ = 1 of the segment i j caused by the potential jumps along both segments kk+ and
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Figure 5: Illustration of the five cases to be taken into account in the numerical
evaluation of the integral of Eqs. (42) and (93).

k−k: case (b) of Fig. 5.

For c and n varying from 1 to 2 in two nested loops,

Define f = Φ
′(1− ξ )[c]N(1− ξ )[n], fln = Φ

′
ln(1− ξ )[c]N(1− ξ )[n], freg = f −

fln lnξ and obtain h[n,c] = lnproc().
End of the nested loops with control variables c,n.

Else if i = k+, then there is a square-root singularity at the extremity ξ = 0 of the
segment i j caused by the potential jump 1 along the segment kk+: case (c) of Fig.
5. There is no singularity associated with the potential jump 2.

For n varying from 1 to 2,

Define f = Φ
′(ξ )[1]N(ξ )[n], freg = Φ

′
reg(ξ )[1]N(ξ )[n], fsqrt = ( f − freg)

√
ξ and

obtain h[n,1] = sqrt proc().
Define f = Φ

′(ξ )[2]N(ξ )[n] and carry out the Gauss-Legendre quadrature h[n,2] =
∑

ng
ig=1 f (ξg[ig])wg[ig].

End of the loop with control variable n.

Else if j = k−, then there is a square-root singularity at the extremity ξ = 1 of the
segment i j caused by the potential jump 2 along the segment k−k: case (d) of Fig.
5. There is no singularity associated with the potential jump 1.
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For n varying from 1 to 2,

Define f = Φ
′(1− ξ )[2]N(1− ξ )[n], freg = Φ

′
sqrt(1− ξ )[2]N(1− ξ )[n], fsqrt =

( f − freg)
√

ξ and obtain h[n,2] = sqrt proc().
Define f = Φ

′(ξ )[1]N(ξ )[n] and carry out the Gauss-Legendre quadrature h[n,1] =
∑

ng
ig=1 f (ξg[ig])wg[ig].

End of the nested loops with control variable n.

Else there is no singularity: case (e) of Fig. 5.

For c and n varying from 1 to 2 in two nested loops,

Define f = Φ
′(ξ )[c]N(ξ )[n] and carry out the Gauss-Legendre quadrature h[n,c] =

∑
ng
ig=1 f (ξg[ig])wg[ig].

End of the nested loops with control variables c,n.

End if End of the structured logical if.

Define the matrix of boundary unit projections referred to the segment i j, as intro-
duced in Eq. (31),

n =
[
nx ny

]
(46)

The coefficient Hcoe f of the matrix H in Eq. (42) is obtained in the following loop,
according to Eq. (31), for nodes i and j given in the array i≡ [i, j].

Loop for extremities i and j, with n varying from 1 to 2

Hcoe f =

[
2

∑
c=1

C[c,1] Im(h[n,c])+C[c,2]Re(h[n,c])

]
nT (47)

The matrix H, whose coefficients may already have contribution from a preceding
integration over an adjacent segment, is obtained from Hsub[n] as

H[k, i[n]] = H[k, i[n]]+Hcoe f (48)

End of loops with control variables n, i,k.
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6 Developments for elasticity problems

6.1 Developments for a mode I stress state

The expressions of displacements uI
1 and stresses σ I

1 for a crack rotated by an angle
θ1, as referred to the global coordinates (x,y), are, for mode I,

uI
1 =

1+ν

E

[
(1−2ν)cosθ1 ReΦ1−2(1−ν)sinθ1 ImΦ1 +

y1

a1

(
sinθ1 ReΦ

′
1−cosθ1 ImΦ

′
1
)]

vI
1 =

1+ν

E

[
(1−2ν)sinθ1 ReΦ1 +2(1−ν)cosθ1 ImΦ1−

y1

a1

(
cosθ1 ReΦ

′
1−sinθ1 ImΦ

′
1
)]

σ
I
xx1

=
1
a1

Re Φ
′
1 +

y1

a2
1

(
sin2θ1 ReΦ

′′
1− cos2θ1 Im Φ

′′
1
)

σ
I
yy1

=
1
a1

Re Φ
′
1−

y1

a2
1

(
sin2θ1 ReΦ

′′
1− cos2θ1 Im Φ

′′
1
)

τ
I
xy1

=− y1

a2
1

(
cos2θ1 Re Φ

′′
1 + sin2θ1 Im Φ

′′
1
)

(49)

where

y1 = ycosθ1− xsinθ1 ≡ r sin(θ −θ1) (50)

The displacement and stress expressions can be given in a more compact and un-
derstandable format. For a crack rotated by an angle θ1, with rotated coordinates{

x1
y1

}
=
[

cosθ1 sinθ1
−sinθ1 cosθ1

]{
x
y

}
, or x1 = T1x (51)

the displacement vector uI
1(0) and the stress tensor σ I

1(0) are

uI
1(0) =

1+ν

E

(1−2ν)ReΦ1−
y1

a1
ImΦ′1

2(1−ν) ImΦ1−
y1

a1
ReΦ′1

 (52)

σ
I
1(0) =


1
a1

Re Φ′1−
y1

a2
1

Im Φ′′1 − y1

a2
1

Re Φ′′1

− y1

a2
1

Re Φ′′1
1
a1

Re Φ′1 +
y1

a2
1

Im Φ′′1

 (53)
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where the subscript ()1(0) refers to direction θ1, but with displacements and stresses
locally oriented. Then, the results of Eq. (49) are

uI
1 = TT

1 uI
1(0) (54)

σ
I
1 = TT

1 σ
I
1(0)T1 (55)

It is convenient to express the above equation for the stress coefficients aligned as
a vector:

σ I
xx1

σ I
yy1

τ I
xy1

=

 cos2θ1 sin2
θ1 −sin2θ1

sin2
θ1 cos2θ1 sin2θ1

sin2θ1/2 −sin2θ1/2 cos2θ1




σ I
xx1(0)

σ I
yy1(0)

τ I
xy1(0)

 (56)

6.2 Developments for a mode II stress state

The expressions for displacements uII
1 and stresses σ II

1 for a crack rotated by an
angle θ1, as referred to the global coordinates (x,y), are, for mode II,

uII
1 =

1+ν

E

[
(1−2ν)sinθ1 ReΦ1 +2(1−ν)cosθ1 ImΦ1 +

y1

a1

(
cosθ1 ReΦ

′
1 + sinθ1 ImΦ

′
1
)]

vII
1 =

1+ν

E

[
−(1−2ν)cosθ1 ReΦ1 +2(1−ν)sinθ1 ImΦ1 +

y1

a1

(
sinθ1 ReΦ

′
1−cosθ1 ImΦ

′
1
)]

σ
II
xx1

=
1
a1

[
−sin2θ1 Re Φ

′
1+(1+cos2θ1) ImΦ

′
1
]
+

y1

a2
1

(
cos2θ1 ReΦ

′′
1+sin2θ1 Im Φ

′′
1
)

σ
II
yy1

=
1
a1

[
sin2θ1 Re Φ

′
1 +(1−cos2θ1) ImΦ

′
1
]
− y1

a2
1

(
cos2θ1 ReΦ

′′
1 + sin2θ1 Im Φ

′′
1
)

τ
II
xy1

=
1
a1

[
cos2θ1 Re Φ

′
1 + sin2θ1 ImΦ

′
1
]
+

y1

a2
1

(
sin2θ1 ReΦ

′′
1−cos2θ1 Im Φ

′′
1
)
(57)

As developed for mode I, these expressions can be given in a more compact and
understandable format. For a crack rotated by an angle θ1, according to Eq. (51)
the displacements uII

1(0) and stresses σ II
1(0) are

uII
1(0) =

1+ν

E

 2(1−ν) ImΦ1 +
y1

a1
ReΦ′1

−(1−2ν)ReΦ1−
y1

a1
ImΦ′1

 (58)
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σ
II
1(0) =


2
a1

ImΦ′1 +
y1

a2
1

ReΦ′′1
1
a1

Re Φ′1−
y1

a2
1

Im Φ′′1

1
a1

Re Φ′1−
y1

a2
1

Im Φ′′1 − y1

a2
1

ReΦ′′1

 (59)

where the subscript ()1(0) refers to direction θ1, but with displacements and stresses
locally oriented. Then, the results of Eq. (57) are

uII
1 = TT

1 uII
1(0) (60)

σ
II
1 = TT

1 σ
II
1(0)T1 (61)

The above result may also be expressed as in Eq. (56).

6.3 Compact expressions of displacements and stresses for modes I and II

The displacements and stresses due to the combined actions of mode I and mode II
at crack 1, for applied crack forces of intensity pI

1 and pII
1 , are compactly expressed

as{
u1
v1

}
=
[

cosθ1 −sinθ1
sinθ1 cosθ1

][
uI

1(0) uII
1(0)

vI
1(0) vII

1(0)

]{
pI

1
pII

1

}
, or u1 = TT

1 u1(0)p1 (62)


σxx1

σyy1

τxy1

=

 cos2θ1 sin2
θ1 −sin2θ1

sin2
θ1 cos2θ1 sin2θ1

sin2θ1/2 −sin2θ1/2 cos2θ1


 σ I

xx1(0)
σ II

xx1(0)

σ I
yy1(0)

σ II
yy1(0)

τ I
xy1(0)

τ II
xy1(0)

{ pI
1

pII
1

}
,

(63)

or σ1 = R1σ1(0)p1

All results above have been checked using Maple™ , for a general complex function
Φ, making sure that displacements and stresses correspond to each other, for plane
strain state, and that the stresses are in equilibrium. The manipulation of complex

functions is best done in terms of ReΦ =
Φ+ Φ̄

2
and ImΦ =−i

Φ− Φ̄

2
. The stress

results were obtained as general real functions f (x,y) =
1
2
[
(a+ ib)Φ+(a− ib)Φ̄

]
and then converted to f (x,y) = aReΦ−b ImΦ̄.

6.4 Condition for the actions of the combined semicracks 1 and 2 to be finite

The developments above have been done for a crack rotated by an angle θ1. For the
combined action of two cracks rotated with angles θ1 and θ2, the displacements are
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given as the superposition of effects:{
u
v

}
=
[

uI
1 uII

1
vI

1 vII
1

]{
pI

1
pII

1

}
+
[

uI
2 uII

2
vI

2 vII
2

]{
pI

2
pII

2

}
or u = TT

1 u1(0)p1 +TT
2 u2(0)p2

(64)

The leading terms of displacements u1(0) for the semicrack 1 are:

lim
r→0

uI
1(0) =

1+ν

2πE

(
(1−2ν)(− ln(r)−1+ ln(2a1))− sin(∆1)

2
)

(65)

lim
r→0

vI
1(0) =

1+ν

2πE
(−2(1−ν)(∆1+csgn(isin(∆1)−cos(∆1))π)+sin(∆1)cos(∆1))

(66)

lim
r→0

uII
1(0) =

1+ν

2πE
(−2(1−ν)(∆1+csgn(isin(∆1)−cos(∆1))π)−sin(∆1)cos(∆1))

(67)

lim
r→0

vII
1(0) =

1+ν

2πE

(
(1−2ν)(ln(r)+1−ln(2a1))−sin(∆1)

2
)

(68)

where ∆1 = θ −θ1. The leading terms of displacements u2(0) for the semicrack 2
have the same expressions above if a2 and ∆2 are substituted for a1 and ∆1.

The condition for the combined action of the semicracks 1 and 2 to be finite is
obtained by enforcing that the term that multiplies lnr in u and v in Eq. (64) is
void, for the expressions of u1(0) and u2(0) given above, as both lim

r→0
u and lim

r→0
v

must be finite. Then,[
cosθ1 sinθ1
sinθ1 −cosθ1

]{
pI

1
pII

1

}
+
[

cosθ2 sinθ2
sinθ2 −cosθ2

]{
pI

2
pII

2

}
=
{

0
0

}
(69)

The simplest solution of this problem is obtained by electing the vector of force

parameters
{

p∗x
p∗y

}
as the problem’s primary unknowns (the superscript * standing

for fundamental solution) and solving{
pI

1
pII

1

}
=
[
−sinθ1 cosθ1
+cosθ1 sinθ1

]{
p∗x
p∗y

}
,

{
pI

2
pII

2

}
=−

[
−sinθ2 cosθ2
+cosθ2 sinθ2

]{
p∗x
p∗y

}
(70)
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or

p1 = M1p∗, p2 =−M2p∗ (71)

The physical meaning of p∗ ≡
{

p∗x
p∗y

}
becomes evident in the particularization of

Eqs. (91) and (92) and also in comparison with the initially suggested Westergaard
expressions for stress modes I and II [Mamani (2011)].

6.5 General displacement and stress expressions

One obtains from Eqs. (64) and (71) the displacement expression at a point (x,y):

u =
(
TT

1 u1(0)M1−TT
2 u2(0)M2

)
p∗ (72)

The matrix product TT
1 u1(0)M1 that refers to the semicrack 1 may be explicitly

expressed from Eqs. (52), (58), (62) and (70) as the sum of matrices of constants
times the real and imaginary parts of the potential function derivatives, with similar
procedure for the semicrack 2:

TT
1 u1(0)M1 = UImΦ1 ImΦ1 +UReΦ1 ReΦ1 +UImΦ′1

(
y1ImΦ

′
1
)
+UReΦ′1

(
y1ReΦ

′
1
)

(73)

where

UImΦ1 =
2(1−ν2)

E

[
1 0
0 1

]
, UReΦ1 =

(1+ν)(1−2ν)
E

[
0 1
−1 0

]
(74)

UImΦ′1
=

1+ν

Ea1

[
sin2θ1 −cos2θ1
−cos2θ1 −sin2θ1

]
, UReΦ′1

=
1+ν

Ea1

[
cos2θ1 sin2θ1
sin2θ1 −cos2θ1

]
(75)

Moreover, one obtains from Eqs. (63) and (71) the stress expression at a point
(x,y):

σ =
(
R1σ1(0)M1−R2σ2(0)M2

)
p∗ (76)

The matrix product R1σ1(0)M1 that refers to the semicrack 1 may be explicitly
expressed from Eqs. (53), (59), (63) and (70) as the sum of matrices of constants
times the real and imaginary parts of the potential function derivatives:

R1σ1(0)M1 = SImΦ′1
ImΦ

′
1 +SReΦ′1

ReΦ
′
1 +SImΦ′′1

(
y1ImΦ

′′
1
)
+SReΦ′′1

(
y1ReΦ

′′
1
)
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(77)

where

SImΦ′1
=

2
a1

 cos3θ1 sinθ1cos2θ1

sin2
θ1 cosθ1 sin3

θ1

sinθ1cos2θ1 sin2
θ1 cosθ1

 (78)

SReΦ′1
=

1
2a1

−3sinθ1− sin3θ1 2cosθ1 cos2θ1
2sinθ1 cos2θ1 3cosθ1− cos3θ1
2cosθ1 cos2θ1 2sinθ1 cos2θ1

 (79)

SImΦ′′1
=

1
a2

1

 sin3θ1 −cos3θ1
−sin3θ1 cos3θ1
−cos3θ1 −sin3θ1

 , SReΦ′′1
=

1
a2

1

 cos3θ1 sin3θ1
−cos3θ1 −sin3θ1

sin3θ1 −cos3θ1

 (80)

The matrix product R2σ2(0)M2 for the semicrack 2 in Eq. (76) is obtained from
Eqs. (77)–(80) by substituting the subscripts 2 for the subscripts 1.

For the purpose of computational implementation, the vectors of displacements u
in Eq. (72) and of stresses σ in Eq. (76) can be compactly expressed as

u = [Ucd1ImΦcd +Ucd2ReΦcd ]p∗ (81)

σ =
[
Scd1ImΦ

′
cd +Scd2ReΦ

′
cd
]

p∗ (82)

Summation is implied for repeated indices. In these equations, U and S are 2×2×2
arrays of matrix constants

U =
[[

UImΦ1 UReΦ1

UImΦ′1
UReΦ′1

] [
−UImΦ2 −UReΦ2

−UImΦ′2
−UReΦ′2

]]
(83)

S =
[[

SImΦ′1
SReΦ′1

SImΦ′′1
SReΦ′′1

] [
−SImΦ′2

−SReΦ′2
−SImΦ′′2

−SReΦ′′2

]]
(84)

A coefficient (c,d, j) refers with c = 1,2 to either semicrack, with d = 1,2 to the
row number (d is related to derivative) and with j = 1,2 to either the imaginary
or real part of the potential functions Φ1 or Φ2. Each coefficient (c,d, j) of U is
a 2× 2 matrix given as in Eqs. (74)–(75) for the respective semicrack. Similarly,
each coefficient (c,d, j) of S is a 3× 2 matrix given as in Eqs. (78)–(80). The
matrices Φ≡Φcd and Φ

′ ≡Φ′cd introduced in Eqs. (83) and (84) are defined as

Φ =

[
Φ1 y1Φ′1

Φ2 y2Φ′2

]
, Φ

′ =

[
Φ′1 y1Φ′′1

Φ′2 y2Φ′′2

]
(85)
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6.6 Check that displacements and stresses are single valued when r tends to
zero

According to the expressions of u1(0) and u2(0) given above, and using Eq. (70),
one checks that both lim

r→0
u and lim

r→0
v are independent from the direction θ :

lim
r→0

{
u
v

}
=

1+ν

πE
· sin2θ1− sin2θ2

4
− (1−ν)∆12

1−2ν

2
ln

a1

a2
+

cos2θ4− cos2θ1

2

−1−2ν

2
ln

a1

a2
+

cos2θ4− cos2θ1

2
sin2θ2− sin2θ1

4
− (1−ν)∆12

{p∗x
p∗y

}
(86)

The term ∆12 = θ2 − θ1 ± 2π in the above equation depends on whether r = 0
is approached from inside or outside the domain, as explained for the potential
problem, which indicates a displacement jump along the crack faces. The relevant
aspect of this equation is that both lim

r→0
u and lim

r→0
v are finite and single valued when

r = 0 is approached from inside the domain.

Moreover, one obtains from Eq. (76), after some tedious manipulations,

lim
r→0


σx

σy

τxy

=


cosθ1 + cos3θ1

8a1
− cosθ2 + cos3θ2

8a2

3sinθ2+sin3θ2

8a2
−3sinθ1+sin3θ1

8a1
3cosθ1−cos3θ1

8a1
−3cosθ2−cos3θ2

8a2

sinθ2− sin3θ2

8a2
− sinθ1 + sin3θ1

8a1
sin3θ1− sinθ1

8a1
− sin3θ2− sinθ2

8a2

cosθ1+cos3θ1

8a1
− cosθ2+cos3θ2

8a2


{

p∗x
p∗y

}

(87)

which is finite and single valued.

6.7 Behavior of the traction forces along a crack surface

The traction forces

Ti = σ jin j, or
{

Tx

Ty

}
=
[

nx 0 ny

0 ny nx

]
σx

σy

τxy

 or t = nσ (88)

are generically expressed, according to Eq. (76) and above, as

t = n
(
R1σ1(0)M1−R2σ2(0)M2

)
p∗ (89)
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Along the crack surface θ = θ1, where the projections of the outward unit normal
~n along the direction θ1 are nx = sinθ1 and ny =−cosθ1, one obtains

n|
θ=θ1

R1σ1(0)M1 =−ReΦ′1
a1

[
1 0
0 1

]
+

y1

a2
1

[
cos2θ1 sin2θ1
sin2θ1 −cos2θ1

][
ImΦ′′1 ReΦ′′1
ReΦ′′1 − ImΦ′′1

]
(90)

which enables assessing the singularity behavior of the stresses along a crack sur-
face. The above equation shows only the contribution of the semicrack 1 to the total
stress expression of Eq. (89). There are actually no singularities at r = 0, according
to Eq. (87). Since y1 = 0 along the crack surface θ = θ1, according to Eq. (50),
one can write from Eq. (90) that, simply,

n|
θ=θ1

R1σ1(0)M1 =−ReΦ′1
a1

[
1 0
0 1

]
along the crack surface θ = θ1 (91)

and, similarly,

n|
θ=θ2

R2σ2(0)M2 =−ReΦ′2
a2

[
1 0
0 1

]
along the crack surface θ = θ2 (92)

In either case there is only a logarithmic singularity at r = 0 due to ReΦ′, as in the
case of the potential problem (Section 5.1.2). The latter two expressions justify the

particular choice of the parameters
{

p∗x
p∗y

}
in Eq. (71) [Mamani (2011)].

6.8 Numerical integration of the double-layer potential matrix H for elasticity
problems

The general expression of the double-layer potential matrix H for elasticity prob-
lems is

H≡ Hmn =
∫

Γ

σ jimn juin dΓ (93)

where m denotes one of the directions of application of the nominal crack forces

p∗ ≡
{

p∗x
p∗y

}
, defined in Eq. (70), at the node k and n is the direction (x or y) of

application of a unit displacement, which is linearly interpolated. The procedure
shown for the potential problem in Section 5.2 was much simpler than the present
case, as now there is a 2× 2 matrix associated to each nodal point. The potential
problem algorithm was also simpler because only integrations related to Φ′1 had
to be carried out, whereas the elasticity problem requires dealing with Φ′′1 as well.
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However, the stress representation of Eq. (77) leads to a procedure that is logi-
cally exactly the same one of the potential problem. In fact, one can carry out all
integrations related to the complex scalars Φ′1, Φ′′1 , Φ′2 and Φ′′2 and build the final
matrix results afterwards, in terms of the matrices of constants of Eq. (77), which
are geometric characteristics of the semicracks adjacent to a node k, pre-multiplied
by the matrix n defined in Eq. (88).

The following Section consists in an algorithm for the numerical evaluation of Eq.
(93) that is logically the same one outlined in Section 5.2 for potential problems.
The additional computational requirements for elasticity problems are related to
the data preparation – the matrices of constants of Eq. (77) – and the final repre-
sentation of the 2× 2 matrix of results, according to Eq. (89). In order to have
an algorithm that is self-contained, several features presented in Section 5.2.1 are
reproduced here.

6.8.1 Algorithm for the numerical integration of H

Let nn be the total number of nodes of a discretized model, which coincides with
the total number of discretized boundary segments. A body of any topology, with
reentrant corners, holes and, after a slight modification of the basic code, also gen-
erally curved, internal cracks, can be simulated.

Define the matrices of potential functions

Φ
′ =

[
Φ′1 y1Φ′′1

Φ′2 y2Φ′′2

]
, Φ

′
ln =

[
Φ′1 y1Φ′′1

Φ′2 y2Φ′′2

]
ln

, Φ
′
reg =

[
Φ′1 y1Φ′′1

Φ′2 y2Φ′′2

]
reg

(94)

The matrix Φ
′ was already introduced on the right of Eq. (85). The subscripts ()ln

and ()reg above indicate that the functions in the matrix coefficients are the ones
defined in Eqs. (A.6) and (A.7), for the logarithmic singularity, and (A.18) and
(A.19), for the

√
1/ξ singularity. Also, define the matrix N of shape functions

N =
[
Ni N j

]
≡
[
1−ξ ξ

]
(95)

Moreover, define the (2×nn)× (2×nn) matrix H with all coefficients initially set
as zero.

For the purpose of having the following algorithm as ready as possible for code
writing, the coefficients of all matrices are referred to in brackets whereas the pri-
mary variable is given in parentheses, such as Φ

′(ξ )[c,d], where c,d = 1,2 for the
first matrix in Eq. (94).

External loop for the source cracks with k varying from 1 to nn. Determine the
adjacent nodes k− and k+, for the nodes numbered counterclockwise. Next, obtain
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cosθ1, sinθ1, cosθ2, sinθ2, T1 and T2, according to Section 4 and define the array
of constants S of Eq. (84), here repeated for clarity:

S =
[[

SImΦ′1
SReΦ′1

SImΦ′′1
SReΦ′′1

] [
−SImΦ′2

−SReΦ′2
−SImΦ′′2

−SReΦ′′2

]]

Internal loop for the integration segments with i varying from 1 to nn. Deter-
mine the subsequent node j, as integration will be carried out along the segment
i j.

Evaluate x(ξ ) and y(ξ ) along the segment i j as well as the derivatives dx/dξ and
dy/dξ and the Jacobian |J|. Observe that, in Eq. (93), nxdΓ = dy and nydΓ =−dx.
Next, evaluate Z1(ξ ) and Z2(ξ ), according to Eq. (17).

Carry out the numerical evaluation of the 2×2×2 complex array h in the follow-
ing logical if structure using the procedures lnproc() and sqrt proc() given in the
Appendix. In the loops to be presented, c = 1,2 refers to either semicrack 1 or 2,
d = 1,2 refers to either derivative order 1 or 2 of Φ(Z), and n = 1,2 refers to either
extremity i or j of a segment.

If i = k, then there is an embedded logarithmic singularity at the extremity ξ = 0
of the segment i j caused by the semicracks along both segments kk+ and k−k: case
(a) of Fig. 5.

For c, d and n varying from 1 to 2 in three nested loops,

Define f = Φ
′(ξ )[c,d]N(ξ )[n], fln = Φ

′
ln(ξ )[c,d]N(ξ )[n], freg = f − fln lnξ and

obtain h[n,c,d] = lnproc().
End of the nested loops with c,d,n.

Else if j = k, then there is an embedded logarithmic singularity at the extremity
ξ = 1 of the segment i j caused by the semicracks along both segments kk+ and
k−k: case (b) of Fig. 5.

For c, d and n varying from 1 to 2 in three nested loops,

Define f = Φ
′(1− ξ )[c,d]N(1− ξ )[n], fln = Φ

′
ln(1− ξ )[c,d]N(1− ξ )[n], freg =

f − fln lnξ and obtain h[n,c,d] = lnproc().
End of the nested loops with c,d,n.

Else if i = k+, then there is a square-root singularity at the extremity ξ = 0 of the
segment i j caused by semicrack 1 along the segment kk+: case (c) of Fig. 5. There
is no singularity associated with the semicrack 2.
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For d and n varying from 1 to 2 in two nested loops,

Define f = Φ
′(ξ )[1,d]N(ξ )[n], freg = Φ

′
reg(ξ )[1,d]N(ξ )[n], fsqrt = ( f − freg)

√
ξ

and obtain h[n,1,d] = sqrt proc().
Define f = Φ

′(ξ )[2,d]N(ξ )[n] and carry out the Gauss-Legendre quadrature
h[n,2,d] = ∑

ng
ig=1 f (ξg[ig])wg[ig].

End of the nested loops with d,n.

Else if j = k−, then there is a square-root singularity at the extremity ξ = 1 of the
segment i j caused by semicrack 2 along the segment k−k: case (d) of Fig. 5. There
is no singularity associated with the semicrack 1.

For d and n varying from 1 to 2 in two nested loops,

Define f = Φ
′(1−ξ )[2,d]N(1−ξ )[n], freg = Φ

′
reg(1−ξ )[2,d]N(1−ξ )[n], fsqrt =

( f − freg)
√

ξ and obtain h[n,2,d] = sqrt proc().
Define f = Φ

′(ξ )[1,d]N(ξ )[n] and carry out the Gauss-Legendre quadrature
h[n,1,d] = ∑

ng
ig=1 f (ξg[ig])wg[ig].

End of the nested loops with d,n.

Else there is no singularity: case (e) of Fig. 5.

For c, d and n varying from 1 to 2 in three nested loops,

Define f = Φ
′(ξ )[c,d]N(ξ )[n] and carry out the Gauss-Legendre quadrature

h[n,c,d] = ∑
ng
ig=1 f (ξg[ig])wg[ig].

End of the nested loops with c,d,n.

End if End of the structured logical if.

Define the matrix of boundary unit projections of Eq. (88) referred to the segment
i j, here repeated for convenience,

n =
[

nx 0 ny

0 ny nx

]
The 2×2 submatrix Hsub of the matrix H in Eq. (93) is obtained in the following
loop, according to Eq. (89), for nodes i and j given in the array i≡ [i, j], .

Loop for extremities i and j, with n varying from 1 to 2

Hsub =

[
2

∑
c=1

2

∑
d=1

C[c,d,1] Im(h[n,c,d])+C[c,d,2]Re(h[n,c,d])

]T

nT (96)
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The matrix H, whose coefficients may already have contribution from a preceding
integration over an adjacent segment, is obtained from Hsub as

H[2(k−1)+`,2(i[n]−1)+m] = H[2(k−1)+`,2(i[n]−1)+m]+Hsub[`,m], `,m = 1,2

(97)

End of loops with control variables n, i,k.

7 Numerical examples

7.1 Application to a potential problem

A logarithmic potential source Φ = ln
√

(x+10)2 +(y−25)2/(2π) is applied at
node F of an unbounded two-dimensional continuum, as illustrated in Figure 6. The
depicted irregular figure is cut out and the potential and gradients evaluated along
the boundaries are applied, thus creating a problem (for the Laplace equation) of
simple, known analytical solution. However, the reentrant corner and the internal
hole of the figure pose some topological difficulties to the numerical simulation.
The figure is composed of a total of 104 nodes and linear segments, which are
equally spaced between the indicated corner nodes, whose coordinates are given in
Tab. 1. A series of 51 points along the line segment AB are also generated for the
representation of some numerical results in the domain.

Table 1: Cartesian Coordinates of the nodes that constitute Fig. 6.

Node 1 17 27 50 69 87 93 99 A B F
x 0 10 20 15 0 10 11 12 5 15 -10
y 0 15 10 35 20 20 21 20 20 18 25

The simplest problem that can be solved in this example is for Neumann boundary
conditions, when only the matrix H of Eq. (8), as developed in Eq. (42) for po-
tential problems, needs be evaluated [Dumont and Mamani (2011b)]. Although H
is a singular matrix for a bounded domain, the equivalent nodal gradients p of Eq.
(8) are in balance and the posed linear algebra problem admits of just one solution
p∗, to be obtained in the frame of generalized inverse matrices [Dumont (1989);
Dumont and Lopes (2003); Mamani (2011)]. Once p∗ is evaluated, gradients and
potentials can be obtained according to Eqs. (4) and (5). Figure 7 shows on the left
both analytical and numerical values of the potential, as obtained along the line seg-
ment AB. Since this is a Neumann problem, a constant potential was added to the
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Figure 6: Cut-out model for the numerical modeling of a multiply connected body.

numerical results in order that both analytical and numerical values best coincide.
Analytical and numerical values of gradients are also shown in Fig. 7.
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Figure 7: Comparison of some analytical and numerical results for the example of
Fig. 6.

7.2 Application to an elasticity problem

The same irregular figure illustrated in Fig. 6 is used for the numerical simula-
tion of a two-dimensional elasticity problem (Poisson’s ratio equal to 0.3), for a
horizontal point force of unit intensity applied at a node of coordinates (−10,25).
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Displacements and traction forces due to the point force, as measured along the
drawn boundaries, are applied to create a problem of known analytical solution
that, due to the lack of convexity of the cut-out domain, is difficult to solve numer-
ically [Dumont and Mamani (2011a)]. In this example, the figure is composed of
a total of 170 nodes and linear segments that are equally spaced between the indi-
cated corner nodes, corresponding to the node numbering given in the fourth row
of Tab. 2.

The graphics of Fig. 8 show both analytical and numerical stress values obtained
along 51 points of the same line segment AB of the previous example (the values
of σxx are multiplied by -1). Accuracy of results obtained in a formulation that
uses Kelvin fundamental solution is almost matched, in this particular numerical
example [Dumont and Mamani (2011b)]. However, the boundary layer effect is
larger in the case of fundamental solutions defined in terms of generalized Wester-
gaard functions. In fact, one observes in the graphics that the simulated hole in the
figure disturbs the numerical values of σxy and σyy, which slightly undulate about
the analytical results. This is expected, as the gradient singularity

√
1/r of the

Westergaard function is less localized than the singularity 1/r given by Kelvin’s
fundamental solution. In spite of that, good accuracy can be still achieved after
some post-processing of the results for points close to or on the boundary, as done
for the case of Kelvin fundamental solutions [Dumont and Lopes (2003); Dumont
(2011)].

7.3 A convergence study

A comparative convergence study of the numerical simulations of the potential and
elasticity problems of the previous sections is given in Fig. 9, for numerical dis-
cretizations with total numbers 30, 58, 114, 170 and 227 of nodes shown in the
abscissas. (The simulation with 227 nodes was run only for elasticity.) The respec-
tive corner nodes of Fig. 6 are given in Tab. 2.

The graphics display, for each performed numerical simulation, the Euclidean error

Table 2: Corner numbers of the various mesh discretizations of Fig. 6.

30 1 5 8 14 19 24 26 28
58 1 9 14 26 36 45 49 53

114 1 17 27 50 69 87 95 103
170 1 25 40 74 103 130 142 154
227 1 33 53 99 137 173 189 205
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Figure 8: Comparison of analytical and numerical stress results along the line seg-
ment AB of Fig. 6, for a horizontal point force at (−10,25).

norm of gradients or stresses evaluated according to the formula

ε =

√√√√ 51

∑
i=1

(va[i]− vn[i])
2

/
51

∑
i=1

va[i]2 (98)

where vn[i] and va[i] stand for the numerical and analytical values obtained at any
of the 51 points along the line segment AB. The results in Fig. 9 are indicated for
Kelvin (K) and Westergaard (W) fundamental solutions. The results for the con-
ventional, collocation boundary element method (Kelvin fundamental solutions)
converge faster, as expected. However, a neat convergence pattern could also be
shown for the formulation proposed in terms of Westergaard stress functions.
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Figure 9: Comparative convergence study of implementations for the irregularly-
shaped figure using Kelvin and Westergaard fundamental solutions for potential (on
the left) and elasticity problems.

Conclusions

The ultimate goal of the present research project is to obtain a formulation for the
modeling of cracks, as illustrated in Fig. 4, which can also be applied to holes and
notches and leads to a straightforward evaluation of stress intensity and concentra-
tion factors, as a generalization of the developments of Dumont and Lopes (2003).
The scheme of the curved crack in Fig. 4 is topologically a hole with n nodes and
segments, similar to the one with nodes 87 . . .104 of Fig. 6, except that, after eval-
uation of the problem’s matrices and vectors, rows and columns referring to nodes
assigned as 1, n+2 and n+3 in Fig. 4 are removed from the equation systems.

This paper focuses on the conceptual layout of fundamental solutions that are gen-
eralizations of the stress functions proposed by Westergaard for mode I and mode II
deformation problems. Completeness of the formulation in terms of the Kolosov-
Muskhelishvili potentials [Sadd (2005)] is guaranteed for almost all domain topol-
ogy and boundary conditions, provided that some spectral properties of the resul-
tant matrices are adequately taken into account [Dumont and Mamani (2011b);
Dumont (2011)]. As proposed, the formulation would not work, for instance, for a
point force applied inside the hole of Fig. 6.

However, the present fundamental solution is not meant as a surrogate for Kelvin’s
formulation and it may not be worth attempting to arrive at a complete generaliza-
tion. The numerical examples above were shown with the purpose of validating the
theoretical developments. The best numerical simulation of problems of fracture
mechanics seems to be achievable by conveniently combining Kelvin fundamental
solutions and the proposed generalized stress functions [Dumont and Lopes (2003);
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Dumont and Mamani (2011b)].

The evaluation of stress intensity factors in fracture mechanics problems can be
carried out easily and more accurately in the present context than using any existing
finite element or boundary element codes. The specific issues of this subject are
dealt with in a forthcoming paper.
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Appendix A: Numerical integration issues for singularities at the extremities
of a segment

The following developments are expansions about the extremities of either segment
1 or 2. For simplicity, the subscript is suppressed in this Section.
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A.1 Singularity of the potential function Φ(Z) and its derivatives about Z = 0

The expansion of Φ(Z) and its derivatives about the origin follows from Eqs. (16),
(21) and (25) as

Φ(Z)≈
(

1
2π
− Z2

4π
− Z4

16π
+· · ·

)(
−ln

Z
2

+iπ signal(Z)
)
− 1

2π
−Z

4
− Z2

8π
+

Z4

64π
+· · ·

(A.1)

Φ
′(Z) =

(
Z

2π
+

Z3

4π
+

3Z5

16π
+· · ·

)(
ln

Z
2
−iπ signal(Z)

)
− 1

2πZ
−1

4
+

Z3

8π
+

7Z5

64π
+· · ·

(A.2)

Φ
′′(Z)=

(
1

2π
+

3Z2

4π
+

15Z4

16π
+· · ·

)(
ln

Z
2
−iπ signal(Z)

)
+

1
2πZ2+

1
2π

+
5Z2

8π
+

47Z4

64π
+· · ·

(A.3)

where the function

signal(Z) = csgn


(

1+
√

1−Z2
)

i

Z

 (A.4)

which eventually contributes to a jump of the potential function and its derivatives,
can be simply overlooked in the numerical implementations, as it will be implicit in
the regular part of the series developments, according to the following Eqs. (A.5)-
(A.8). The jump issues of Φ(Z) and its derivatives were dealt with for potential
problems in Section 5.1 and for elasticity in Sections 6.6 and 6.7. As seen in the
theoretical developments, the lnZ, 1/Z and 1/Z2 singularities cancel out when two
segments are taken into account. Although there is no actual ln singularity in the
expression of Φ′(Z), the terms affected by lnZ deserve attention in the numerical
integration, as a Gauss-Legendre quadrature would lead to inaccuracies. The sec-
ond derivative Φ′′ of the potential function is required only for elasticity problems
and is always multiplied by y1 = r sin(θ −θ1). Then, the actual singularity would
be 1/Z, which cancels out when two segments are taken into account, as outlined
in Section 6.5.

One writes Eqs. (A.1), (A.2) and (A.3) for the developments about Z = 0 as

Φ(Z)≈Φln(Z) lnξ +Φreg(Z) (A.5)

Φ
′(Z)≈Φ

′
ln(Z) lnξ +Φ

′
reg(Z) (A.6)

Φ
′′(Z)≈Φ

′′
ln(Z) lnξ +Φ

′′
reg(Z) (A.7)
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where Φln(Z), Φ′ln(Z) and Φ′′ln(Z) are the terms in brackets on the left of Eqs. (A.1),
(A.2) and (A.3), and evaluates Φreg(Z), Φ′reg(Z) and Φ′′reg(Z) by subtractions from
the complete, non-expanded expressions of Eqs. (16), (21) and (25), as

Φreg(Z) = Φ(Z)−Φln(Z) lnξ (A.8)

in the case of Φ(Z) and similarly for its derivatives. This subtraction is simple and
numerically effective, as a quadrature algorithm will never make use of the abscissa
ξ = 0.

In the developments just outlined, Φreg(Z) and its derivatives are the regular part
of the expansions about the origin, but can be hardly approached by a low-order
polynomial expression, for Z close do zero. A numerical integration algorithm for
a general improper integral with logarithmic singularity is described in the next
Section. The developments are directly applicable to the case of the logarithmic
singularity ln(1−ξ ) by just making a coordinate transformation from ξ to 1−ξ .

A.2 Quadrature of a function with logarithmic singularity with the use of
subintervals

The following algorithm carries out the numerical quadrature

F =
∫ 1

0
f (ξ )dξ ≡

∫ 1

0
( fln(ξ ) lnξ + freg(ξ )) dξ (A.9)

where both fln(ξ ) and freg(ξ ) have no embedded singularities but cannot be ap-
proximated by a low-order polynomial about ξ = 0. However, it is assumed that
the function f (ξ ) can be approximated by a low-order polynomial about ξ = 1.
As proposed, one is in principle dealing with an improper integral. However, this
routine should be applied also in the case of lim

ξ→0
fln(ξ ) = 0.

The interval [0,1] is split into n∆ subintervals of increasing magnitude counting
from ξ = 0, such that ∆ξi = α∆ξi−1, for i = 2 ..n∆. A special quadrature of
fln(ξ ) lnξ is carried out in the interval [0,∆ξ1] and a Gauss-Legendre quadrature
evaluates the remaining parts of the integral in Eq. (A.9) along the successive,
increasingly larger subintervals.

Input data. The input data for the algorithm are:

• Functions f (ξ ), fln(ξ ) and freg(ξ ).

• Number of subintervals n∆ (recommended value is n∆ = 4).

• Subinterval amplification factor α (recommended value is α = 2).
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• Data for the logarithm quadrature: number of abscissas nl , abscissas ξl[ ] and
weights wl[ ] (recommended value is nl = 5).

• Data for the Gauss-Legendre quadrature: number of abscissas ng, abscissas
ξg[ ] and weights wg[ ] (recommended value is ng = 5).

Ouput. The output of the algorithm is the numerical value F of the integral in
Eq. (A.9).

Algorithm. Define the length and start point of the first interval:

∆ξ =
α−1
αn

∆
−1

; ξi = 0 (A.10)

• Evaluate
∫ ∆ξ

0 f (ξ )dξ numerically along the first interval by adequately split-
ting the integrand into regular and improper parts (and also taking care of
interval normalization):

F = ∆ξ

ng

∑
i=1

( freg (ξg[i]∆ξ )+ fln (ξg[i]∆ξ ) ln∆ξ )wg[i]+∆ξ

nl

∑
i=1

fln (ξl[i]∆ξ )wl[i]

(A.11)

In this equation, freg(ξ ) = f (ξ )− fln(ξ ) lnξ .

• For a loop with n∆ − 1 repetitions, successively update the values of Eq.
(A.10) as

ξi = ξi +∆ξ ; ∆ξ = α ∆ξ (A.12)

and carry out the numerical evaluation of
∫ ξi+∆ξ

ξi
f (ξ )dξ :

F = F +∆ξ

ng

∑
i=1

f (ξi +ξg[i]∆ξ )wg[i] (A.13)

A.3 Singularity of the potential function Φ(Z) and its derivatives about Z = 1

As proceeded above, one expands Φ(Z) and its derivatives about Z = 1, making use
of the auxiliary coordinate Y = Z−1, with as many terms as necessary to achieve
a given numerical accuracy:

Φ(Z)≈
(
−Y

2
− Y 2

8
+

Y 3

64
−·· ·

)
signal(Z)

√
2
Y
− 1

4
− 1

2π
−
(

1
4

+
1
π

)
Y +

Y 2

6π
−·· ·
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(A.14)

Φ
′(Z)≈

(
−1

4
− 3Y

16
+

5Y 2

128
−·· ·

)
signal(Z)

√
2
Y
− 1

4
− 1

π
+

Y
3π
− 2Y 2

5π
+ · · ·

(A.15)

Φ
′′(Z)≈

(
1

8Y
− 3

32
+

15Y
256
− 35Y 2

1024
+ · · ·

)
signal(Z)

√
2
Y

+
1

3π
− 4Y

5π
+

46Y 2

35π
−·· ·

(A.16)

Assuming, for simplicity, that the sqrt singularity occurs for the natural coordinate
ξ at ξ = 0 (it is always possible to change coordinates when the singularity occurs
at ξ = 1), the above equations may be expressed as the expansion about Z = 1:

Φ(Z)≈ Φsqrt(Z)
/√

ξ +Φreg(Z) (A.17)

Φ
′(Z)≈ Φ

′
sqrt(Z)

/√
ξ +Φ

′
reg(Z) (A.18)

Φ
′′(Z)≈ Φ

′′
sqrt(Z)

/√
ξ +Φ

′′
reg(Z) (A.19)

where Φsqrt(Z), Φ′sqrt(Z) and Φ′′sqrt(Z) can be inferred from Eqs. (A.14), (A.15)
and (A.16). The potential function Φ(Z) presents a weaker singularity,

√
ξ , than

its derivatives. However, the development of Eq. (A.14) shall present the structure
of the derivatives of Φ(Z), as shown above, in such a way that the same numeri-
cal integration code, for singularity

√
1/ξ , can be used in all cases. The second

derivative Φ′′ of the potential function is required only for elasticity problems and
is always multiplied, as for the semicrack 1, by y1 = r sin(θ −θ1), which is equal
to zero at the crack tip, when θ = θ1.

The signal function signal(Z) defined in Eq. (A.4) this time affects the non-regular
parts of Φ(Z) and its derivatives. Then, it is advisable to evaluate Φreg(Z), Φ′reg(Z)
and Φ′′reg(Z) as in the expansions shown in Eqs. (A.14), (A.15) and (A.16) and
obtain Φsqrt(Z), Φ′sqrt(Z) and Φ′′sqrt(Z) by subtractions from the complete, non-
expanded functions, such as

Φsqrt(Z) = (Φ(Z)−Φreg(Z))
√

ξ (A.20)

in the case of Φ(Z). This subtraction is simple and effective for a numerical imple-
mentation, as a quadrature algorithm will never make use of the abscissa ξ = 0.
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A.4 Quadrature of a function with 1/
√

ξ singularity with the use of subinter-
vals

This routine is similar to the one of Section A.2 and repeats several logical se-
quences with the purpose of clarity and self-containment. It carries out the numer-
ical quadrature

F =
∫ 1

0
f (ξ )dξ ≡

∫ 1

0

(
fsqrt(ξ )

/√
ξ + freg(ξ )

)
dξ (A.21)

where both fsqrt(ξ ) and freg(ξ ) have no embedded singularities but cannot be ap-
proximated by a low-order polynomial about ξ = 0. However, it is assumed that
the function f (ξ ) can be approximated by a low-order polynomial about ξ = 1.
As proposed, one is in principle dealing with an improper integral. However, this
routine should be applied also in the case of lim

ξ→0
fsqrt(ξ ) = 0.

The interval [0,1] is split into n∆ subintervals of increasing magnitude counting
from ξ = 0, such that ∆ξi = α∆ξi−1, for i = 2 ..n∆. A special quadrature of
fsqrt(ξ )/

√
ξ is carried out in the interval [0,∆ξ1] and a Gauss-Legendre quadra-

ture evaluates the remaining parts of the integral in Eq. (A.9) along the successive,
increasingly larger subintervals.

Input data. The input data for the algorithm are:

• Functions f (ξ ), fsqrt(ξ ) and freg(ξ ).

• Number of subintervals n∆ (recommended value is n∆ = 4).

• Subinterval amplification factor α (recommended value is α = 2).

• Data for the logarithm quadrature: number of abscissas nq, abscissas ξq[ ] and
weights wq[ ] (recommended value is nq = 5).

• Data for the Gauss-Legendre quadrature: number of abscissas ng, abscissas
ξg[ ] and weights wg[ ] (recommended value is ng = 5).

Ouput. The output of the algorithm is the numerical value F of the integral in
Eq. (A.21).

Algorithm. Define the length and start point of the first interval:

∆ξ =
α−1
αn

∆
−1

; ξi = 0 (A.22)
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• Evaluate
∫ ∆ξ

0 f (ξ )dξ numerically along the first interval by adequately split-
ting the integrand into regular and improper parts (and also taking care of
interval normalization):

F = ∆ξ

ng

∑
i=1

freg (ξg[i]∆ξ )wg[i]+
√

∆ξ

nq

∑
i=1

fsqrt (ξq[i]∆ξ )wq[i] (A.23)

In this equation, fsqrt(ξ ) = ( f (ξ )− freg(ξ ))
√

ξ .

• For a loop with n∆ − 1 repetitions, successively update the values of Eq.
(A.22) as

ξi = ξi +∆ξ ; ∆ξ = α ∆ξ (A.24)

and carry out the numerical evaluation of
∫ ξi+∆ξ

ξi
f (ξ )dξ :

F = F +∆ξ

ng

∑
i=1

f (ξi +ξg[i]∆ξ )wg[i] (A.25)




