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Meshless Unsteady Thermo-Elastoplastic Analysis by
Triple-Reciprocity Boundary Element Method

Yoshihiro OCHIAI1

Abstract: In general, internal cells are required to solve unsteady thermo-elasto-
plastic problems using a conventional boundary element method (BEM). However,
in this case, the merit of BEM, which is the easy preparation of data, is lost.
The conventional multiple-reciprocity boundary element method (MRBEM) can-
not be used to solve thermo-elastoplastic problems, because the distribution of ini-
tial stress cannot be determined analytically. In this paper, it is shown that two-
dimensional unsteady thermo-elastoplastic problems can be solved without the use
of internal cells by using the triple-reciprocity BEM and a thin plate spline. The
initial stress formulation is adopted and the initial stress distribution is interpolated
using boundary integral equations and a thin plate spline. A new computer program
was developed and applied to several problems.

Keywords: Boundary Element Method, Elastoplasticity, Thermal Stress, Com-
putational Mechanics, Initial Stress

1 Introduction

Elastoplastic problems can be solved by a conventional boundary element method
(BEM) using internal cells for domain integrals [Brebbia (1984), Wrobel (2002)].
In this case, however, the merit of BEM, which is ease of data preparation, is lost.
On the other hand, several countermeasures to prevent this lose have been consid-
ered. For example, Nowak and Neves (1994) proposed the conventional multiple-
reciprocity boundary element method (MRBEM). In the conventional MRBEM,
the distribution of initial stress must be given analytically, and fundamental so-
lutions of higher order are used to make solutions converge. Accordingly, this
method is not suitable for thermo-elastoplastic analysis. Dual-reciprocity BEM has
been proposed to reduce the dimensionality, which is an advantage of BEM [Par-
tridge (1992)]. However, it is difficult to apply the dual-reciprocity BEM to thermo-
elastoplastic problems with arbitrary heat generation. Sladek (2007) applied the lo-
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cal integral equation method to elastoplastic problems without internal cells. Ochiai
and Kobayashi (1999, 2001a) proposed triple-reciprocity BEM (improved multiple-
reciprocity BEM) without using internal cells for elastoplastic problems. By this
method, a highly accurate solution can be obtained using only fundamental solu-
tions of low orders and by reducing the need for data preparation. They applied
triple-reciprocity BEM without using internal cells to two-dimensional elastoplas-
tic problems using initial strain formulations. Ochiai (2010, 2011) applied triple-
reciprocity BEM to two-dimensional thermo-elastoplastic problems with arbitrary
heat generation and three-dimensional elastoplastic problems using initial strain
formulations. Only the triple-reciprocity BEM and the local integral equation
method have been applied to elastoplastic problems without internal cells.

In the previous papers (2010, 2011), steady thermal stress was assumed. In this
study, triple-reciprocity BEM is applied to two-dimensional thermo-elastoplastic
problems involving unsteady thermal stress with arbitrary heat generation. The ini-
tial stress formulations is adopted and the theory is expressed using a small number
of fundamental solutions. In this method, boundary elements and arbitrary internal
points are used. The arbitrary distributions of initial stress used for elastoplas-
tic analysis are interpolated using boundary integral equations and internal points.
This interpolation corresponds to a thin plate spline. In this method, the strong sin-
gularities that appear in the calculation of stresses at internal points become weak.
A new computer program is developed and applied to several thermo-elastoplastic
problems to clearly demonstrate the theory. A time-dependent solution is used to
calculate unsteady heat conduction. The temperature distribution is used for the
calculation of unsteady thermal stress. In this method, which does not use a time-
dependent solution for thermal stress, internal points are necessary; however, they
are necessary for elastoplastic analysis. This method is demonstrated to be efficient
for calculation.

2 Theory

2.1 Unsteady heat conduction

In unsteady heat conduction problems with heat generation W S
1 (q,τ), temperature

T is obtained by solving

∇
2T +

W S
1

λ
= κ

−1 ∂T
∂ t

(1)

where κ and t are the thermal diffusivity and time, respectively. Denoting an arbi-
trary time and the initial temperature by τ and T 0S

1 (q), respectively, the boundary
integral equation for the temperature in the case of unsteady heat conduction is
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expressed by [Brebbia (1984), Wrobel (2002)]

cT (P, t) =−κ

∫ t

0

∫
Γ

[
T (Q,τ)

∂T ∗1 (P,Q, t,τ)
∂ n

− ∂T (Q,τ)
∂ n

T ∗1 (P,Q, t,τ)
]

dΓdτ

+κλ
−1
∫ t

0

∫
Ω

T ∗1 (P,q, t,τ)W S
1 (q,τ)dΩdτ +

∫
Ω

T ∗1 (P,q, t, 0 )T 0S
1 (q)dΩ, (2)

where c=0.5 on the smooth boundary and c=1 in the domain. λ is the heat con-
duction coefficient. Superscript S denotes a distributed value. Γ and Ω represent
the boundary and the domain, respectively, and p and q become P and Q on the
boundary. In two-dimensional problems, the time-dependent fundamental solu-
tion T ∗1 (q, p, t,τ) in Eq.(2) used for unsteady temperature analysis and its normal
derivative are given by

T ∗1 (p,q, t,τ) =
1

4πκ(t− τ)
exp(−a) (3)

∂T ∗1 (p,q, t,τ)
∂ n

=
−r

8πκ2(t− τ)2
∂ r
∂ n

exp(−a), (4)

where

a =
r2

4κ(t− τ)
. (5)

Here, r is the distance between the observation point p and the loading point q. As
shown in Eq.(2), when there exists an arbitrary distribution of initial temperature
T 0S

1 (q,0) or heat generation W S
1 (q,τ) in a domain, the domain integral is necessary.

Therefore, the triple-reciprocity BEM [Ochiai (2003, 2004)] is used to avoid the
need for internal cells.

Two different numerical procedures can be employed for the numerical solution of
Eq.(2). One method requires internal cells. In this paper, internal points are used.
At the end of each time step, the temperature at a sufficient number of internal
points must be computed for use as the initial temperature distribution in the next
time step. In the proposed method, the temperature distributions in some time steps
are assumed to be the initial temperature distribution and are interpolated using
integral equations and internal points. The deformation of an imaginary thin plate
is utilized to interpolate the distribution of W [1]S in the two-dimensional case. The
following equations can be used for the two-dimensional interpolation of the heat
generation distribution W S

1 (p,τ) and initial temperature distribution T 0S
1 (p):

∇
2W S

1 (q,τ) =−W S
2 (q,τ), (6)
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∇
2W S

2 (q,τ) =−
M

∑
m=1

W P
3 (qm,τ)δ (q−qm), (7)

∇
2T 0S

1 (q) =−T 0S
2 (q), (8)

∇
2T 0S

2 (q) =−
M

∑
m=1

T 0P
3 (qm)δ (q−qm), (9)

where M is the number of interpolation points. On the other hand, the polyharmonic
function T ∗f (p,q, t,τ) in the unsteady heat conduction problem is defined by

∇
2T ∗f +1(p,q, t,τ) = T ∗f (p,q, t,τ). (10)

Using Green’s theorem twice and Eqs. (6)-(9), Eq.(2) becomes [Ochiai (2004,
2009)]

cT (P, t) =−κ

∫ t

0

∫
Γ

[T (Q,τ)
∂T ∗1 (P,Q, t,τ)

∂n
− ∂T (P,Q)

∂n
T ∗1 (P,Q, t,τ)]d Γdτ

+
2

∑
f =1

(−1) f
∫

Γ

[T ∗f +1(P,Q, t,0)
∂T 0S

f (Q)

∂n
−

∂T ∗f +1(P,Q, t,0)
∂n

T 0S
f (Q)]dΓ+

+
M

∑
m=1

T 0P
3 (qm)T ∗3 (P,qm, t,0)+

2

∑
f =1

(−1) f
∫ t

0

∫
Γ

[T ∗f +1(P,Q, t,τ)
∂W S

f (Q,τ)

∂n
−

−
∂T ∗f +1(P,Q, t,τ)

∂n
W S

f (Q,τ)]dΓdτ +
M

∑
m=1

∫ t

0
W P

3 (qm,τ)T ∗3 (P,qm, t,τ)dτ . (11)

Using Eq.(10), the two-dimensional polyharmonic function T ∗f (P,q, t,τ) in Eq.(11)
is obtained from

T ∗f +1(p,q, t,τ) =
∫ 1

r

∫
rT ∗f (p,q, t,τ)drdr. (12)

in the unsteady state and its normal derivative are concretely given by

T ∗2 (p,q, t,τ) =
1

4π
[E1(a)+ ln(a)+C] , (13)

∂T ∗2 (p,q, t,τ)
∂n

=
1

2π r
∂ r
∂n

[1− exp(−a)], (14)

T ∗3 (p,q, t,τ) =

r2

16π
[E1(a)+ ln(a)+C +

1− exp(−a)
a

+
E1(a)+ ln(a)+C

a
−2], (15)
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∂T ∗3 (p,q, t,τ)
∂n

=
r

8π

∂ r
∂n

[E(a)+ ln(a)+C−1+
1− exp(−a)

a
], (16)

where E1() is the exponential integral function and C is Euler’s constant.

Numerical solutions are obtained by using the interpolation functions for time and
space. If a constant time interpolation and time step (tk− tk−1) are used, the time
integral can be treated analytically. The actual time is TF , and the time integrals for
T ∗f (P,q, t,τ) are given as follows:∫ tF

t f

T ∗1 (P,q, t,τ)dτ =
1

4πκ
E1(a f ), (17)

∫ tF

t f

T ∗2 (P,q, t,τ)dτ =
r2

16κπ

[
E1(a f )+

1
a f

{
E1(a f )− exp(−a f )+ ln (a f )+1+C

}]
,

(18)∫ tF

t f

T ∗3 (P,q, t,τ)dτ =
r4

256κπ

[
E1 (a f )+

4E1(a f )+4ln(a f )− exp(−a f )−4+4C
a f

+
2E1(a f )+2ln(a f )−3exp(−a f )+3+2C

a2
f

]
, (19)

with a f = r2/4κ(tF − t f ).

2.2 Thermo-elastoplastic analysis

To analyze thermo-elastoplastic problems using the initial stress formulation, the
following boundary integral equation must be solved.

ci ju̇ j (P) =
∫

Γ

[u[1]
i j (P,Q)ṗ j(Q)− pi j(P,Q) u̇ j(Q)] dΓ+

∫
Ω

ε
[1]
i jk(P,q) σ̇

[1]
I jk(q)dΩ

+
∫

Ω

T (q)∇2u[1]
i (P,q)dΩ (20)

Here, σ̇
[1]
I jk(q) is the initial stress rate, which is treated iteratively, and is the free

coefficient. Moreover, and are the jth components of the displacement and surface
traction rates, respectively. Γ and Ω are the boundary and domain, respectively. In
this formulation, the concept of the thermoelastic displacement potential is used.
As shown in Eq. (20), when there is an arbitrary initial strain rate, a domain inte-
gral becomes necessary. Denoting the distance between the observation point and
loading point as r, the function u[1]

i (p,q) is given by

u[1]
i (p,q) =

−m0rr,i
8π

[2ln(r)+1], (21)
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where α is the linear coefficient of thermal expansion, m0 = (1 + ν)α for plane
stress problems, and m0 = (1 + ν)α/(1− ν) for plane strain problems. δi j is the
Kroneker delta function and Ṫ is the temperature increment. ci j is 0.5δi j on a
smooth boundary, and δi j at an internal point. Kelvin’s solutions, namely, u[1]

i j (p,q)
and pi j(p,q), are given by

u[1]
i j (p,q) =

1
8π(1− ν̄)G

[(3−4ν̄)δi j ln(
1
r
)+ r,i r, j ], (22)

pi j(p,q) =
−1

4π(1− ν̄)r
[{(1−2ν̄)δi j +2r,i r, j }

∂ r
∂n
− (1−2ν̄)(r,i n j− r, j ni)], (23)

where ν is Poisson’s ratio and G is the shear modulus and

ν̄ =

{
ν , plane strain
ν/(1+ν), plane stress

The ith component of a unit normal vector is denoted by . Moreover, we set . The
functions ε

[1]
i jk in Eq. (20) are given by

ε
[1]
i jk(p,q) = [(1−2ν̄)(δi jr,k +δikr, j )−δ jkr,i +2r,i r, j r,k ]

−1
8π(1− ν̄)G r

. (24)

2.3 Interpolation of initial stress rate and temperature distribution

Interpolation using boundary integrals is introduced to avoid the domain integral in
Eq. (20). The distribution of the initial stress rate σ̇

[1]
I jk(q) is interpolated using the

integral equation to transform the domain integral into a boundary integral. Then,
the approximation of the initial stress σ̇

[1]
I jk(q) is denoted as σ̇

[1]S
I jk (q) and the new

field σ̇
[2]S
I jk (q) as well as the interior nodal point unknowns σ̇

[3]P
I jk (qm) are introduced

as [Ochiai (2000, 2011, 2003)]

∇
2
σ̇

[1]S
I jk (q) =−σ̇

[2]S
I jk (q), (25)

∇
2
σ̇

[2]S
I jk (q) =−

M

∑
m=1

σ̇
[3]P
I jk (qm)δ (q−qm). (26)

From Eqs.(25) and (26), the following equation can be obtained.

∇
4
σ

[1]S
I jk (q) =

M

∑
m=1

σ
[3]P
I jk δ (q−qm) (27)
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This equation is similar to the equation for the deformation (T 0S
1 ) of a thin plate

with an unknown point load (T 0P
3 ). In this paper, the distribution of initial strain or

stress is assumed to be a 2.5-dimensional free-form surface. In this method, each
component of initial stress rate σ̇

[1]
I jk ( j,k = x,y) is interpolated.

Similarly, the temperature distribution T 0S
1 (q) is interpolated as T S

1 (q)with intro-
ducing the new field T S

2 (q) and a new interior nodal point unknowns T P
3 (qm) which

are governed as

∇
2T S

1 (q) =−T S
2 (q), (28)

∇
2T S

2 (q) =−
M

∑
m=1

T P
3 (qm)δ (q−qm). (29)

2.4 Representation of initial stress rate and temperature distribution by integral
equations

As will be shown in Sect. 2.5, the domain integrals of the initial stress rate and
the temperature field in the integral equation (20) can be converted into boundary
integrals of certain nodal unknowns and the interior nodal point unknowns intro-
duced in Sect. 2.3. Now, we derive the boundary integral equations which must be
solved for computation of the new unknowns. For this purpose, the higher-order
fundamental solutions of the Laplacian operator will be useful

T [ f ](p,q) =
r2( f−1)

2π[(2 f −2)!!]2
Ff (r), Ff (r) = C f − lnr, (30)

with C f +1 =C f +sgn( f ) 1
f or C f +1 =C0 +sgn( f )

f
∑

e=1

1
e , (2 f ) !! = 2 f (2 f −2) · · ·4 ·2

and C0 is an arbitrary constant.

Beside the fundamental solutions also their derivatives will be required. In advance,
we present here all the derivatives which will be needed in this paper

T [ f +1]
,i (p,q) =

r2( f−1)ri

2π[(2 f )!!]2
(2 f Ff +1(r)−1) (31)

T [ f +1]
,i j (p,q) =

r2( f−1)

2π[(2 f )!!]2
{
(2 f Ff +1)δi j +2[2 f ( f −1)Ff −1]r,ir, j

}
(32)

T [ f +1]
,i jk (p,q) =

r2 f−3

2π[(2 f )!!]2
{

2[2 f ( f −1)Ff −1](δikr, j +δ jkr,i +δi jr,k)+
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+4[2 f ( f −1)( f −2)Ff − f 2 +2]r,ir, jr,k
}

(33)

T [ f +2]
,i jkl (p,q)=

r2( f−1)

2π[(2 f +2)!!]2
{

4[2 f ( f 2−1)Ff +1− ( f +1)2 +2](δikr, jr,l +δ jkr,ir,l+

+δi jr,kr,l +δilr, jr,k +δ jlr,ir,k +δklr,ir, j)+

+8( f −1)[2 f ( f 2−1)Ff +1−2 f 2−3 f +1]r,ir, jr,kr,l+

+2[2 f ( f +1)Ff +1−1](δikδ jl +δ jkδil +δi jδkl)
}

(34)

T [ f +2]
,i jklm (p,q)=

r2 f−3

2π[(2 f +2)!!]2
{

8( f −1)[2 f ( f 2−1)Ff +1−2 f 2−3 f +1][(δikr, jr,l+

+δ jkr,ir,l +δi jr,kr,l +δilr, jr,k +δ jlr,ir,k +δklr,ir, j)r,m +(δimr, jr,k+

+δ jmr,ir,k +δkmr,ir, j)r,l +δlmr,ir, jr,k]+

+4[2 f ( f 2−1)Ff +1− ( f +1)2 +2](δikδ jl +δ jkδil +δi jδkl)r,m+

+δik(δ jmr,l +δlmr, j−2r, jr,lr,m)+δ jk(δimr,l +δlmr,i−2r,ir,lr,m)+

+δi j(δkmr,l +δlmr,k−2r,kr,lr,m)+δil(δ jmr,k +δkmr, j−2r, jr,kr,m)+

+δ jl(δimr,k +δkmr,i−2r,ir,kr,m)+δkl(δimr, j +δ jmr,i−2r,ir, jr,m)]+

+16( f −1)[2 f ( f −3)( f 2−1)Ff +1−3 f 3 +3 f 2 +11 f −3]r,ir, jr,kr,lr,m
}

. (35)

Then, it can be seen that

∇
2T [ f +1] = T [ f ], ∇

2T [1] =−δ (p−q). (36)

Making use the kernel functions, one can derive from Eqs. (25) and (26) two bound-
ary integral equations [8-13]

cσ̇
[1]S
I jk (P) =−

2

∑
f =1

(−1) f
∫

Γ

[T [ f ](P,Q)
σ̇

[ f ]S
I jk (Q)

∂n
− ∂T [ f ](P,Q)

∂n
σ̇

[ f ]S
I jk (Q)]dΓ− .

−
M

∑
m=1

T [2](P,qm)σ̇ [3]P
I jk (qm). (37)
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cσ̇
[2]S
I jk (P) =

∫
Γ

[T [1](P,Q)
∂ σ̇

[2]S
I jk (Q)

∂n
− ∂T [1](P,Q)

∂n
σ̇

[2]S
I jk (Q)]dΓ+

+
M

∑
m=1

T [1](P,qm)σ̇ [3]P
I jk (qm). (38)

Supplementing the integral equations (37) and (38) with the integral representation
of initial stress rates σ̇

[1]S
I jk calculated at interior nodes qmiteratively, one can solve

them for unknown σ̇
[2]S
I jk (Q), ∂ σ̇

[2]S
I jk (Q)/∂n(Q) and σ̇

[3]P
I jk (qm). Similarly, from Eqs.

(28) and (29), one can derive the integral equations

cT S
1 (P) =−

2

∑
f =1

(−1) f
∫

Γ

[T [ f ](P,Q)
T S

f (Q)

∂n
− ∂T [ f ](P,Q)

∂n
T S

f (Q)]dΓ−

−
M

∑
m=1

T [2](P,qm)T P
3 (qm), (39)

cT S
2 (P) =

∫
Γ

[T [1](P,Q)
∂T S

2 (Q)
∂n

− ∂T [1](P,Q)
∂n

T S
2 (Q)]dΓ+

M

∑
m=1

T [1](P,qm)T P
3 (qm)

(40)

and supplement them by the integral representation of T S
1 at interior nodes qm.

Bearing in mind the expressions of the kernels T [ f ] and their derivatives given by
Eqs. (30) and (31), one can see that the highest order of the singularity in the
boundary integral equations (37)-(40) is the strong singularity r−1which should be
considered in the CPV sense and can be treated by using various regularization
techniques [Sladek and Sladek (1998)].

2.5 Triple-reciprocity boundary element method

In this section, we derive the thermo-elastoplastic boundary integral equation with-
out domain integrals. Making use the triple-reciprocity interpolations for initial
stress rates as well as for temperature field, the domain integrals in (20) can be
converted into boundary integrals and certain interior points terms. In view of Eqs.
(21), (30) and (31), one can easily verify the following relationships [Ochiai (1995)]

u[1]
i (p,q) =

− mori

8π
(1+2lnr) =

mori

8π
[2(Co +1)−2lnr−1]

∣∣∣
Co=−1

= moT [2]
,i (p,q)

∣∣∣
Co=−1

(41)
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Similarly, from Eqs. (22), (30) and (32), one obtains

u[1]
i j (p,q) =

[
− 1

2G(1− ν̄)
T [2]
,i j (p,q)+

1
G

δi jT [1](p,q)
]∣∣∣∣

Co=Ce
o

, Ce
o =− 1

2(4ν̄−3)

(42)

Since

ε
[1]
i jk(p,q) =

1
2

[
u[1]

i j,k(p,q)+u[1]
ik, j(p,q)

]
(43)

we may write

ε
[1]
i jk(p,q) =

{
− 1

2G(1− ν̄)
T [2]
,i jk(p,q)+

1
G

[
δi jT

[1]
,k (p,q)+δikT [1]

, j (p,q)
]}∣∣∣∣

Co=Ce
o

(44)

Now, generalizing Eqs. (41)-(43), one can define the higher-order kernel functions
as

u[ f ]
i (p,q) = moT [ f +1]

,i (p,q)
∣∣∣
Co=−1

(45)

u[ f ]
i j (p,q) =

[
− 1

2G(1− ν̄)
T [ f +1]
,i j (p,q)+

1
G

δi jT [ f ](p,q)
]∣∣∣∣

Co=Ce
o

(46)

ε
[ f ]
i jk(p,q) ={

− 1
2G(1− ν̄)

T [ f +1]
,i jk (p,q)+

1
G

[
δi jT

[ f ]
,k (p,q)+δikT [ f ]

, j (p,q)
]}∣∣∣∣

Co=Ce
o

. (47)

Hence and from (36), we have immediately

∇
2u[ f +1]

i = u[ f ]
i , ∇

2u[ f +1]
i j = u[ f ]

i j , ∇
2
ε

[ f +1]
i jk = ε

[ f ]
i jk for f ≥ 1 (48)

Let us assume the triple-reciprocity approximations (25), (26) and (28), (29) for the
initial stress rates and the temperature, respectively, in Eq. (20) with denoting these
fields as σ̇

[1]S
I jk (q) and T S

1 (q). Then, in view of Eqs. (40), (25), (26), (28), (29), the
boundary integral equation (20) can be rearranged into the form without domain
integrals

ci ju̇ j(P) =
∫

Γ

[u[1]
i j (P,Q)ṗ j(Q)− pi j(P,Q)u̇ j(Q)] dΓ+
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+
2

∑
f =1

(−1) f +1
∫

Γ

{T S
f (Q)

∂u[ f ]
i (P,Q)
∂n

−
∂T S

f (Q)

∂n
u[ f ]

i (P,Q)}dΓ(Q)+

+
M

∑
m=1

u[2]
i (P,qm)T P

3 (qm)+

+
2

∑
f =1

(−1) f +1
∫

Γ

{
∂ε

[ f +1]
i jk (P,Q)

∂n
σ̇

[ f ]S
I jk (Q)− ε

[ f +1]
i jk (P,Q)

∂ σ̇
[ f ]S
I jk (Q)

∂n
} dΓ+

+
M

∑
m=1

ε
[3]
i jk(P,qm)σ̇ [3]P

I jk (qm). (49)

in which the normal derivatives ∂u[ f ]
i (p,Q)/∂n(Q) and ∂ε

[ f +1]
i jk (p,Q)/∂n(Q) are

given by

∂u[ f ]
i (p,Q)
∂n(Q)

= monk(Q)T [ f +1]
,ik (p,Q)

∣∣∣
Co=−1

(50)

∂ε
[ f +1]
i jk (p,Q)

∂n(Q)
=
{
− nm(Q)

2G(1− ν̄)
T [ f +2]
,i jkm (p,Q)+

+
nm(Q)

G

[
δi jT

[ f +1]
,km (p,Q)+δikT [ f +1]

, jm (p,Q)
]}∣∣∣∣

Co=Ce
o

. (51)

In view of the expressions for the integral kernels involved in the BIE (49), it can be
seen that the highest order singularity is the weak logarithmic singularity integrable
in the ordinary sense.

2.6 Internal stress

In order to complete the set of boundary integral equations (37) and (38) for compu-
tation of unknowns σ̇

[2]S
Ii j (Q), ∂ σ̇

[2]S
Ii j (Q)/∂n(Q), σ̇

[3]P
Ii j (qm), we derive the integral

representation of the stress rate at interior nodes qm. The stress rates can be ob-
tained from the displacement rates by

σ̇i j =
2ν̄G

(1−2ν̄)
δi ju̇k,k +G(u̇i, j +u̇ j,i ) = ci jml u̇m,l, (52)

where

ci jml =
2ν̄G

(1−2ν̄)
δi jδml +G(δimδ jl +δilδ jm). (53)
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Thus, in view of Eqs.(20) and (51), the integral representation of the stress rates at
interior points becomes

σ̇i j(p) =
∫

Γ

[−σ
[1]
ki j(p,Q)ṗk(Q)−Ski j(p,Q)u̇k(Q)] dΓ+

∫
Ω

T (q)∇2
σ

T [1]
i j (p,q)dΩ+

+
∫

Ω

ε
[1]
i jks(p,q)σ̇ [1]

Iks(q)dΩ− σ̇
[1]
Ii j (p) (54)

where the kernels, σ
[1]
i jk(p,Q), Ski j(p,Q), ε

[1]
i jks(p,q) and σ

T [1]
i j (p,q) in Eq.(54) are

given by

σ
[1]
ki j(p,Q) = ci jmlu

[1]
mk,l(p,Q) =

−1
4π (1− ν̄) r

[(1−2ν̄)(δ jkr,i +δikr, j−δi jr,k )+2r,i r, j r,k ], (55)

Ski j(p,Q) = ci jmlcktsvnt(Q)u[1]
sm,vl(p,Q) =

2G
4π(1− ν̄)r2

{
2

∂ r
∂n

[(1−2ν̄)δi jr,k +

+ ν̄(δikr, j +δ jkr,i )−4r,i r, j r,k
]
+2ν̄(nir, j r,k +nir,i r,k )+

+(1−2ν̄)(2nkr,i r, j +n jδik +niδ jk)−(1−4ν̄)nkδi j
}

, (56)

ε
[1]
i jks(p,q) =−ci jmlε

[1]
mks,l(p,q) =−ci jml

1
2

[
u[1]

mk,sl(p,q)+u[1]
ms,kl(p,q)

]
=

=
1

4π(1− ν̄)r2

[
(1−2ν̄)(δikδ js +δ jkδis−δi jδks +2δi jr,k r,s ) +

+2ν̄(δsir,k r, j +δ jkr,i r,s +δikr,s r, j +δ jsr,k r,i )−8r,i r, j r,k r,s +2δklr,i r, j ]. (57)

σ
T [1]
i j (p,q) =−ci jmlu

[1]
m,l(p,q). (58)

Introducing the kernels

σ
T [ f ]
i j (p,q) =−ci jmlu

[ f ]
m,l(p,q), ε

[ f ]
i jks(p,q) =−ci jmlε

[ f ]
mks,l(p,q), (59)

one can rewrite them, in view of Eqs. (45) and (47), as

σ
T [ f ]
i j (p,q) =−2Gmo

{
T [ f +1]
,i j (p,q)+

ν̄

1−2ν̄
δi jT [ f ](p,q)

}
(60)

with Co =−1.
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ε
[ f ]
i jks(p,q) =

1
1− ν̄

T [ f +1]
,iks j (p,q)+

ν̄(4ν̄−3)
(1− ν̄)(1−2ν̄)

δi jT
[ f ]
,ks (p,q)−δisT

[ f ]
,k j (p,q)−

−δ jkT [ f ]
,si (p,q)−δ jsT

[ f ]
,ki (p,q) (61)

with Co = Ce
o.

In view of Eqs. (32), (60) and (61), one can see that

∇
2
σ

T [ f +1]
i j = σ

T [ f ]
i j , ∇

2
ε

[ f +1]
i jks = ε

[ f ]
i jks (62)

for f ≥ 1.

According to the assumption of the triple-reciprocity approximation for the initial
stress rates and the temperature, we denote these fields in Eq. (54) as σ̇

[1]S
Ii j (q) and

T S
1 (q). Then, bearing in mind Eqs. (25), (26), (28), (29) and (62), the integral

representation (54) can be transformed into the form without domain integrals

σ̇i j (p) =
∫

Γ

[−σ
[1]
ki j(p,Q)ṗk(Q)−Ski ju̇k(Q)] dΓ+

+
2

∑
f =1

(−1) f +1
∫

Γ

{T S
f (Q)

∂σ
T [ f ]
i j (p,Q)
∂n(Q)

−
∂T S

f (Q)

∂n(Q)
σ

T [ f ]
i j (p,Q)}dΓ(Q)+

+
M

∑
m=1

σ
T [2]
i j (P,qm)T P

3 (qm)+

+
2

∑
f =1

(−1) f +1
∫

Γ

[
∂ε

[ f +1]
i jks (p,Q)

∂n(Q)
σ̇

[ f ]S
Iks (Q)− ε

[ f +1]
i jks (p,Q)

∂ σ̇
[ f ]S
Iks (Q)

∂n(Q)
] dΓ+

+
M

∑
m=1

ε
[3]
i jks(p,qm)σ̇ [3]P

I ks (qm)− σ̇
[1]
Ii j (p), (63)

where the normal derivative of the kernels σ
T [ f ]
i j (p,Q) and ε

[ f +1]
i jks (p,Q) are given as

∂σ
T [ f ]
i j (p,Q)
∂n(Q)

=−2Gmonk(Q)
{

T [ f +1]
,i jk (p,Q)+

ν̄

1−2ν̄
δi jT

[ f ]
,k (p,Q)

}
(64)

with Co =−1.

∂ε
[ f +1]
i jks (p,Q)

∂n(Q)
= nl(Q)

{
1

1− ν̄
T [ f +2]
,iks jl (p,Q)+

ν̄(4ν̄−3)
(1− ν̄)(1−2ν̄)

δi jT
[ f +1]
,ksl (p,Q)−
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−δisT
[ f +1]
,k jl (p,Q)−δ jkT [ f +1]

,sil (p,Q)−δ jsT
[ f +1]
,kil (p,Q)

}
(65)

with Co = Ce
o.

Since the integral representation (63) is considered only at interior points, there
are no singular integral. Nevertheless, there are involved nearly singular integrals
with kernels proportional to r−1. If the distance of the interior points in compara-
ble with the size of boundary elements, such boundary integrals can be computed
sufficiently accurately without using any special techniques [Sladek and Sladek
(1998)].

An iterative process is used for thermo-elastoplastic analysis. The temperature load
at the first yield TS is obtained. Denoting the final temperature load as TO and
the number of iterations as N, the incremental load (TO−TS)/N is added in each
iteration.

3 Numerical examples

To verify the accuracy of the present method, the unsteady thermal stress in a cir-
cular region, made of an elastoplastic material, that is subjected to thermal loading
is obtained. The temperature is 500 ◦C at the outer surface. Thermal diffusivity
of κ = 16mm2/s and relative heat conduction of h = 0.2mm−1 are assumed. The
outer diameter is 20 mm. The von Mises yield criterion is used. Young’s modulus
of E =210 GPa, Poisson’s ratio of ν = 0.3, thermal expansion of α = 0.000011,
yield stress of σ0 = 100MPa and strain hardening of H = 0.1E are assumed. The
numbers of discretized boundary elements and internal points are 144 and 193, re-
spectively, as shown in Fig. 1. Internal points are used to interpolate the distribution
of initial stress. Constant boundary elements are used. Figure 2 shows the temper-
ature distributions at times t = 0.3s and 0.5s along with the exact solution. A plane
stress state is assumed. Figure 3 shows the circumferential and radial stress distri-
butions at time t = 0.3s. Figure 4 show the equivalent strain distributions at time
t = 0.3s. BEM results are shown with FEM solutions in Figs. 3 and 4. The stress
and strain distributions agree well with the FEM solutions [Nakasone (2007)].

The next numerical example is the unsteady thermal stress in a circular region with
a circular hole made of an elastoplastic material which is subjected to thermal load-
ing. A temperatures T =500 ◦C at the inner surface and relative heat conduction
of h = 0.1mm−1 at the inner surface are assumed. The temperature at the outer
surface is 0 ◦C. The inner diameter is 20 mm and the outer diameter is 60 mm. The
von Mises yield criterion is used. Young’s modulus of E =210 GPa, Poisson’s ratio
of ν = 0.3, thermal expansion of α = 0.000011 and yield stress of σ0 = 100MPa
is assumed. The numbers of discretized boundary elements and internal points are
216 and 324, respectively, as shown in Fig. 5. Internal points are used to inter-
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Figure 1: Circular region Figure 2: Temperature distribution in a
circular region

Figure 3: Thermal stress distribution
(plane stress)

Figure 4: Equivalent plastic strain
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Figure 5: Circular cylinder Figure 6: Thermal stress distribution
(plane stress)

Figure 7: Temperature distribution in a
circular region

Figure 8: Thermal stress distribution
with heat generation (plane stress)
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polate the distribution of initial stress. Constant boundary elements are used. A
plane stress state is assumed. Figure 6 shows the circumferential and radial stress
distributions at time t = 1.5s. BEM results are shown with FEM solutions in Fig.
6. The stress distributions agree well with the FEM solutions.

The next example is the unsteady thermal stress in the circular region shown in
Fig. 1 with heat generation of W/λ = 10◦Cmm−2. The temperatures is 0 ◦C at
the outer surface and the outer diameter is 20 mm. The von Mises yield criterion
is used. The thermal diffusivity of κ = 16mm2/s, Young’s modulus of E =210
GPa, Poisson’s ratio of ν = 0.3, thermal expansion of α = 0.000011, yield stress
of σ0 = 150MPa and strain hardening of H = 0.1E are assumed. The numbers of
discretized boundary elements and internal points are 144 and 193, respectively, as
in Fig. 1. Figure 7 shows the temperature distribution at time t = 2.5s along with the
exact solution. A plane stress state is assumed. Figure 8 shows the circumferential
and radial stress distributions. BEM results are shown with FEM solutions in Fig.
8. The stress distributions agree well with the FEM solutions.

4 Conclusion

It was shown that two-dimensional thermo-elastoplastic analysis can be carried out
in the case of unsteady thermal stress without the use of internal cells, using the
triple-reciprocity BEM. The integral kernels involved in the initial stress formula-
tions have been expressed in terms of the higher-order fundamental solutions T [ f ]

and their derivatives. In this method, the highest order of singularities does not ex-
ceed that in the conventional BEM. In this formulation, a time-dependent solution
is not used to obtain the unsteady thermal stress. Using numerical examples, the
effectiveness and accuracy of this method were demonstrated. In this method, the
merit of BEM, which is the ease of data preparation, is not lost because internal
cells are not necessary.
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