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Topological Optimization of Anisotropic Heat Conducting
Devices using Bezier-Smoothed Boundary Representation

C.T.M. Anflor1 and R.J. Marczak2

Abstract: This paper aims to demonstrate the final result of an optimization pro-
cess when a smooth technique is introduced between intermediary iterations of a
topological optimization. In a topological optimization process is usual irregular
boundary results as the final shape. This boundary irregularity occurs when the
way of the material is removed is not very suitable. Avoiding an optimization post-
processing procedure some techniques of smooth are implemented in the original
optimization code. In order to attain a regular boundary a smoothness technique
is employed, which is, Bezier curves. An algorithm was also developed to detect
during the optimization process which curve of the intermediary topology must be
smoothed. For the purpose of dealing with non-isotropic materials a linear coordi-
nate transformation was implemented. Afterwards, some cases are compared and
discussed.

Keywords: Shape optimization, boundary elements, topological derivative, Bezier,
Orthotropic Materials.

1 Introduction

Classical topological optimization, based on the homogenization or the density ap-
proach [Bendsøe and Kikuchi (1988) ; Hassani and Hinton (1998)], often used for
elasticity problems presents some drawbacks. One of these drawbacks refers to
the final and intermediary topology from an optimization process, which results an
appearance of sawtooth shape boundaries. This final shape irregularity frequently
requires a post-processing. Final shapes obtained by sensitivity analysis using topo-
logical derivative [Novotny, Feijóo, Taroco and Padra, (2003)] also results in an
irregular shape due to the way of the material was removed, independently of the
optimization method. An irregularity in the boundary, such as sized rectangular
cells, is not suitable because it causes a field concentration around sharp corners.
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In order to overcome these defects also presented in a previous work [Marczak
(2007)], a new methodology for topology optimization is implemented in the orig-
inal code. The main idea of this work relies in smooth the boundary during the
process optimization, where shape and topology optimization are simultaneously
performed in the design process. A smoothness technique is implemented and af-
ter its final shapes is compared with those obtained from the classical optimization
solution. Figure 1 illustrates a BEM mesh smoothed by Bezier interpolation.

 (a)                                                                   (b) 
 

Figure 1: Example of boundary smoothing. (a) Original result. (b) Beziér-
smoothed result

Attaining this objective, the concepts of a topological derivative (TD) and a sec-
tion of smooth method are introduced and successfully combined with the classical
shape optimization. A number of linear heat transfer examples are solved with the
formulation proposed. The irregular boundaries from the final and intermediaries
shapes are eliminated. Materials with non-isotropic behavior are also considerate.
The results are compared to those available in the literature.

2 Numerical Methodology

BEM’s code was developed in its direct version using the fundamental solution to
isotropic materials. The linear coordinate transformation method [Poon, Tsou and
Chang (1979) ; Poon (1979)] is introduced in this routine. This technique allows
the solving of anisotropic heat transfer problems, avoiding changes in the BEM
code and manipulations of the TD formulas. The governing differential equation
for the heat conduction problem in a two-dimensional Cartesian coordinate system
is given in its full form by:

k11
∂ 2T
∂x2 +2k12

∂ 2T
∂x∂y

+ k22
∂ 2T
∂y2 = 0 (1)
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Where , k11, k12 and k22 are the thermal conductivity coefficients, while T represents
the field temperature. The corresponding heat fluxes are expressed as:

qx =−k11
∂T
∂x
− k12

∂T
∂y

qy =−k12
∂T
∂x
− k22

∂T
∂y

(2)

The initial geometry (x) established in an anisotropic medium is converted into an
equivalent isotropic problem (x̂) by using the coordinate transformation.

A special linear coordinate transformation is introduced to transform the partial
differential equation into the Laplace equation as:

x̂ = x+α · y
ŷ = β · y

(3)

Where α = −k12
k22

, β = k
k22

, k =
√

k11k22− k2
12.

Neumann boundary conditions must also be transformed according to the Eq. (4).

qy =−k
∂T
∂y

= qŷ

qx = β qx̂−α qŷ

(4)

To demonstrate the steps of the numerical implementation, a numerical methodol-
ogy scheme will be presented in details. The optimization process is carried out in
7 steps (see Fig. 2):

Step 1 - Transform an orthotropic domain into an equivalent isotropic domain
through the linear coordinate transformation expressed in Eq. (3). The heat flux
is transformed by inverting Eq. (4).

Step 2 - Solve the problems by means of the BEM code developed to isotropic
materials.

Step 3 - Apply the inverse of the mapping domain using equation to the geometry
and to the heat flux.

Step 4 - The variables are evaluated on a suitable grid of interior points. The points
with the lowest values of TD are selected.

Step 5 - Holes are created by “punching out” disks of material centered on the
points previously selected.
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Figure 2: Numerical methodology scheme

Step 6 - Smooth process using Bezier Curves is introduced

Step 7 - Check stopping criteria, rebuild the mesh, return to step 1.

When the process is halted, a smooth final design topology of a non-isotropic ma-
terial is expected.

In order to avoid some geometrical boundary irregularity due to the algorithm used
to remove material, a smooth process is implemented at step 6. As a smoothness
technique the Bezier Curve [Newman and Sproull (1982)] is chosen to treat the
polylines of the intermediary geometry.

2.1 Topological Derivative

A topological derivative for Poisson Equation is applied in this work. A simple
example of applicability consists in a case where a small hole of radius (ε) is open
inside the domain. The concept of topological derivative consists in determining
the sensitivity of a given function cost (ψ) when this small hole is increased or
decreased. The local value of TD at a point (x) inside the domain for this case is
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evaluated by:

∗
DT (x) = lim

ε→0

ψ(Ωε)−ψ(Ω)
f (ε)

, (5)

where ψ(Ω¸) and ψ(ε) are the cost function evaluated for the original and the per-
turbed domain, respectively, and f is a problem dependent regularizing function.
By Eq. 5 it is not possible to establish an isomorphism between domains with
different topologies. This equation was modified [Feijóo, Novotny, Taroco and
Padra (2003)] introducing a mathematical idea that the creation of a hole can be
accomplished by single perturbing an existing one whose radius tends to zero. This
allows the restatement of the problem in such a way that it is possible to establish
a mapping between each other [Feijóo, Novotny, Taroco and Padra (2003)].

∗
DT (x) = lim

ε→0

ψ(Ωε+δε)−ψ(Ωε)
f (Ωε+δε)− f (Ωε)

, (6)

where δÄε is a small perturbation on the holes’s radius. In the case of linear heat
transfer, the direct problem is stated as:

Solve {uε |− k∆uε = b} on Ωε (7)

subjected to
uε = u on ΓD

k ∂u
∂n = q on ΓN

k ∂uε

∂n = hc (uε −u∞) on ΓR,

(8)

where

h(α,β ,γ) = α (uε −uε)︸ ︷︷ ︸
Dirichlet

+β

(
k

∂uε

∂n
+qε

)
︸ ︷︷ ︸

Neumann

+γ

(
k

∂uε

∂n
+hε

c (uε −uε
∞)
)

︸ ︷︷ ︸
Robin

= 0 (9)

is a function which takes into account the type of boundary condition on the holes to
be created (uε ,

∂uε

∂n = qε are the temperature and flux on the hole boundary, while
uε

∞ and hε
c are the hole’s internal convection parameters, respectively). After an

intensive analytical work, [Feijóo, Novotny, Taroco and Padra (2003)] it was devel-
oped explicit expressions for TD for problems governed by (7). Table 1 presents
the final expressions for topological derivative, considering the three classical cases
of boundary conditions on the holes.
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Table 1: Topological derivative for the various boundary conditions prescribed on
the holes using the total potential energy as a cost function

Boundary condition on the hole Topological deriva-
tive

Evaluated at

Neumann homogeneous boundary
condition (α = 0, β =1 , γ = 0)

DT (x) = k∇u∇u−bu x ∈Ω∪Γ

Neumann non-homogeneous bound-
ary condition (α = 0, β =1 , γ = 0)

DT (x) =−qεu x ∈Ω∪Γ

Robin boundary condition (α = 0, β

= 0, γ = 1)
DT (x) = hε

c (uε −u∞) x ∈Ω∪Γ

Dirichlet boundary condition (α = 1,
β = 0, γ = 0)

DT (x) =−1
2 k (u−uε) x ∈Ω

Dirichlet boundary condition (α = 1,
β = 0, γ = 0)

DT (x) = k∇u∇u−buε x ∈ Γ

2.2 Bézier Curves

Generally in an optimizations process the final topology results in a non-smoothed
geometry. It requires an employment of techniques of smoothness during the op-
timization process. In order to study the behavior of a final topology a technique
where previously chosen to be implemented in the actual optimization code, as
mentioned at step 6 (See |Fig. 2). The most popular techniques to deal with these
irregular geometries are Bezier curves, Douglas-Peucker and B-Splines algorithm.
This work uses the Bezier curves to smooth the topology resulted during the opti-
mization process. The Bezier curve was pioneered used in a modeling of surface
in automobile design by Renault (Newman and Sproull, 1982). Bezier defines the
curve P(u) in the terms of the location n+1 control points pi.

P(u) =
n

∑
i=0

piBi,n(u) (10)

where Bi,n(u) is a blending function or polynomials of Bernstein

Bi,n(u) = C(n, i)ui(1−u)n−i (11)

and C(n, i) = n!
i!(n−i)! is the binomial coefficients.

Here, Eq. 10 is a vector and could be expressed by writing equations for the x and
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y parametric functions separately:

x(u) =
n

∑
i=0

xiBi,n(u)

y(u) =
n

∑
i=0

yiBi,n(u)
(12)

xi and yi are the coordinates of the control points of the curve, always n+1 points.
The union of this points form the vertices of the control polygon of the Bezier curve.
These points are responsible to control the shape of the curve, with the parameter
u varying between 0 to 1. Further details can be found in Harrington (1983). As
exposed until here the techniques of smoothness curves are well established in the
literature and there is no problem in apply them. But in an optimization problem
the effort relies in identifying which portions of the intermediary topology must be
smoothed. There are some parts of the topology that can not be smoothed, such as,
the portion with prescribed boundary conditions or the portion which is a straight
line. In order to overcoming this problem a routine is developed in the present
work to identify during an iterative optimization process which curves must be or
not smoothened. This routine was introduced inside the optimization algorithm as
step 6, after the step of removal material (see Fig.2). Figure 3 depicts the scheme of
identification and smoothness of curves resulted during the optimization process.
This is a subroutine implemented between step 5 and 7 of the original code as
illustrated in Fig.2.

3 Numerical Results

This section presents some examples that demonstrate the application of the pro-
posed method. The results obtained for the first one are compared to those obtained
by Park (1995) for isotropic materials. The second example differs from the first
one only in the boundary conditions, which prescribed convection in the cavities.
The third and fourth examples consist in a square domain under high and low tem-
perature boundary conditions where the constitutive properties were varied to result
in all possible behaviors: isotropic, orthotropic and anisotropic. The history of ma-
terial removal is analyzed and illustrated for each case. The iterative process was
halted when a given amount of material was removed from the original domain, re-
gardless of the type of material medium. This criterion provided a basis to compare
the topologies generated for isotropic, orthotropic and anisotropic media under the
same initial geometry and boundary conditions. In all cases the total potential en-
ergy was used as the cost function. A regularly-spaced grid of internal points was
generated automatically, taking into account the radius of the holes created during
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Figure 3: Scheme of identification and smoothness – Step 6

each iteration. The radius was obtained as a fraction of a reference dimension of the
domain (r =ω lre f ). In all cases lre f =min(height,width) was adopted. The objec-
tive in all cases was to minimize the material area. The current area of the domain
(A f ) was checked at the end of each iteration until a reference value was achieved
(A f = φ A0, where A0 represents the initial area and φ a defined percentage of ma-
terial to be removed). After that, the intermediary topology was smoothed by using
Bezier function. Linear discontinuous boundary elements integrated with 4 Gauss
points were used in all cases.

3.1 Heat conductor with Neumann boundary conditions on the cavities

A rectangular 20×30 units domain subjected to prescribed temperature (T1 = 393K)
on its left edge and convection boundary conditions (T0 = 298K and h0 = 5.677
W/m2K) on the remaining ones is to be optimized (Fig.4). Here, the problem is
revisited using only isotropic material properties. The isotropic material used is
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Aluminum (k = 236 W/mK). For this case, Neumann boundary conditions were
prescribed on the cavities open during the optimization process.
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Figure 4: Initial design domain
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Figure 5 shows the evolution history obtained until the final area reached 30% of the original 
value. The final and intermediary topology results in a smooth appearance shape. It is important to 
note that the appearance of saw-tooth shape on boundaries was avoided, discarding a post-
processing in a manufacturing process. 

 

 

 

 

 

 

 

 

Figure 5: Evolution history for isotropic media 
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Figure 5: Evolution history for isotropic media

Figure 5 shows the evolution history obtained until the final area reached 30% of the
original value. The final and intermediary topology results in a smooth appearance
shape. It is important to note that the appearance of saw-tooth shape on boundaries
was avoided, discarding a post-processing in a manufacturing process.

The mean flux on the left edge side of the plate is chosen to take into account
the behavior as the process evolves. The values of the mean flux obtained during
the process optimization with Bezier are recorded and compared with the result
obtained with the original code without smoothness technique. These results are
depicted in Fig. 6 where is possible to see the evolutive iteration × mean flux.
Also, in the same figure the smoothed intermediary topology is depicted for some
iterations.
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In the orthotropic case, the thermal conductivities were imposed as ky/kx =2. Fig-
ure 7 presents the evolution history obtained until the same volume ratio of the
isotropic case was reached. Clearly, the resulting geometry of the internal cavity
has a more pronounced curvature, so as to facilitate the heat transfer flux in the y
direction.

The mean flux on the left edge side of the plate is chosen to take into account the behavior as the 
process evolves. The values of the mean flux obtained during the process optimization with Bezier 
are recorded and compared with the result obtained with the original code without smoothness 
technique. These results are depicted in Fig. 6 where is possible to see the evolutive iteration × 
mean flux. Also, in the same figure the smoothed intermediary topology is depicted for some 
iterations. 
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Figure 7: Evolution history for orthotropic media

Park (1995) solved this problem by using homogenization techniques and the FEM.
Figure 8 compares the results obtained by Park (1995) with the ones obtained with
the present method. In all cases, the final geometry is satisfactorily leading to a
high-conductivity layout, and both isotropic results match.
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3.3 Inverted V heat conductor

This example consisted in a square domain with high temperature (373 K) applied
to its lower corners, while a low temperature (273 K) was applied at the mid top
edge. The remaining boundaries were insulated. The cavities were created with r=
0.04lre f and the processwas halted when A f = 0.6 A0 was attained. For the purpose
of illustrating and comparing the final topologies obtained, three variations of the
present example are studied as:
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Case A: kxx = 1; kyy = 1

Case B: kxx = 2; kyy = 1

Case C: kxx = 3; kyy = 1

Figure 10 shows the results for the isotropic case (case A) which is used to compare
the final design with those of the orthotropic cases (cases B and C). Figures 11
and 12 present the optimization evolution for the orthotropic cases and their final
topologies when the stop criteria were achieved. From this it is possible to compare
the three cases. There are visible differences in the evolution of material removal
for each case. Therefore, the final designs are slightly different in this case.
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Figure 11: Evolution history for orthotropic material – Case B

Figure 13 presents the evolution of the material removal for all cases. It was found
that highly orthotropic cases result in higher values of the topological sensitivity, in
comparison to the isotropic solution. Consequently, a larger material removal rate
is expected for orthotropic problems, in general, but this is an assertion that highly
depends on the nature of the problem.
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Figure 12: Evolution history for orthotropic material – Case C 
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Figure 13: Material removal history for the Inverted V heat conductor 

3.4 Cross Heat Conductor 

This example refers to a square domain subjected to low and high temperature boundary 
conditions on the middle of opposite sides. The problem is depicted in Fig.14, where TH is the 
high temperature (373 K) and TL is the low temperature (273 K). The remaining boundaries are 
insulated. All possible cases will be studied: isotropic, orthotropic and anisotropic materials and 
they are to be optimized until Af  0.4 A0 is achieved. 
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Figure 13: Material removal history for the Inverted V heat conductor

3.4 Cross Heat Conductor

This example refers to a square domain subjected to low and high temperature
boundary conditions on the middle of opposite sides. The problem is depicted in
Fig.14, where TH is the high temperature (373 K) and TL is the low temperature
(273 K). The remaining boundaries are insulated. All possible cases will be studied:
isotropic, orthotropic and anisotropic materials and they are to be optimized until
A f ≈ 0.4 A0 is achieved.

Initially, an isotropic case was analyzed with k11 = k22 = 1. Symmetry was not used
to provide a direct comparison to the subsequent anisotropic cases (which cannot
use symmetry). Figure 14 also shows the evolution of material removal for r =
0.02lre f . It is important to observe that the algorithm delivered fairly symmetric
solutions throughout the process. The condition A f ≈ 0.4•A0 was achieved after
34 iterations. The second case represents a highly orthotropic material, with the
conductivities set to kxx = 5 and kyy = 1 (see Fig.15). As expected, material is
selectively removed so that the heat flux along the x direction is increased. The
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Figure 14: Evolution history for isotropic case ( 1xx yyk k  ). 
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Figure 14: Evolution history for isotropic case (kxx = kyy = 1).
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= 5)
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The third case considers an anisotropic material with kxx = 1, kyy = 1 and kxy = 0.5. The evolution 
history is presented in Fig.16, showing that the initial symmetry is lost after the first iterations, as 
expected. Contrary to the previous cases, the internal cavity resulted in a rhombic shape since the 
Cartesian axes are not parallel to the main axes of the constitutive matrix. 

 

 

Figure 16: Evolution history for anisotropic case ( 1 ; 0.5xx yy xyk k k   ) 

 

Figure 17 shows the percentage of material removed as a function of the number iterations for 
each case studied in the cross heat conductor. All cases were stopped when about 40% of material 
was removed. These cases were analyzed without the aid of symmetry, for comparison purposes. 
Obviously, anisotropic cases cannot use symmetry in general, but in many practical situations it is 
possible (or even expected) to align the axes of the component with the principal directions of the 
constitutive matrix. In such cases, smoother designs can be obtained. In order to provide a further 
benchmark, the cross heat conductor example was re-analyzed for the isotropic and orthotropic 
cases using only one quadrant of the original geometry.  
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Figure 17: Material removal history for the cross heat conductor 
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Figure 16: Evolution history for anisotropic case (kxx = kyy = 1 ; kxy = 0.5)

stop criterion A f ≈ 0.4 A0 was achieved after 30 iterations.

The third case considers an anisotropic material with kxx = 1, kyy = 1 and kxy = 0.5.
The evolution history is presented in Fig.16, showing that the initial symmetry is
lost after the first iterations, as expected. Contrary to the previous cases, the internal
cavity resulted in a rhombic shape since the Cartesian axes are not parallel to the
main axes of the constitutive matrix.

Figure 17 shows the percentage of material removed as a function of the number
iterations for each case studied in the cross heat conductor. All cases were stopped
when about 40% of material was removed. These cases were analyzed without the
aid of symmetry, for comparison purposes. Obviously, anisotropic cases cannot
use symmetry in general, but in many practical situations it is possible (or even
expected) to align the axes of the component with the principal directions of the
constitutive matrix. In such cases, smoother designs can be obtained. In order to
provide a further benchmark, the cross heat conductor example was re-analyzed for
the isotropic and orthotropic cases using only one quadrant of the original geome-
try.

Figure 18 shows the final topologies obtained for both cases while Fig.19 depicts
the same topology after the smoothness process. The material was removed initially
with r = 0.04 lre f and then r = 0.02 lre f . for the remaining iterations. This simple
expenditure helps generate smoother boundaries in the final design.

4 Conclusions

Complex shapes with irregularities on their boundaries frequently result after a
topology optimization. In this paper a smoothness technique was employed in order
to avoid a new task of post-processing over the resulting topology. This procedure
allowed attaining more realistic geometries when the optimization was halted. In
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Figure 17: Material removal history for the cross heat conductor
Figure 18 shows the final topologies obtained for both cases while Fig.19 depicts the same 
topology after the smoothness process. The material was removed initially with r = 0.04 lref and 
then r = 0.02 lref. for the remaining iterations. This simple expenditure helps generate smoother 
boundaries in the final design. 
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Figure 19: Bezier final topologies for: (a) isotropic and (b) orthotropic examples 

4 Conclusions 

Complex shapes with irregularities on their boundaries frequently result after a topology 
optimization. In this paper a smoothness technique was employed in order to avoid a new task of 
post-processing over the resulting topology. This procedure allowed attaining more realistic 
geometries when the optimization was halted. In order to deal with those resulting irregular 
boundaries a smoothness using Bezier curve was used. This technique permits to result in a 
suitable geometry which provides, for example, a manufacturing of the final design without the 
designer interference. A linear coordinate transformation method was also implemented providing 
to extend the analysis to non isotropic materials behavior. This allowed the use of TD, since this 
formulation was deduced only for isotropic materials.  The linear heat transfer problems were 
solved showing the feasibility of the procedure proposed and agreement with other solutions. 
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Figure 18: Final topologies for: (a) isotropic and (b) orthotropic examples

order to deal with those resulting irregular boundaries a smoothness using Bezier
curve was used. This technique permits to result in a suitable geometry which
provides, for example, a manufacturing of the final design without the designer
interference. A linear coordinate transformation method was also implemented
providing to extend the analysis to non isotropic materials behavior. This allowed
the use of TD, since this formulation was deduced only for isotropic materials. The
linear heat transfer problems were solved showing the feasibility of the procedure
proposed and agreement with other solutions.
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Figure 19: Bezier final topologies for: (a) isotropic and (b) orthotropic examples 

4 Conclusions 

Complex shapes with irregularities on their boundaries frequently result after a topology 
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Figure 19: Bezier final topologies for: (a) isotropic and (b) orthotropic examples
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