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Application of the OMLS Interpolation to Evaluate
Volume Integrals Arising in Static Elastoplastic Analysis

via BEM
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Abstract: In this work the boundary element method is applied to solve 2D
elastoplastic problems. In elastoplastic boundary element analysis, domain inte-
grals have to be calculated to introduce the contribution of yielded zones. Tradi-
tionally, the use of internal integration cells have been adopted to evaluate such
domain integrals. The present work, however, proposes an alternative cell free
strategy based on the OMLS (Orthogonal Moving Least Squares) interpolation,
typically adopted in meshless methods. In this approach the definition of points
to compute the interpolated value of a function at a given location only depends
on their relative distance, without need to define any element or cell connectivity.
In addition, a criterion–independent explicit procedure has been used for analyz-
ing the inelastic non–linear problem. Analyses of existing problems found in the
literature are used to illustrate the accuracy of the proposed technique.

Keywords: Boundary Element Method, Elastoplasticity, Orthogonal Moving Least
Squares Interpolation, Meshless methods.

1 Introduction

In elastoplastic analysis via the boundary element method (BEM), domain dis-
cretization, usually by means of integration cells, is naturally needed to take into
account the residual stresses in yielded zones of the solid [Brebbia, Telles, and
Wrobel (1984); Telles (1983); Telles and Carrer (1991)].

In the present work a different alternative is explored. The strategy is based on the
application of the OMLS (orthogonal moving least squares) interpolation, typically
used to develop meshless methods, to approximate the domain integrals arising
from plastic terms in the BEM formulation. In other words, the idea here has been
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to remove standard domain cell discretization to compute the domain integrals,
leading to a simpler and perhaps more elegant viable procedure.

The OMLS strategy is derived from the MLS (moving least squares) method, ac-
cording to which a function value to be reconstructed at a certain point of its defini-
tion domain only depends on the distance from this point to the points contributing
to that particular function value. Nevertheless, unlike the MLS method, in the
OMLS approach orthogonal weighting functions are used as basis functions, what
causes the resulting approximation function to have a delta–distribution character-
istic, and allows for working with real values of the physical quantities to be inter-
polated. Furthermore, the system of equations obtained for determining the OMLS
interpolation parameters is well–conditioned and, compared to the MLS method,
less coefficients are employed in the process [Atluri and Zhu (2000); Atluri and
Shen (2002, 2005); Liew, Cheng and Kitipornchai (2006)].

By applying the OMLS strategy, plastic effects are included into the regular alge-
braic BE system of equations with no need for integration cells. To illustrate the
accuracy of the technique proposed, elastoplastic results of three numerical exam-
ples are presented using OMLS–based and cell–based BEM techniques, including
some comparisons to finite element solutions.

2 BEM formulation for elastoplastic problems

The integral equations for expressing displacement and stress components in elasto-
plastic problems via the BEM are given (body forces are neglected) as

ci j (ξ ) u̇ j (ξ )+
∫
Γ

p∗i j (ξ ,x) u̇ j (x) dΓ(x) =

∫
Γ

u∗i j (ξ ,x) ṗ j (x) dΓ(x)+
∫
Ω

ε
∗
jki (ξ ,x) σ̇

p
jk (x) dΩ(x)

(1)

σ̇i j (ξξξ ) =
∫
Γ

u∗i jk (ξξξ ,x) ṗk (x) dΓ(x) −
∫
Γ

p∗i jk (ξξξ ,x) u̇k (x) dΓ(x)+

+
∫
Ω

ε
∗
i jkl (ξ ,x) σ̇

p
kl (x) dΩ(x) +gi j

(
σ̇

p
kl

) (2)

where Ω represents the domain of the body, Γ its boundary and ci j is the free
coefficient found in elastic analysis.

In Eq. 1 u∗i j, p∗i j and ε∗jki are, respectively, the displacement, traction and strain
components at point x due to a unit concentrated load applied in i direction at
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point ξξξ , i.e., the fundamental solutions of the problem. u̇ j, ṗ j and σ̇
p
jk are the

displacement, traction and fictitious “plastic stress” increments of the problem.

It is worth mentioning that, in Eq. 2, the domain integral of the fictitious “plastic
stress” is a Cauchy principal value integral and the free term, gi j, results from the
derivative of the domain integral present in Eq. 1 [Telles (1983, 1985)].

In general, the numerical solution of the integral equations 1 and 2 is carried out by
interpolating the field variables at hand by means of boundary elements and domain
cells so as to convert these equations into an algebraic system of equations. Unlike
previous approaches, however, in this work the OMLS technique is employed to
substitute the internal cell interpolation for the evaluation of such domain integrals.

3 3 Orthogonal Moving Least–Squares (OMLS)

In the OMLS approach, the approximation of a function u(x), x ∈Ω (its definition
domain), is based on its OMLS definition domain, Ωx, which is defined by the set
of points xi, i = 1,2, · · · ,n, wherein n is the number of points in Ω that contribute
to the interpolation of u(x) (see Fig. 1).

The OMLS approximation is expressed by

uh (x) = Φ̄(x) u (3)

where u is a vector containing the real quantities to be interpolated, and Φ̄(x) =
p̄T (x) Ā−1 (x) B̄(x) is a vector containing the OMLS interpolation functions, also

Ā(x) = P̄T W(x) P̄ (4)

B̄(x) = P̄T W(x) (5)

P̄ =


p̄T (x1)
p̄T (x2)

...
p̄T (xn)

 (6)

and

W =


w(x−x1) 0 · · · 0

0 w(x−x2) · · · 0
...

...
. . .

...
0 0 · · · w(x−xn)


n×n

(7)
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Figure 1: Domain of definition and support of weight function
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 Figure 2: Gaussian weighting function
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In the expressions above, wi (x) = w(x−xi) is the weighting function associated
with the xi point, which has the following characteristics: its support, S [wi (x)], is
radial with radius ri (see Fig. 1), and 0 < wi (x) ≤ 1 for all x ∈ S [wi (x)]. In this
work, the Gaussian function

w(x−xi) =


e
−
(

di
ci

)2

−e
−( ri

ci )
2

1−e
−( ri

ci )
2 , 0≤ di ≤ ri

0, di ≥ ri

(8)

is employed as the weighting function, where di = |x−xi| and ci is a constant that
controls the shape of w(x−xi) (Fig. 2).

The other function in Eq. 6, p̄(x), is the interpolation basis, which is composed by
a set of polynomials, mutually orthogonal with regard to the weighting functions,
derived from a monomial basis p(x) by applying the Gram–Schmidt orthogonal-
ization process [Kreider, Kuller, Ostberg, and Perkins (1966)]. For 2D problems,
the following bases are usually considered:

pT (x) = (1,x1,x2) , linear basis (9a)

pT (x) =
(
1,x1,x2,x2

1,x1x2,x2
2
)
, quadratic basis (9b)

Using the OMLS interpolation, equations 1 and 2 are expressed in discretized form
as

ci j (ξξξ ) u̇i (ξξξ ) =

−
ne

∑
l=1

∫
Γl

p∗i j [ξξξ ,x(η)]
nnoel

∑
q=1

hq (η)dΓ [x(η)]

 u̇(l)
jq +

+
ne

∑
l=1

∫
Γl

u∗i j [ξξξ ,x(η)]
nnoel

∑
q=1

hq (η)dΓ [x(η)]

 ṗ(l)
jq +

+
NT

∑
d=1

∫
Ωd

ε
∗
jki (ξξξ ,x)

n

∑
I=1

Φ̄I (x) σ̇
p
jk (xI) dΩd (x)


(10)
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σ̇i j (ξξξ ) =

−
ne

∑
l=1

∫
Γl

p∗i jk [ξξξ ,x(η)]
nnoel

∑
q=1

hq (η)dΓ [x(η)]

 u̇(l)
kq +

+
ne

∑
l=1

∫
Γl

u∗i jk [ξξξ ,x(η)]
nnoel

∑
q=1

hq (η)dΓ [x(η)]

 ṗ(l)
kq +

+
NT

∑
d=1

∫
Ωd

ε
∗
i jkl (ξξξ ,x)

n

∑
I=1

Φ̄I (x) σ̇
p
kl (xI)dΩd (x)

+

+gi j
(
σ̇

p
kl

)

(11)

where ne is the total number of boundary elements of the model, nnoel is the num-
ber of element nodes, and NT is the number of triangular sub-domains used for ef-
fecting the domain integrations. By writing then Eqs. (10) and (11) for all boundary
nodes and interior points, the systems of algebraic equations arise

Hu̇ = Gṗ+Qσ̇σσ
p (12)

σ̇σσ = G′ṗ−H′u̇+Q∗σ̇σσ p (13)

in which Q∗ = Q′+E′, the matrices Q and Q′ result from the integration of plastic
terms and E′ corresponds to the free term gi j

(
σ̇

p
kl

)
.

After the application of the displacement and traction boundary conditions, Eqs. 12
e 13 can be written as

Aẏ = ḟ+Q σ̇
p (14)

σ̇ =−A′ ẏ+ ḟ′+Q∗σ̇σσ p (15)

Solving Eq. 14 for the boundary unknowns, represented by the vector

ẏ = ṁ+Rσ̇σσ
p (16)

and substituting the result in Eq. 15 the expression

σ̇ = Sσ̇σσ
p + ṅ (17)

is obtained.

In Eqs. 16 and 17, R = A−1Q, ṁ = A−1ḟ (elastic solution of the boundary prob-
lem), S = Q∗−A′R and ṅ = ḟ′−A′ ṁ, in which the latter represents the solution
in terms of stresses in absence of plasticity.
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4 Constitutive equations

In plasticity the evaluation of the final state of stress and strain of a body depends
on the loading history, i.e., the final deformation of the body is given by the sum of
plastic strain increments throughout all the process. Therefore, it is convenient to
write the stress–strain relationships incrementally as follows

σ̇i j = cep
i jkl ε̇kl (18)

where ε̇kl is the total strain increment and

cep
i jkl = ci jkl−

1
γ ′

ci jmnamnaopcopkl (19)

is the fourth–order elastoplastic tangent operator with:

ci jkl =
2Gν

1−2ν
δi jδkl +G

(
δikδ jl +δilδ jk

)
(20)

akl =
∂F

∂σkl
=

∂σe

∂σkl
(21)

γ
′ = ai jci jklakl +H ′ (22)

and

H ′ =
dσ0

dε
p
e

(23)

In the above equations ci jkl is the fourth–order tensor of elastic constants, δi j is
the Kronecker delta symbol, H ′ is the slope of the uniaxial stress–strain curve σ0,
σe is the equivalent or effective stress defined by the yield criterion and ε

p
e is the

equivalent plastic strain.

Defining also an incremental fictitious "elastic stress", i.e.,

dσ
e
i j = ci jkldεkl (24)

then, equation 18 can be rewritten as

dσi j = dσ
e
i j−

1
γ ′

ci jmnamnakldσ
e
kl (25)

From Eq. 25 it follows that the true stress increments can be computed from the
"elastic stress" increments and the corresponding inelastic stress increments, which
are given by

dσ
p
i j = dσ

e
i j−dσi j =

1
γ ′

ci jmnamnakldσ
e
kl (26)
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If a similar procedure is adopted for the integral equations, the fictitious elastic
stress increments can be directly evaluated by substituting the free term by

ḡi j
(
σ̇

p
kl

)
= gi j

(
σ̇

p
kl

)
+ σ̇

p
i j (27)

which is equivalent to replace the matrix S by S̄ = S + I, where I is the identity
matrix. Thus one can write

∆σ∆σ∆σ
e = S̄∆σ∆σ∆σ

p +∆∆∆n (28)

5 Elastoplastic solution technique

In this work one adopts the explicit technique based on the application of Eq. 28
[Telles and Carrer (1988, 1991, 1994); Miers and Telles (2004)]. The incremental–
iterative process starts with the reduction of the maximum equivalent stress (σmax

e ),
calculated considering the elastic solution of the problem, to the initial yield stress
of σ0, by the expression

λ0 =
σ0

σmax
e

(29)

where λ0 is the initial load factor.

The next load factor values are calculated by

λi = λi−1 +β (30)

with

β = λ0ω (31)

In Eq. 31 ω is the load increment value with respect to the load of first yielding
and the incremental process ends when λi = 1. Thus, equations 16 and 17 can be
applied as

ẏ = R (σ̇σσ p +∆σ̇∆σ̇∆σ̇
p)+λiṁ (32)

σ̇σσ = S (σ̇σσ p +∆σ̇∆σ̇∆σ̇
p)+λiṅ (33)

6 Applications

To illustrate how the technique proposed performs, three numerical examples are
presented. It is worth mentioning that in every analysis has been adopted: a quadratic
basis, a Gaussian weight function with the constant ci = 0.3ri and the yield criterion
of von Mises.



Application of the OMLS Interpolation 217

6.1 Perforated plate

In this example one has a perforated plate in plane stress state as presented in Fig.
3.

q q20 mm

36 mm

5 mm

 
Figure 3: Perforated plate

The following problem data is considered: E = 7000 kg f /mm2, initial yield stress
σ0 = 24.3 kg f /mm2, H ′= 0.032E and ν = 0.2. The applied load is q = 11.5 kg f /mm2

and the load increment is 10%.

Because of symmetry, only one quarter of the plate is discretized. Figure 4 shows
the discretization used in this analysis, wherein ne is the number of boundary ele-
ments, nc is the number of cells, and np is the number of inner points. The plate
was also analyzed with the Finite Element Method (FEM) using 2944 quadratic
elements (PLANE183 – 8 node) to discretize the problem, as depicted in Fig. 4c.

The ratio between the σx–stress and the yield stress on points located over the y–
axis is given in Fig. 5.

Fig. 6 shows the evolution of the plastic zone for different load levels.

6.2 Polystyrene under stress

In this example one studies the effect of voids in polystyrene strength. The geome-
try of the problem and its discretization are given in Figs. 7 and 8. Ideal plasticity
was assumed with: E = 4.2× 103 MN/m2, initial yield stress σ0 = 105 MN/m2

and ν = 0.33.

Plane strain approximation and two loading conditions were considered: biaxial
tension and uniaxial tension, both applied by prescribing displacements (∆) at the
edges. The displacement increment was 5%.

In Figs. 9 and 10, the mean stress (R) is plotted as a function of the applied dis-
placement.
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a) OMLS ( 33ne  , 28np  ) 

 

 
b) With cells ( 33ne  , 71nc  ) 

 

 
c) Finite element mesh 

 Figure 4: Discretization adopted
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Figure 5: σx–stress at y–axis
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Figure 6: Plastic zones – Perfurated plate
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Figure 7: Polystyrene and the portion analyzed
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a) OMLS ( 24ne  , 14np  ) 

 

 
b) With cells ( 24ne  , 50nc  ) 

 Figure 8: Polystyrene discretization
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Figure 9: Mean stress vs. strain curve – uniaxial tension
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Figure 10: Mean stress vs. strain curve – biaxial tension

6.3 Punch problem

In this example one analyses a block compressed by two opposite rigid punches, as
shown in Fig. 11, considering plane strain state.





17

p

p

27

10

 
Figure 11: Plane strain punch problem

The physical properties of the material are: E = 107 psi, initial yield stress σ0 =
13000psi and tangent modulus ET = 0. The prescribed displacement, ∆, is 0.035”
and it was adopted a displacement increment of 10%. The discretization of the
problem is shown in Fig. 12.

The relation between the mean pressure applied by the rigid punch and its pre-
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Figure 12: Punch problem discretization

scribed displacement is shown in Fig. 13, where b is the half–width of the rigid
punch.
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Figure 13: Mean pressure vs. displacement curve

In Fig. 14 one has the evolution of the plastic zone as the rigid punch compresses
the block.

7 Conclusions

In this work, the OMLS interpolation technique has been employed to approxi-
mate residual plastic stresses present in boundary element formulations for inelas-
tic problems. In this technique the function values at any point are reconstructed
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Figure 14: Plastic zones – Punch problem

from isolated points spread inside its definition domain. The excellent agreement
observed in the comparison of results shows that OMLS can be regarded as an ef-
fective alternative to evaluate BEM domain integrals. Of course, an advantage of
OMLS is to make the model generation considerably easier, without need to define
cell connectivity, just the coordinates of the domain points.
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