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Predictions of Lid-Driven Flow in a Two-Dimensional
Irregular Cavity: a Numerical Study

Bruno Manoel Pasquim1 and Viviana Cocco Mariani1

Abstract: The main aim of this study was to evaluate the capacity of a Eulerian-
Lagrangian methodology (ELAFINT) to accurately deal with incompressible vis-
cous steady flow in a domain with corners and curved boundaries. Thus, a two-
dimensional lid-driven cavity with an irregular bottom was selected. The equations
that govern the flow are discretized using the finite-volume method with a Carte-
sian grid. The evolution of the velocity fields, stream function and vorticity in the
irregular cavity when the Reynolds number increases from 500 to 6000 is captured
by the method under investigation. The results show that with an increase in the
Reynolds number there is the development of new vortices in the flow and also a
reduction in the kinetic energy.

Keywords: Triangular cavity, Cartesian grid, Eulerian-Lagrangian methodology,
finite-volume method

1 Introduction

Lid-driven cavity flow has been extensively studied due to its relevance to a great
number of engineering applications, such as solar collectors, enhanced thermal per-
formance of heat exchangers, bearings and lubrication systems. A detailed review
of previous studies on lid-driven cavity flows can be found in Chang and Cheng
(1999), Chen and Cheng (2002).

The flow in square cavities is referenced to exemplify many types of flow and is also
used as a model to test flow precision. Numerical methods used to solve square
lid-driven cavity flow can not be applied without modification to triangular and
trapezoidal cavities, geometries which are common in nature.

The fact that the numerical methods for the resolution of square cavities can not
be applied to irregular cavities is due to the special attention that has been given to
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flow boundaries. Thus, for example, the classic finite-volume method, using struc-
tured meshes, needs to be modified in order to solve the flow for these geometries.
The differences between the numerical solutions for square cavities and triangular
cavities have led to new studies and the development of new numerical methods
which are more reliable and accurate for the solution of flows in irregular cavities.

The representation of two-dimensional cavities of square sections with infinite ax-
ial length has been widely studied and has become a standard test case for new
computational schemes. Relevant studies in this context include Benjamin and
Denny (1979), Ghia et al. (1982), Botella and Peyret (1998), and Bruneau and
Saad (2006). These authors employed the finite-difference method with a stream
function-vorticity formulation, with the exception of the latter in which uniform
Cartesian meshes were used.

Some recent studies solving flows in lid-driven cavities have used meshless meth-
ods. One popular approach is the meshless local Petrov-Galerkin (MLPG) method,
successfully used by Lin and Atluri (2001) and Ahrem et al. (2006). Arefmanesh
et al. (2008, 2010) applied the MLPG method to solve non-isothermal lid-driven
cavity flow. Tsai et al. (2002) developed a meshless boundary elements method to
solve 3D Stokes flows. The iterative process used therein is similar to the process
employed in Nicolás and Bermúdez (2007), the only difference being that the for-
mer used a truly fixed point, with a different discretization time, while Nicolás and
Bermúdez (2004) studied the 2D flows.

Radial basis functions (RBFs) are a powerful tool for function interpolation. Due
to their mesh-free nature RBFs have received increasing attention in relation to
solving partial differential equations. This approach was tested by Atluri et al.
(2006a, 2006b), Han et al. (2006), Wen and Hon (2007) and Mai-Duy et al. (2007).
A new numerical scheme based on Cartesian grids and local integrated radial-basis-
function networks (IRBFNs) was employed for the solution of second-order elliptic
differential problems defined on two-dimensional regular and irregular domains in
Mai-Duy and Tran-Cong (2009).

Another approach is the Multiquadric Collocation Method (MCM) using a radial
basis function, which has been used in a variety of studies including some on the
lid-driven cavity flows. For example, Ding et al. (2006) used MCM to solve the
three-dimensional lid-driven cavity flow problem. Young et al. (2004) solved the
problem of Stokes flow in a cavity by MCM. Chantasiriwan (2006) reports driven
cavity results for a low Reynolds number (Re = 0), which turns out to be a Stokes
flow because of the infinity viscosity, and Re = 100 using a MCM. Mai-Duy and
Tran-Cong (2004) with the primitive variables formulation, also reported the lid-
driven cavity flow for Re = 100 and Re = 0, where Re is the Reynolds number.
Grimaldi et al. (2006) using a parallel multi-block method reported results for 2D
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and 3D lid-driven cavity problems. Orsini et al. (2008) presented a modified control
volume method using a radial basis function interpolation to improve the accuracy
of the prediction of the flux at the faces of the control volumes. The proposed ap-
proach validated a series de 1D and 3D test cases. Shan et al. (2008) numerically
studied the performance of the 3D local multiquadric-based differential quadrature
(MQ-DQ) method and demonstrated its capability and flexibility in the simulation
of 3D incompressible fluid flows with curved boundary. A new meshless approach
was proposed by Mai-Cao and Tran-Cong (2008) in order to solve a special class
of moving interface problems. Sellountos and Sequeira (2008) proposed a hybrid
velocity-vorticity scheme for the solution of the 2D Navier-Stokes equations. Mar-
iani et al. (2008) investigated Voronoi unstructured meshes to solve the flow in
square lid-driven cavities.

In irregular cavities, such as trapezoidal, semi-circular or triangular cavities, spe-
cial attention has been given to boundaries, for example, the classic finite-volume
method, using structured meshes, needs to be modified in order to solve the flow in
these geometries. These differences promote the development of research studies
and new numerical methods which are faster and more accurate for the solution of
flows in irregular geometries.

In the literature there are reports of studies on the flow in curved and non-rectangular
cavities. The triangular cavity exhibits flow features that have been analytically
studied by Moffat (1963) in the Stokes regime and by Batchelor (1956) in the in-
viscid or infinite Reynolds number regime. The flow in a trapezoidal cavity has
been studied by Darr and Vanka (1991). Ribbens et al. (1991) described the flow
in an elliptic region with a moving boundary. McQuain et al. (1994) and Ribbens
et al. (1994) studied the steady flow in an equilateral triangular cavity for Re ≤
500. The fourth-order Navier-Stokes equations in terms of stream function were
solved numerically using finite differences together with a Newton-like iteration
on a transformed geometry. Vynnycky and Kimura (1994) have reported the re-
sults for a study on steady flow in a driven quarter circular cavity.

Jyotsna and Vanka (1995) studied the steady viscous flow in a triangular cavity,
where triangular grids and a multigrid method were used. The solution for Re ≤
800 was obtained without encountering any of the difficulties reported for struc-
tured grid-based methods in Ribbens et al. (1994). Li and Tang (1996) presented
an accurate and efficient numerical method to solve the flow in equilateral and sca-
lene triangular cavities for Re ≤ 1500, using finite difference on a transformed
geometry. Recently, Glowinski et al. (2006) reported results for a study on in-
compressible viscous flow in a semi-circular cavity. The operator-splitting/finite
elements method and a triangulation of the two-dimensional domain were used to
obtain numerical results. The Lattice Boltzmann method was investigated by Duan
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and Liu (2007) to solve triangular cavity flow for Re ≤ 500.

Natural convection within a cavity has received significant attention recently. The
pattern of the natural periodic flow motion in a lid-driven triangular cavity was
confirmed by Chen and Cheng (2009). Basak et al. (2009) studied the heat flow
pattern in triangular cavities using Bejan’s heatline concept, as did Kaluri et al.
(2010). The unsteady natural convection in a triangular enclosure was investigated
by Saha (2011).

In fact, the flow in curved geometries can be represented using curvilinear and non-
orthogonal grids or orthogonal (Cartesian) grids. In this context, our primary goal
here was to investigate the ability of the finite volume/Eulerian-Lagrangian tech-
nique using Cartesian grids as discussed in Ye et al. (1999), Mariani and Prata
(2008) and Pasquin and Mariani (2008) to deal with flow regions with corners and
curved boundaries. To achieve this goal, we selected a lid-driven irregular cav-
ity flow. This problem is important and of considerable interest because irregular
shapes are at least as common in practice as the square shape. Also, we determined
which aspects of the results of this problem differ from those of the previously
employed method. A secondary goal was to determine the structure of the recircu-
lating flow for Reynolds numbers of between 1and 6000.

The paper is organized as follows. Section 2 introduces the formulation of the
problem and shows the boundary conditions of the cavity. Numerical results are
presented in Section 3, streamlines and vorticity contours are presented for Re ≤
6000 in the same section. In the last section the main conclusions are detailed.

2 Mathematical Formulation

Figure 1 shows the physical model of an irregular cavity with a constant lid, in
which H (= 1 m) and L (= 1 m) indicate the height and width of the cavity, respec-
tively.

The flow considered here is steady, two-dimensional, laminar and incompressible.
The air in the cavity is treated as a Newtonian fluid and the fluid properties are
assumed to be constant. In this study, the mathematical model is formulated using
the continuity and Navier-Stokes equations which can be expressed in Cartesian
coordinates (x, y) as (Fox and Macdonald, 2001):

∂u
∂x

+
∂v
∂y

= 0, (1)

∂ (uu)
∂x

+
∂ (vu)

∂y
=−∂ p

∂x
+ν

[
∂ 2u
∂x2 +

∂ 2u
∂y2

]
, (2)
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∂ (uv)
∂x

+
∂ (vv)

∂y
=−∂ p

∂y
+ν

[
∂ 2v
∂x2 +

∂ 2v
∂y2

]
, (3)

where u (m/s) and v (m/s) are the velocity components in the x and y directions,
respectively, ν (m2/s) and p (Pa) are the dynamic viscosity and pressure, respec-
tively.
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Figure 1. Irregular cavity. 

  

The boundary conditions for the velocity components are 
given as: 

(i) u = 1, v = 0 for y = H and 0 ≤ x ≤ L; 
(ii) u = 0, v = 0 for 0 ≤ y ≤ H and x = 0; 
(iii) u = 0, v = 0 for y = f(x) =0.4 x and 0 ≤ x ≤ L/2. 
(iv) u = 0, v = 0 for y = f(x) = -0.4 x +0.4 and L/2 < x ≤ L. 
(v) u = 0, v = 0 for 0 ≤ y ≤ H and x = 0; 
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where φ is equal to u and v for Eqs. (2) and (3), 
respectively, and  unity for Eq. (1), and Γφ and Sφ are, 
respectively, the diffusion coefficient and term source. 
The governing equation, Eq. (4) and its respective 
boundary conditions were discretized using the finite-
volume method described by Patankar (1980). The 
irregular cavity is divided into small control volumes 
using a collocated (non-staggered) arrangement and the 
Eulerian-Lagrangean method (ELAFINT) as described in 
Pasquim and Mariani (2008) and Mariani and Prata 

(2008). The validation of the ELAFINT methodology 
used in this study was also carried out in Pasquim and 
Mariani (2008), and the results for an equilateral 
triangular cavity were compared with those reported in Li 
and Tang (1996) and McQuain et al. (1994), with good 
agreement. 
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Figures 2 and 3 present the u and v velocity profiles at the 
vertical and horizontal center lines, respectively, for a 
Reynolds numbers of 2500 (Figure 2) and 5000 (Figure 3). 
The curves for the other configurations investigated are 
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Figures 2 and 3. Since the differences between the results 
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Figure 1: Irregular cavity.

The boundary conditions for the velocity components are given as:

u = 1, v = 0 for y = H and 0 ≤ x ≤ L;

u= 0,v =0 for 0 ≤ y ≤ H and x = 0;

u = 0, v = 0 for y = f (x) =0.4x and 0 ≤ x ≤ L/2.

u = 0, v = 0 for y = f (x) = -0.4x +0.4 and L/2 < x ≤ L.

u = 0, v = 0 for 0 ≤ y ≤ H and x = 0;

Equations (1) through (3) can be expressed by a single equation for the generic
variable φ as,

∂ (ρuφ)
∂x

+
∂ (ρvφ)

∂y
= Γ

φ ∂

∂x

(
∂φ

∂x

)
+Γ

φ ∂
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(
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)
+Sφ (4)

where φ is equal to u and v for Eqs. (2) and (3), respectively, and unity for Eq. (1),
and Γφ and Sφ are, respectively, the diffusion coefficient and term source. The gov-
erning equation, Eq. (4) and its respective boundary conditions were discretized
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using the finite-volume method described by Patankar (1980). The irregular cavity
is divided into small control volumes using a collocated (non-staggered) arrange-
ment and the Eulerian-Lagrangean method (ELAFINT) as described in Pasquim
and Mariani (2008) and Mariani and Prata (2008). The validation of the ELAFINT
methodology used in this study was also carried out in Pasquim and Mariani (2008),
and the results for an equilateral triangular cavity were compared with those re-
ported in Li and Tang (1996) and McQuain et al. (1994), with good agreement.

3 Numerical Results and Discussion

This section, which presents the results for several cavity configurations, is divided
into three parts. Presented first is the mesh refinement study. Secondly, the re-
sults for the stream function, vorticity, kinetic energy and entropy, i.e., local and
global quantities, respectively, are reported and discussed. Finally, the results for
the streamlines and vorticity contours are presented and discussed.

3.1 Mesh Refinement Study

Mesh refinement was performed for all cavity configurations investigated. The
analysis was based on the velocity profiles along the vertical and horizontal center
lines. Four different grids, composed of 50×50, 100×100, 150×150, and 200×200
control volumes, were used as illustrated in Figures 2 and 3.

Figures 2 and 3 present the u and v velocity profiles at the vertical and horizontal
center lines, respectively, for a Reynolds numbers of 2500 (Figure 2) and 5000 (Fig-
ure 3). The curves for the other configurations investigated are not shown, however,
they were similar to those shown in Figures 2 and 3. Since the differences between
the results obtained with grids formed of 100×100, 150×150, and 200×200 vol-
umes were minor we chose the 150×150 grid for all the simulations presented in
this article.

After choosing the computational grid of 150x150 control volumes, the velocity
profiles u and v were built for Reynolds numbers of 500 to 6000 (Figures 4 and
5). The velocity profiles show the evolution of the primary vortex lowering with an
increase of Reynolds number, see Figures 4a and 4b. The highest flow velocities are
located on the right side of the irregular cavity, see Figures 5a and 5b. The plotted
values for the u−velocity profiles, along the vertical center line of the irregular
cavity, x = 0.5, are shown in Table 1, while those for the v-velocity profiles, along
the horizontal center line of cavity, y = 0.5, are shown in Table 2.
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where φ is equal to u and v for Eqs. (2) and (3), 
respectively, and  unity for Eq. (1), and Γφ and Sφ are, 
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3.1 Mesh Refinement Study 

 

Mesh refinement was performed for all cavity 
configurations investigated. The analysis was based on 
the velocity profiles along the vertical and horizontal 
center lines. Four different grids, composed of 50×50, 
100×100, 150×150, and 200×200 control volumes, were 
used as illustrated in Figures 2 and 3. 

 

Figures 2 and 3 present the u and v velocity profiles at the 
vertical and horizontal center lines, respectively, for a 
Reynolds numbers of 2500 (Figure 2) and 5000 (Figure 3). 
The curves for the other configurations investigated are 
not shown, however, they were similar to those shown in 
Figures 2 and 3. Since the differences between the results 
obtained with grids formed of 100×100, 150×150, and 
200×200 volumes were minor we chose the 150×150 grid 
for all the simulations presented in this article.  
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Figure 2. Profiles of (a) u-velocity along the vertical 
center line and (b) v-velocity along the horizontal center 

line, for Re = 2500. 
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Figure 3. Profiles of (a) u-velocity along the vertical 
center line and (b) v-velocity along the horizontal center 

line, for Re = 5000. 

 
After choosing the computational grid of 150x150 control 
volumes, the velocity profiles u and v were built for 

Reynolds numbers of 500 to 6000 (Figures 4 and 5). The 
velocity profiles show the evolution of the primary vortex 
lowering with an increase of Reynolds number, see 
Figures 4a and 4b. The highest flow velocities are located 
on the right side of the irregular cavity, see Figures 5a and 
5b. The plotted values for the u-velocity profiles, along 
the vertical center line of the irregular cavity, x = 0.5, are 
shown in Table 1, while those for the v-velocity profiles, 
along the horizontal center line of cavity, y = 0.5, are 
shown in Table 2. 
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Figure 2. Profiles of (a) u-velocity along the vertical 
center line and (b) v-velocity along the horizontal center 

line, for Re = 2500. 
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Figure 3. Profiles of (a) u-velocity along the vertical 
center line and (b) v-velocity along the horizontal center 

line, for Re = 5000. 
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3.2 Analysis of local and global quantities

The analysis of the flow was also based on the stream function, vorticity, kinetic
energy and entropy, which were defined as follows. The streamlines describe the
vector fields (u, v) for a simple scalar value, ψ . The relationship between the
velocity and the stream function is based in the equation of mass conservation,
Eq. (1), and is given by,

u =
1
ρ

∂ψ

∂y
, (5)
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Figure 4. Profiles of u-velocity along the vertical center 
line of the cavity for different Reynolds numbers. 
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Figure 5. Profiles of v-velocity along the horizontal center 
line of the cavity for different Reynolds numbers. 

 
 

Table 1. Selected numerical values of the u-velocity  component along the vertical central line. 
Y Re = 500 Re = 1000 Re = 2000 Re = 3000 Re = 4000 Re = 5000 Re = 6000
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0.33000 -0.3439 -0.4023 -0.3813 -0.3474 -0.3203 -0.2986 -0.2805 
0.39667 -0.3545 -0.3367 -0.2848 -0.2567 -0.2371 -0.2215 -0.208 
0.46333 -0.2888 -0.2369 -0.2034 -0.185 -0.1711 -0.1598 -0.1498 
0.53000 -0.1894 -0.1474 -0.126 -0.1137 -0.1049 -0.0978 -0.0916 
0.59667  -0.088 -0.0602 -0.0463 -0.0405 -0.037 -0.0344 -0.0323 
0.66333 0.01229 0.03042 0.03668 0.03601 0.03418 0.03215 0.03005 
0.73000 0.11464 0.12746 0.12475 0.11748 0.1102 0.10345 0.09699
0.79667 0.21518 0.2328 0.22144 0.20671 0.19357 0.18192 0.17094 
0.86333 0.30438 0.33568 0.32791 0.30794 0.28924 0.27262 0.25705 
0.93000 0.44264 0.42371 0.41298 0.3952 0.37563 0.35689 0.33876 
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the vertical center line of the cavity for
different Reynolds numbers.

 5

 

-0.5 -0.25 0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

u

y

Re= 500 
Re= 1000
Re= 2000

 
(a) 

-0.5 -0.25 0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

u

y

Re= 3000
Re= 4000
Re= 5000
Re= 6000

 
(b) 

Figure 4. Profiles of u-velocity along the vertical center 
line of the cavity for different Reynolds numbers. 
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Figure 5. Profiles of v-velocity along the horizontal center 
line of the cavity for different Reynolds numbers. 
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Figure 5: Profiles of v−velocity along
the horizontal center line of the cavity
for different Reynolds numbers.

v =− 1
ρ

∂ψ

∂x
. (6)

The values of line ψ constant are streamlines, i.e., are lines parallel to velocity
vector. The vorticity, ζ , is twice the angular velocity of air at any point, represented
by,

ζ =
∂v
∂x
− ∂u

∂y
. (7)

The vorticity is a measure of fluid rotation, as it moves in the flow field. In order to
verify the global quantities in the cavity flow, the kinetic energy, E, is evaluated as:

E =
1
2

∫
Ω

||U ||2dx, (8)
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Z 12.6767   
 

40
00

 

ψmax  0.0910 0.5600 0.6267
ψmin  -5.6171×10-3 0.8200 0.1800
ζ 1.8501 0.5600 0.6267
E 0.0284   
Z 13.1530   

50
00

 

ψmax  0.0862 0.5933 0.6267
ψmin  -6.4047×10-3 0.2600 0.3600
ζ 1.7400 0.5933 0.6267
E 0.0258   
Z 13.5077   

60
00

 

ψmax  0.0818 0.5933 0.6267
ψman  -7.0052×10-3 0.8333 0.1733
ζ 1.6584 0.5933 0.6267
E 0.0236   
Z 13.8553   

 
Table 3 shows that the maximum values for the stream 
function, ψmax, and vorticity, ζ, occur in the middle of the 
center of the primary vortex, while the minimum values 
for the stream function, ψmin, occur closer to the bottom of 
the cavity, i.e., the position of the minimum stream 
function is the center of the secondary vortex, generated 
by the fluid recirculation on the bottom left or right of the 
cavity, according to the streamlines shown for Reynolds 
numbers of 500 to 6000 in Figure 6. 

Our numerical results (see Table 3) suggest that the 
maximum stream function value at the center of the 
primary vortex, ψ, decreases as the Reynolds number 
increases, and its vorticity, ζ, shows a similar behavior. 
We can see that the total kinetic energy gives converged 
values and decreases with the Reynolds number while the 
entropy increases. The reduction of the kinetic energy is 
important, for example, at Re = 6000 a 64% reduction in 
the kinetic energy of occurs compared with Re = 500.   
 
3.3. Streamlines and vorticity contours 
 

Streamlines and vorticity contours, in the steady state, are 
reported in Figure 6 for Re = 500, 1000, 2000, 3000, 4000, 
5000 and 6000. The values used to plot the contours for 
the stream function and vorticity are listed in Tables 4 and 
5, respectively. Note that for all Reynolds numbers 
investigated the steady state consists of one main vortex, a 
secondary vortex and a tertiary vortex, as seen in Figure 6. 
However, it is likely that other small vortices were formed 
near the bottom of the cavity, which were not captured 
with the methodology used. The size of the vortices is 
also dependent on the Reynolds number. In the bottom of 
the irregular cavity a major vortex occupies the central 

part of the domain, while minor vortices appear at the 
lower corners, and small vortices are probably formed in 
the top-left region as the Reynolds number increases.  

Figure 6 also shows that the primary vortex is not 
significantly influenced by an increase in the Reynolds 
number, however, the small vortex on the left changes 
with this parameter. In the case of the irregular cavity, as 
the Reynolds number increases the vortices developing at 
the bottom grow, slowly pushing the main vortex to the 
right part of the cavity.  
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Figure 6. Streamlines and vorticity contours, respectively, 
for Reynolds numbers of 500 to 6000. 

 
The values used to plot the stream function contours are 
listed in Table 4. These values are presented from the 
primary vortex center toward the boundaries and are given 
in decreasing order. The values used to plot the vorticity 
contours are described from top to bottom in Table 5.  
 
Table 4. Values used to plot the contours of the stream 
function. 
Reynolds Values 

500 and 
1000 

0.1 0.09 0.08 0.07 
0.06 0.05 0.04 0.03 
0.02 0.01 0.002 -0.00015
-0.0004 -0.0006   

2000 and 
3000 

0.1 0.09 0.08 0.07 
0.06 0.05 0.04 0.03 
0.02 0.01 0.002 -0.001 
-0.0025 -0.0035   

4000 and 
5000 

0.09 0.08 0.07 0.06 
0.05 0.04 0.03 0.02 
0.01 0.002 -0.001 -0.0025 
-0.0035 -0.005   

6000 

0.08 0.07 0.06 0.05 
0.04 0.03 0.02 0.01 
0.002 -0.001 -0.0025 -0.0035 
-0.005 -0.0065   

 

Table 5. Values used to plot the contours of the vorticity. 

Reynolds Values 

500 and 
1000 

7 5 3 2.7 
2.6 2.5 2.3 2 
1.5 0.5 -0.15 -0.5 
-1.5 -2.3   

2000 and 
3000 

10 6 3.5 3 
2.3 2.2 2.18 2.16 

2 1.9 1.5 -0.13 
-1.5 -2.5   

4000 and 
5000 

10 5 3 2.5 
2.2 2 1.9 1.88 
1.86 1.85 1.84 1.5 
0.5 -2   

6000 

8 5.5 4 2.5 
2 1.9 1.8 1.75 
1.72 1.70 1.65 1.5 
1.3 0.2   

4 Conclusions 

In this paper, a two-dimensional analysis of the flow in a 
lid-driven irregular cavity is presented for Reynolds 
numbers of 500 to 6000, with the principal objective of 
collecting information on the steady viscous flow in a new 
irregular cavity. The computational code using the 
Eulerian-Lagrangian methodology was sufficiently robust 
to solve the flow within irregular regions. New results 
were obtained for the stream function, vorticity, kinetic 
energy and entropy. The evolution of the flow with an 
increase in the Reynolds number was analyzed and the 
maximum and minimum stream functions were found to 
decreases with increasing Reynolds number. Meanwhile, 
there was a reduction in the vorticity function value at the 
maximum stream function point. With an increase in the 
Reynolds number there is less influence on the primary 
vortex, however, there is the creation of new eddies in the 
bottom left part of the cavity due to an increase in the 
secondary vortex velocity. These eddies rotate in the 
opposite direction and reduce the total energy of the flow 
observed, decreasing the kinetic energy with an increase 
in the Reynolds number. 
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Figure 6: Streamlines and vorticity contours, respectively, for Reynolds numbers
of 500 to 6000.

where Ui, j = (ui, j,vi, j). In a cavity flow the kinetic energy represents the total
energy obtained by the system with the displacement. Global analysis of the flow
also involves the entropy, Z, defined as:

Z =
1
2

∫
Ω

||ζ ||2dx, (9)

Table 3 shows the flow properties with increasing Reynolds number from 500 to
6000, where the maximum and minimum stream function, the vorticity in the same
position as the maximum stream function, the total kinetic energy and the entropy
are shown, along with the respective position at which these values were obtained.

Table 3 shows that the maximum values for the stream function, ψmax, and vortic-
ity, ζ , occur in the middle of the center of the primary vortex, while the minimum
values for the stream function, ψmin, occur closer to the bottom of the cavity, i.e.,
the position of the minimum stream function is the center of the secondary vortex,
generated by the fluid recirculation on the bottom left or right of the cavity, ac-
cording to the streamlines shown for Reynolds numbers of 500 to 6000 in Figure
6.

Our numerical results (see Table 3) suggest that the maximum stream function
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Table 3: Proprieties of flow in irregular cavity, for 500 ≤ Re ≤ 6000.

Re Properties Value
Location

x y

500

ψmax 0.1079 0.5800 0.6600
ψmin -8.8911×10−4 0.8800 0.2000

ζ 2.5831 0.5800 0.6600
E 0.0370
Z 9.3683

1000

ψmax 0.1072 0.5667 0.6400
ψmin -2.3042×10−3 0.1467 0.2600

ζ 2.3766 0.5667 0.6400
E 0.0376
Z 10.6111

2000

ψmax 0.1028 0.5600 0.6333
ψmin -3.9447×10−3 0.1267 0.3200

ζ 2.1535 0.5600 0.6333
E 0.0349
Z 11.9457

3000

ψmax 0.0966 0.5600 0.6333
ψmin -4.8060×10−3 0.1133 0.3600

ζ 1.9835 0.5600 0.6333
E 0.0315
Z 12.6767

4000

ψmax 0.0910 0.5600 0.6267
ψmin -5.6171×10−3 0.8200 0.1800

ζ 1.8501 0.5600 0.6267
E 0.0284
Z 13.1530

5000

ψmax 0.0862 0.5933 0.6267
ψmin -6.4047×10−3 0.2600 0.3600

ζ 1.7400 0.5933 0.6267
E 0.0258
Z 13.5077

6000

ψmax 0.0818 0.5933 0.6267
ψman -7.0052×10−3 0.8333 0.1733

ζ 1.6584 0.5933 0.6267
E 0.0236
Z 13.8553
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value at the center of the primary vortex, ψ , decreases as the Reynolds number
increases, and its vorticity, ζ , shows a similar behavior. We can see that the to-
tal kinetic energy gives converged values and decreases with the Reynolds number
while the entropy increases. The reduction of the kinetic energy is important, for
example, at Re = 6000 a 64% reduction in the kinetic energy of occurs compared
with Re = 500.

Table 4: Values used to plot the contours of the stream function.

Reynolds Values

500 and 1000

0.1 0.09 0.08 0.07
0.06 0.05 0.04 0.03
0.02 0.01 0.002 -0.00015

-0.0004 -0.0006

2000 and 3000

0.1 0.09 0.08 0.07
0.06 0.05 0.04 0.03
0.02 0.01 0.002 -0.001

-0.0025 -0.0035

4000 and 5000

0.09 0.08 0.07 0.06
0.05 0.04 0.03 0.02
0.01 0.002 -0.001 -0.0025

-0.0035 -0.005

6000

0.08 0.07 0.06 0.05
0.04 0.03 0.02 0.01
0.002 -0.001 -0.0025 -0.0035
-0.005 -0.0065

3.3 Streamlines and vorticity contours

Streamlines and vorticity contours, in the steady state, are reported in Figure 6 for
Re = 500, 1000, 2000, 3000, 4000, 5000 and 6000. The values used to plot the
contours for the stream function and vorticity are listed in Tables 4 and 5, respec-
tively. Note that for all Reynolds numbers investigated the steady state consists of
one main vortex, a secondary vortex and a tertiary vortex, as seen in Figure 6. How-
ever, it is likely that other small vortices were formed near the bottom of the cavity,
which were not captured with the methodology used. The size of the vortices is
also dependent on the Reynolds number. In the bottom of the irregular cavity a
major vortex occupies the central part of the domain, while minor vortices appear
at the lower corners, and small vortices are probably formed in the top-left region
as the Reynolds number increases.
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Table 5: Values used to plot the contours of the vorticity.

Reynolds Values

500 and 1000

7 5 3 2.7
2.6 2.5 2.3 2
1.5 0.5 -0.15 -0.5
-1.5 -2.3

2000 and 3000

10 6 3.5 3
2.3 2.2 2.18 2.16
2 1.9 1.5 -0.13

-1.5 -2.5

4000 and 5000

10 5 3 2.5
2.2 2 1.9 1.88
1.86 1.85 1.84 1.5
0.5 -2

6000

8 5.5 4 2.5
2 1.9 1.8 1.75

1.72 1.70 1.65 1.5
1.3 0.2

Figure 6 also shows that the primary vortex is not significantly influenced by an
increase in the Reynolds number, however, the small vortex on the left changes with
this parameter. In the case of the irregular cavity, as the Reynolds number increases
the vortices developing at the bottom grow, slowly pushing the main vortex to the
right part of the cavity.

The values used to plot the stream function contours are listed in Table 4. These
values are presented from the primary vortex center toward the boundaries and
are given in decreasing order. The values used to plot the vorticity contours are
described from top to bottom in Table 5.

4 Conclusions

In this paper, a two-dimensional analysis of the flow in a lid-driven irregular cavity
is presented for Reynolds numbers of 500 to 6000, with the principal objective of
collecting information on the steady viscous flow in a new irregular cavity. The
computational code using the Eulerian-Lagrangian methodology was sufficiently
robust to solve the flow within irregular regions. New results were obtained for
the stream function, vorticity, kinetic energy and entropy. The evolution of the
flow with an increase in the Reynolds number was analyzed and the maximum
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and minimum stream functions were found to decreases with increasing Reynolds
number. Meanwhile, there was a reduction in the vorticity function value at the
maximum stream function point. With an increase in the Reynolds number there is
less influence on the primary vortex, however, there is the creation of new eddies in
the bottom left part of the cavity due to an increase in the secondary vortex velocity.
These eddies rotate in the opposite direction and reduce the total energy of the flow
observed, decreasing the kinetic energy with an increase in the Reynolds number.
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