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Control Volume-Radial Basis Function Solution of 2D
Driven Cavity Flow in Terms of the Velocity Vorticity

Formulation
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Abstract: The two-dimensional Navier Stokes system of equations for incom-
pressible flows is solved in the velocity vorticity formulation by means of the Con-
trol Volume-Radial Basis Function (CV-RBF) method. This method is an improve-
ment to the Control Volume Method (CVM) based on the use of Radial Basis Func-
tion (RBF) Hermite interpolation instead of the classical polynomial functions. The
main advantages of the CV-RBF method are the approximation order, the meshless
nature of the interpolation scheme and the presence of the PDE operator in the in-
terpolation. Besides, the vorticity boundary values are computed in terms of the
values of the velocity field at the neighbouring nodal points according to its def-
inition by applying the curl operator to the local velocity interpolation function.
Several interpolation strategies are tested for both the velocity and vorticity fields.
A Newton type algorithm is implemented to solve the coupled system of non lin-
ear equations. As test example, the proposed numerical scheme is used to solve
the lid driven cavity flow problem up to Re = 5000, where high Reynolds number
solutions are achieved by using a Conservative and Hermitian interpolation for the
velocity field.

Keywords: Local Hermite interpolation, Radial Basis Function, velocity vortic-
ity, Control Volume Method.

1 Introduction

Several strategies have been implemented to lower the truncation error of the ap-
proximations used for interpolating the convective and diffusive fluxes in the Con-
trol Volume Method (CVM) discretization [Ye, Mittal, Udaykumar, and Shyy (1999);
Vidovic, Segal, and Wesseling (2004); Perron, Boivin, and Herard (2004)]. Con-
ventional CVM interpolation schemes present difficulties when they are applied
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on domains with curved borders due to its inherent dependency on mesh config-
uration. Regarding high order approximations for convective fluxes in complex
geometries, Abgrall (1994) studies flux reconstruction on very irregular unstruc-
tured meshes by two-dimensional polynomial functions in hyperbolic equations.
With the same aim Jayantha and Turner (2005) use Least Squares Reconstruction
Technique (LSRT), while Truscott and Turner (2004) and Manzini and Putti (2007)
resort to Gauss-Green Gradient Reconstruction Technique (GGRT) for computing
the diffusive fluxes and LSRT approximation for convective ones. In order to main-
tain adequate processing times and to reduce dependency on mesh, other strategies
need to be implemented and tested.
One possible alternative to improve the accuracy of the evaluation of surface fluxes
is the use of radial basis function (RBF) interpolations. In the literature, the RBF
interpolation method is considered as an optimal numerical technique for interpo-
lating multidimensional scattered data. Although most work done so far on RBF re-
lates to scattered data approximation and, in general, to interpolation theory. There
has recently been an increased interest in the use of RBF as the base of meshless
collocation approaches for solving partial differential equations (PDEs). The use
of RBF interpolation technique has become the foundation of the RBF Meshless
Collocation Methods for the solution of Partial Differential Equations, since the
pioneer work on the unsymmetric method by Kansa (1990). Kansa’s approach is
based on an intrinsic relationship between the interpolation scheme and the differ-
ential equations to be solved [Kansa and Hon (2000)]. Instead of using a direct
interpolation scheme, as in the unsymmetric approach, Fasshauer (1997) proposed
the symmetric approach based on a Hermite interpolation, where the RBFs besides
interpolating a given function can also approximate or reconstruct its spatial deriva-
tives, resulting in better accuracy than the unsymmetric method. LaRocca, Hernan-
dez, and Power (2005) use the symmetric scheme to solve the convection diffusion
equation, and LaRocca and Power (2008) implement a double collocation strategy
in the symmetric scheme to improve the numerical solution towards the boundary,
where at the boundary collocation points beside imposing the boundary condition
the governing equation (PDE) is also satisfied.
Although full-domain RBF methods are highly flexible and exhibit high order con-
vergence rates [Madych and Nelson (1990)], the fully-populated matrix systems
they produce lead to poor numerical conditioning as the size of the data-set in-
creases. This problem is described by Schaback (1995) as the uncertainty relation;
better conditioning is associated with worse accuracy, and worse conditioning is
associated with improved accuracy. As the system size is increased, this prob-
lem becomes more pronounced. Many techniques have been developed to reduce
the effect of the uncertainty relation, such as RBF-specific preconditioners [Brown
(2005)], and adaptive selection of data centres [Ling and Schaback (2004)]. How-
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ever, at present the only reliable method of controlling numerical ill-conditioning
and computational cost as problem size increases is through domain decomposition
(see, for example, Lee, Liu, and Fan (2003); Sarler and Vertnik (2006); Divo and
Kassab (2006), and Wright and Fornberg (2006)).
The idea of introducing RBF interpolation to improve the accuracy of a classical
numerical scheme has been recently employed by Wright and Fornberg (2006). In
this work the authors utilize a Hermitian RBF interpolation to remove the symme-
try constraint required to achieve high order approximation in the FD scheme. In
the context of the CV unstructured mesh approach, Moroney and Turner (2006)
and (2007) improved Liu, Turner, and Anh (2002) CV approach which uses FE
polynomial shape functions, for 2D and 3D problems respectively. Moroney and
Tuner’s approach relies on a local RBF interpolation of the field variable, instead of
the FE polynomials functions, where the CV centres of the considered stencil act as
trail points. In particular, Moroney and Tuner consider the ability of their CV-RBF
scheme to achieve high accuracy on relatively coarse meshes due to the high ac-
curacy of the RBF interpolation to evaluate derivatives [Madych (1992); Fornberg
and Flyer (2005)] and thus guaranty a high order approximation of the diffusive
flux. Moroney and Tuner validated their new approach by solving different scalar
transport problems, observing significant in the improvement the estimation of the
diffusion fluxes.
Following Moroney and Turner (2007) and (2006) ideas, Orsini, Power, and Mo-
rovan (2008) also used RBF interpolations to improve the accuracy of classical CV
schemes. Their method is based on a local RBF interpolation of the field variable
at the control volume cell centres, as in the case of Moroney and Turner CV-RBF
approach, but in their approach they also require that the local interpolation satisfies
the governing equation at a set of auxiliary interpolation points and the boundary
conditions at local interpolation systems containing boundary points, i.e. the used
interpolation functions are also approximation of the governing equation found by
the use of a local RBF meshless collocation scheme with the boundary conditions
directly imposed at the local level. Both the unsymmetric and symmetric RBF
meshless approaches were used and their results compared.
Several scalar convective-diffusion problems were considered by Orsini, Power,
and Morovan (2008) to test the proposed CV-RBF approach, showing the corre-
sponding improvement on the estimation of convective and diffusion fluxes. In
their implementation they use central defined interpolation stencils without the need
of any upwinding scheme, since their approach provides a form of analytical up-
winding given by the interpolation coefficients, found by the solution of the local
boundary value problem, which retain the desired information about the convective
velocity field (for more details about the stability of this type of CV-RBF approach
see Orsini, Power, Morvan, and Lees (2010)).
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In this type of CV-RBF approach, at the local interpolation the RBF strong form
formulation is used while the CV weak form is employed to solve the global prob-
lem. In this way, the best features of the two approaches are used, avoiding the
ill-conditioning issues of the global RBF meshless approach for large number of
trial and collocation points. Besides, the use of localised RBF for reconstruction
step in CV resolves the ill-conditioning issues encountered in Abgrall (1994) and
Dumbser and Kaser (2007) for the computation of the polynomial coefficients. In
fact, choosing the RBF type appropriately and limiting the number of collocation
points used lead to an interpolation that is well posed in all dimensions.
In this work, the CV-RBF approach proposed by Orsini, Power, and Morovan
(2008) is implemented to solve 2D Navier-Stokes flow problems in terms of its
velocity-vorticity formulation, with application to driven cavity flow. The main
difficulty encountered in the present case is the solution at the local level of the
system of coupling nonlinear PDEs, to define the required interpolation functions.
For this reason, we consider several alternatives for the local interpolations, which
are tested and compared.
The velocity-vorticity formulation is used to avoid the problem of the pressure-
velocity coupling in incompressible fluid flow. In this type of formulation, the
flow kinetics is determined by a convective-diffusion PDE for the vorticity com-
ponent while flow kinematics is defined by a Poisson PDE equation coupling the
velocity and vorticity fields. In order to solve the kinetics equation, the bound-
ary vorticity values must be known [Skerget and Rek (1995); Young, Liu, and El-
dho (2000); Hribersek and Skerget (2005); Zunic, Hribersek, Skerget, and Ravnik
(2007)]. Therefore, the kinematics and kinetics are solved sequentially. Qian and
Vezza (2001) consider vorticity generation through the domain boundaries in the
unsteady situation. The velocity vorticity formulation can be solved in a coupled
way by linking the boundary vorticity values with the velocity nodal values. Lo,
L.Young, and Tsai (2007) generate a coupled system of equations by employing
the Differential Quadrature (DQ) method for spatial discretization.
Several numerical techniques have been reported in the literature to solve vis-
cous flow problems in terms of their velocity-vorticity formulation (see for ex-
ample, Skerget and Rek (1995) where a BEM is used, Huang and Li (1997) a
FDM and Young, Liu, and Eldho (2000) a FEM-BEM coupled scheme). More
recently, Hribersek and Skerget (2005) deal with complex geometry situations by
the Boundary Domain Integral Method (BDIM) for high Reynolds numbers. Zunic,
Hribersek, Skerget, and Ravnik (2007) use the scheme implemented by Young, Liu,
and Eldho (2000) for three-dimensional domains. With a similar formulation Pas-
cazio and Napolitano (1996) solve the Navier Stokes equations for transient flow in
staggered grids, where velocities are known at the volume faces and the vorticities
at the nodes. Qian and Vezza (2001) apply CVM to solve the kinetics equation and
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the Bio-Savart Law to compute velocities in an iterative time marching algorithm.
They also used an additional scheme to compute vorticity values at boundaries.
Among others, these are some examples of previously works published in the liter-
ature using the velocity-vorticity formulation.
In this paper the vorticity transport (kinetics) and Kinematics Poisson equations are
solved using the Newton Raphson method. In the first part of this paper the velocity
vorticity formulation is presented, then the CVM discretization are described and
the different possibilities for the velocity and vorticity interpolation are explained.
Afterwards the discretized CV-RBF expressions for the Navier Stokes equations
are obtained and the developed algorithm to solve the coupled Navier Stokes sys-
tem, in terms of its velocity-vorticity formulation, is detailed. Finally the results for
lid-driven cavity flow at Re = 100,400 and 1000 are considered, where the differ-
ent interpolation strategies are tested. The best interpolation strategy is then used
to solve the problem up to Re = 5000. The Re = 5000 is a good test case, since the
steady state solution still stable but not too far from the first Hopf bifurcation (for
more details see Bruneau and Saad (2006)). All the obtained numerical results are
compared with benchmark solutions previously reported in the literature, showing
excellent comparison even with the use of relative coarse meshes.

2 Velocity vorticity formulation

The incompressible velocity vorticity formulation is found by applying the curl op-
erator to the Navier Stokes system of equations in terms of the primitive variables.
Substituting the definition of the vorticity field as the curl of the velocity field, Eq.
(1), into the resulting equation a transport equation for the vorticity field is ob-
tained (see Skerget and Rek (1995)). Equations (2) and (3), given below, express
the vorticity transport (kinetics) and the mass conservation equations for steady
state two-dimensional flows, in terms of a dimensionless vorticity component in x3
direction ω and a dimensionless velocity field ui with i = 1,2, where Re and e3i j

are the Reynolds number and the component in the k = 3 direction of the pseudo
scalar constant, respectively.

ω = e3i j
∂ui

∂x j
(1)

∂ 2ω

∂x j∂x j
−Re u j

∂ω

∂x j
= 0 (2)

∂ui

∂xi
= 0 (3)
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Applying the curl operator to vorticity definition (1) and considering the mass con-
servation constraint (3), the following Poisson equation for the velocity field is
found, (4).

∂ 2ui

∂x j∂x j
+ e3i j

∂ω

∂x j
= 0 (4)

Equations (2) and (4) represent the kinetic and kinematic counterparts of the orig-
inal Navier-Stokes system and define the system of equations to be solved in our
formulation. In the present work, we are only considering boundary conditions of
the Dirichlet type, i.e. given boundary velocity (5). However, our formulation can
be easy extended to other types of boundary conditions.

ui = ci(~x) (5)

In the present case, it is not necessary to know the values of the boundary vorticity
beforehand, since they can be computed from the definition (1) and expressed in
terms of the unknown internal and the prescribed boundary velocity values.

3 Control Volume-Radial Basis Function Method (CV-RBF)

The CV-RBF approach differs from classical CVM in the way that the flux at the
cell surfaces is computed. A local RBF interpolation of the field variable is per-
formed at the cell centres that define a local stencil used to obtain the shape function
at the integration cell, from which the fluxes are determined. In addition, it is re-
quired that such interpolation satisfies the governing equations (PDEs) in a certain
number of points inside the considered stencil. In this way, the local interpolating
function is given by an approximated solution of the original PDEs. To find the
solution to the local problems, both the unsymmetric (Kansa’s method) and sym-
metric (Hermitian method) RBF approaches can be used. Besides, by using the
RBF interpolation scheme it is guaranteed high order accuracy in the approxima-
tion of derivatives [Fornberg and Flyer (2005)]. In the following section, the system
of equations is discretized according to the traditional CVM approach. Afterwards
the different strategies to apply the RBF interpolation are explained and the final
discrete expressions of the CV-RBF method are presented.

3.1 CVM discretization

The system of equations (2) and (4) is expressed as (6) and (7) after integrating over
a control volume V and applying Gauss’ Theorem. The surface S is the boundary
of V and~n the unit outward normal vector.∫

S

∂ω

∂x j
n jdS−

∫
S

Re ωu jn jdS = 0 (6)
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∫
S

∂ui

∂x j
n jdS +

∫
S

ωe3i jn jdS = 0 (7)

In two-dimensional, the control volume is consider as a polygon of Ns sides, and
the surface S is the total length by the polygon sides. Hence, each surface integral
in the above equations can be expressed as the sum of integrals over each side. To
get the final expressions a numerical scheme must be applied to approximate the
surface integrals. For simplicity, the mid-value integral approach is used to obtain
the discrete equations (8) and (9).

Ns

∑
l=1

(
∂ω

∂x j
n j∆Sl

)
~x=~xl

−
Ns

∑
l=1

(Re ωu jn j∆Sl)~x=~xl
= 0 (8)

Ns

∑
l=1

(
∂ui

∂x j
n j∆Sl

)
~x=~xl

+
Ns

∑
l=1

(ωe3i jn j∆Sl)~x=~xl
= 0 (9)

To find the final discrete system of equations, it is required to approximate the
values of the field variables and their directional derivatives at the CV face centre
points in terms of the cell nodes field values, where the cell nodes are located at the
control volumes geometric centre.

3.2 RBF Hermitian interpolation scheme

The RBFs only depend on the Euclidean distance between a subset of trial centres
~ξ j and a field point~x (collocation point). There are several types of RBFs that can
be used in the interpolation [LaRocca, Hernandez, and Power (2005)], in this work
the Multiquadric function (MQ) defined by (10) is used.

Ψ(r) =
(
r2 + c2)m/2

(10)

where r = |~x−~ξ j| is the Euclidean distance between a collocation point, ~x, and a
trial point,~ξ j, and m is an integer number. The MQ function has a free shape param-
eter c which controls the shape of the interpolation surface around the field point.
When c decreases the interpolation surface tends to the shape of a cone basis func-
tion, while as it increases the cone peak gradually flattens. Currently, the strategies
to find the optimal c is a topic of active research. However, some simple strategies
can help in its selection [Huang, Lee, and Cheng (2007)]. Besides, the MQ is a
conditionally positive definite function of order m, which require the addition of a
polynomial term of order m−1 together with a homogeneous constraint condition
in order to obtain an invertible interpolation matrix. It is also well known, that
exponentially convergence can be achieved by a MQ direct interpolation algorithm
(for more details see Madych and Nelson (1990)).
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Let consider a given boundary value problem expressed by the linear partial dif-
ferential operators L and B, which are apply to a field variable φ in the domain,
equation (11), and on the boundary, equation (12), respectively.

L[φ(~x)] = f (~x) (11)

B[φ(~x)] = g(~x) (12)

According to the Hermitian interpolation scheme (Symmetric method [Jumarhon,
Amini, and Chen (2000)]), the solution φ of the above boundary value problem
can be expressed as in (13), where n is the number of boundary points, N− n is
the number of internal collocation centres and the operator subindex ξ refers to the
derivative variable.

φ(~x) =
n

∑
j=1

α jBξ [Ψ(‖~x−~ξ j‖)]+
N

∑
j=n+1

α jLξ [Ψ(‖~x−~ξ j‖)]+
NP

∑
j=1

α j+NP j
m−1(~x) (13)

By substituting the approximated function φ into the governing equation (11),
(PDE), and the boundary conditions (12), and evaluating them at the N−n internal
points and n boundary points, respectively, the following linear algebraic system of
equations, (14), is obtained: BxBξ [Ψ] BxLξ [Ψ] Bx[Pm−1]

LxBξ [Ψ] LxLξ [Ψ] Lx[Pm−1]
Bx[PT

m−1] Lx[PT
m−1] 0

( α
)

=

 g(~x)
f (~x)
0

 (14)

The resulting interpolation matrix is non-singular, as long as linearly dependent op-
erators are collocated at different locations, [Orsini, Power, and Morovan (2008)].
Besides, the obtained interpolation matrix is symmetric. A notorious feature of
the Hermite interpolation scheme is that the resulting interpolation coefficients α

contains information about the PDE operator, that defines the physical phenomena
(more details about the Symmetric method can be found in LaRocca and Power
(2008)).

3.3 CV-RBF discretization

Unlike in the global RBF meshless numerical scheme [LaRocca, Hernandez, and
Power (2005)], in the CV-RBF method a local RBF interpolation is implemented at
a small subdomain (interpolation stencil) placed on each computational cell (con-
trol volume), including their neighbouring cells. There are many possibilities to
define the stencil configuration in relation to the grid used. Orsini, Power, and
Morovan (2008) tested two different configurations for the CV-RBF solution of
convection-diffusion problems; the one stencil one cell (Figure 1 a.), where each
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a. b.

Figure 1: Stencil configurations: a. One stencil one cell, b. One stencil one face

subdomain is made of each control volume and its neighbours, and the one stencil
one face (Figure 1 b.), in which a subdomain is defined for each cell face. More
accurate results were obtained with the use of the first configuration. In the present
work, the one stencil one cell configuration is chosen as the interpolation stencil.
As shown in Figure 1, three types of trial and test points (in this case located at
the same places) are used. They are group in p nodal points (•), the centre of CVs
included in the stencil where the unknown field variable is interpolated, n boundary
locations (◦), in the case when the interpolation stencil include the problem bound-
ary where the boundary condition is to be satisfied, and N−n− p PDE points (×),
where the PDE is satisfied by the Hermite interpolation. Once the stencil configu-
ration is set, an interpolation function is defined.

In the present case of incompressible two-dimensional stationary viscous fluid flow
problem, the following set of linear partial differential operators can be defined.

Lx() =
∂ 2()

∂x j∂x j
(15)

Mx() =
∂ 2()

∂x j∂x j
−Re u∗j

∂ ()
∂x j

(16)

Dx j() =
∂ ()
∂x j

(17)

The PDE linear operators Lx, Mx and Dxi in expressions (15),(16) and (17) are
obtained from the kinematics (4), kinetics (2), and continuity (3) equations, respec-
tively, where the Mx operator is a linearized form of the vorticity equation (2) with
the value of the velocity field~u∗ approximated by its value at the previous iteration.
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In this way, at the local level the following linearized PDEs are defined:

Lx(ui) = e3i j
∂ω

∂x j
(18)

Mx(ω) = 0 (19)

Dx j(ui) = 0, (20)

to be used in the local Hermite interpolation at each stencil.

In (18), the value of directional derivatives of the vorticity ω is defined by the
derivatives of the vorticity interpolation function and given in terms of the local
values of the vorticity at the stencil interpolation nodes. At those stencils having
boundary points, the boundary operator Bx() = () is defined by the velocity or
vorticity boundary value according to the corresponding governing equation. The
implementation of these two types of boundary conditions is described in details in
the next paragraphs.

Two variables need to be represented in terms of a RBF interpolation in the above
local formulation. With the aim of looking at the best interpolation scheme, a com-
bination of four strategies for the velocity and two for the vorticity are developed
and tested.

The first case is a simple interpolation (SI), in which the dependent variable is
approximated by a direct RBF interpolation with collocation at the nodal centres
and boundary points, i.e. no PDE operators are used neither in the interpolation
formula nor in the collocation process.

θ(~x) =
p

∑
j=1

α jΨ(‖~x−~ξ j‖)+
n

∑
p+1

α jBξ [Ψ(‖~x−~ξ j‖)]+
NP

∑
N+1

α jP
j

m−1 (21)

p

∑
j=1

α jPk
m−1(x j)+

p+n

∑
j=p+1

α jBx[Pk
m−1(x j)] = 0 k = 1,2, · · · ,NP (22)

In (21), the approximated variable θ can be the velocity components or the vorticity
and Ψ is the RBF related to each variable. In this case the boundary operator Bx is
the unit operator for both the velocity and vorticity components, where the vorticity
boundary values are defined in terms of the unknown and prescribed velocity values
at the interpolation stencil, by taking the curl of the velocity interpolation function
and reconstructing its value at the boundary points.

The interpolation matrix system (23) is obtained by evaluating the RBF approxi-
mation (21) at each collocation point of the stencil considered, i.e. the nodal and
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boundary points, together with the homogeneous constraint condition for the poly-
nomial term (22), resulting in a symmetric matrix system.

 Ψ Bξ [Ψ] Pm−1
Bx[Ψ] BxBξ [Ψ] Bx[Pm−1]
PT

m−1 Bx[PT
m−1] 0

( αi
)

=

 (θ̄)cells
g(~x)

0

 (23)

For the velocity interpolation, θ = ui, [g(~x)] = [ci(~x)] and the system of equations
is written as [Ai][α(i)] = [Bi]. In case of the vorticity interpolation θ = ω , [g(x)] =

[e3i j
∂u j
∂xi

] and the resultant system of equation is expressed as [C][β ] = [D]. As
before, in this case the directional derivative of the velocity field in the [g(x)] vector
term of the vorticity interpolation are defined in terms of the unknown velocity
values by taking the curl of the velocity interpolation function and reconstructing
its value at the nodal points.

A second alternative is to use the RBF Hermitian interpolation (HI) proposed by
Orsini et al. for their CV-RBF scheme, [Orsini, Power, and Morovan (2008)]. The
HI approximation is applied to the dependent variable by using the expression (24),
which includes the PDE centres and the PDE operator Nx. For the velocity com-
ponents the operator Nx ≡ Lx while for the vorticity interpolation Nx ≡ Mx. The
Mx operator implies a double iteration strategy that will be discussed in the next
section, given that a linear approximation is used at the local level.

θ(~x) =
p

∑
j=1

α jΨ(‖~x−~ξ j‖)+
n

∑
j=p+1

α jBξ [Ψ(‖~x−~ξ j‖)]

+
N−p−n

∑
j=p+n+1

α j(i)Nξ [Ψi(‖~x−~ξ j‖)]+
NP

∑
j=N+1

α jP
j

m−1 (24)

After collocation at the nodal, boundary and PDE centres, and completing the re-
sulting matrix system with the corresponding homogeneous constraint condition,
the following linear system of equations is obtained:


Ψ Bξ [Ψ] Nξ [Ψ] Pm−1

Bx[Ψ] BxBξ [Ψ] BxNξ [Ψ] Bx[Pm−1]
Nx[Ψ] NxBξ [Ψ] NxNξ [Ψ] Nx[Pm−1]
PT

m−1 Bx[PT
m−1] Nx[PT

m−1] 0

( α
)

=


(θ̄)cells

g(~x)
f (~x)
0

 (25)

Like in the SI scheme, the resultant system is written as [Ai][α(i)] = [Bi] for the ve-
locity components and [C][β ] = [D] for the vorticity. According to equations (18)
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and (19), the free term in the RHS column vector corresponding to the PDE cen-
tres, is given by [ f (~x)] = [−e3i j

∂ω

∂x j
] for the velocity, which is defined in terms of the

nodal values of the vorticity field according to the used interpolation scheme, and
[ f (~x)] = [0] for the vorticity. If in (24) and (25) the boundary and PDE operators,
i.e. Bξ and Nξ respectively, are defined by the identity operator, the above scheme
reduces to the un-symmetric or Kansa’s method [Kansa (1990)]. As can be ob-
served from the used interpolation scheme, the obtained interpolation coefficients
for the velocity and vorticity are function of both the velocity and vorticity stencil
nodal values, strongly coupling both variables.

The continuity equation is not explicit imposed in the velocity-vorticity formula-
tion, which is based on a Poisson like expression for kinematics, consequently it
is not possible to guarantee that mass conservation can be satisfied in the whole
domain [Dworkin, Bennett, and Smooke (2006)]. As an alternative, the conserva-
tive interpolation (CI) proposed by Florez and Power (2002) is implemented for the
velocity approximation as the third option. According to the CI interpolation, the
velocity approximation is defined by the expression (26).

ui(~x) =
p

∑
j=1

α j(i)Ψ(‖~x−~ξ j‖)+
n

∑
j=p+1

β j(i)Bξ [Ψ(‖~x−~ξ j‖)]

+
N+n

∑
j=p+n+1

γ jDξi [Ψ(‖~x−~ξ j‖)]+
NP+N+n

∑
j=N+n+1

ζ j(i)P
j

m−1 (26)

Besides collocating the velocity values at nodal and boundary centres, the con-
tinuity operator is also applied at the boundary and PDE nodes, imposing there
the mass conservation equation. After coupling the interpolation matrices for the
velocity components according with the mass conservation equation, i.e. divergent
free for incompressible flow, the system of equations (27), [A][α] = [B], is obtained.
In this way, the interpolation coefficients for each velocity component are given in
terms of the unknown velocity values at the nodal centres, i.e. CV centres.

The fourth interpolation option, which applies only for the velocity approximation,
is a combination between the Conservative and Hermitian interpolation (CHI). A
coupled interpolation matrix is obtained in a similar way of equation (27), now
considering the L differential operator both in the approximation function and the
collocation process. As in the CI case, the interpolation coefficients will be ob-
tained in terms of both velocity components.

Regardless of the option, the interpolation coefficients are given in terms of the
respective field variables which are listed in the vectors ω̄cells and (ūi)cells. After
inverting the interpolation matrices Ai (or A in the CI and CHI cases) and C the
velocity, the vorticity and their derivatives can be found in any location of the stencil



Control Volume-Radial Basis Function Solution 115

in terms of the velocity and vorticity values at the stencil nodes.
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ū2cells
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0
0


(27)

According to expressions (8) and (9), the velocity and vorticity fields as well as
their normal derivatives at the cell face centres~xl are required to be given in terms
of the velocity and vorticity values at the stencil nodes, i.e. centres of the CV.
For the SI and HI approximations, the interpolation functions evaluated at cell face
centres can be calculated as follows by means of the following vector products.

ui|~x=~xl
= ĒT

(i)

∣∣∣
~x=~xl

~αi (28)

ω|~x=~xl
= F̄T

∣∣
~x=~xl

~β (29)

∂ui

∂x j

∣∣∣∣
~x=~xl

=
∂ ĒT

(i)

∂x j

∣∣∣∣∣
~x=~xl

~αi (30)

∂ω

∂x j

∣∣∣∣
~x=~xl

=
∂ F̄T

∂x j

∣∣∣∣
~x=~xl

~β (31)

where the components of the vector ĒT
i and F̄T in the above equations depend on

the used interpolation option. For instance in the HI the vectors are:

ĒT
i =

([
Ψi(‖~x−~ξ j‖)

]
,
[
Bξ Ψi(‖~x−~ξ j‖)

]
,
[
Lξ Ψi(‖~x−~ξ j‖)

]
,Pm−1(~x)

)
(32)

F̄T =
([

Φ(‖~x−~ξ j‖)
]
,
[
Bξ Φ(‖~x−~ξ j‖)

]
,
[
Mξ Φ(‖~x−~ξ j‖)

]
,Pm−1(~x)

)
(33)
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In the CI case the velocity components can be interpolated by using the expression
(34), where the vectors ḠT

(1) and ḠT
(2) are given by equations (35) and (36), while

the vector [Λ] is defined as the array of the unknown interpolation coefficient. For
the CHI approximation the reconstruction is done in a similar way.

ui|~x=~xl
= ḠT

(i)

∣∣∣
~x=~xl

~Λ (34)

ḠT
1 =([

Ψ(‖~x−~ξ j‖)
]
,
[
B1

ξ
Ψ(‖~x−~ξ j‖)

]
,Dξ1

[
Ψ(‖~x−~ξ j‖)

]
, [0], [0],Pm−1

1 (~x), [0]
)
(35)

ḠT
2 =(

[0], [0],Dξ2

[
Ψ(‖~x−~ξ j‖)

]
,
[
Ψ(‖~x−~ξ j‖)

]
,
[
B2

ξ
Ψ(‖~x−~ξ j‖)

]
, [0],Pm−1

2 (~x)
)
(36)

The CV-RBF discretization process is completed by substituting the reconstruction
expressions in the CV equations (8) and (9) and expressing the interpolation coef-
ficients in terms of the nodal field values defined by the vectors Bi (or B in the CI
and CHI cases) and D. This process leads to the discrete Navier Stokes system of
equations in terms of the stencil nodal values of velocity and vorticity. In case of SI
and HI interpolation, the resultant equations are given by equations (37) and (38).

Ns

∑
l=1

(
∂ F̄T

∂x j
n j∆S

)
~x=~xl

C−1D−
Ns

∑
l=1

(
Re F̄T )

~x=~xl
C−1D

(
ĒT

j n j∆S
)
~x=~xl

A−1
( j)B( j) = 0 (37)

Ns

∑
l=1

(
∂ ĒT

i

∂x j
n j∆S

)
~x=~xl

A−1
(i) B(i) +

Ns

∑
l=1

(
F̄T e3i jn j∆S

)
~x=~xl

C−1D = 0 (38)

When those expressions are applied to each stencil, a 3m× 3m non-linear system
of equations is obtained, i.e. the nodal values of the two velocity components and
the vorticity field. For a given interpolation option, the obtained nonlinear system
of equations is solved by employing the algorithm presented in the next section.

4 Solution algorithm

The CVRBF numerical solution of the 2D Navier Stokes system of equations in
terms of its velocity and vorticity formulation is solved by means of a recursive al-
gorithm given by a Newton-Raphson iterative scheme to deal with the obtained
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global non-linear system of algebraic equations. One of the main difficulty in
this type of formulation is the evaluation of the unknown boundary condition for
the vorticity field that requires a sequential solution procedure [Skerget and Rek
(1995)]. In this case the sequential computation is avoided by expressing the vor-
ticity boundary values in terms of the unknown internal and prescribed boundary
nodal values of the velocity field at the boundary interpolation stencils, obtained
from the differentiation of the used velocity interpolation scheme according to the
definition of the vorticity.

Before describing the proposed numerical algorithm, it is necessary to explain the
use of the different interpolation strategies for the field variables described pre-
viously: The first strategy is to use the SI interpolation for both the velocity and
the vorticity fields (SI-SI). The second one employs the HI interpolation for the
velocities and SI for the vorticity (HI-SI) while the third strategy consists in us-
ing the CI interpolation for the velocity field and SI for the vorticity (CI-SI). The
CHI approach is employed to interpolate the velocity field in conjunction with the
SI interpolation for the vorticity in the fourth strategy (CHI-SI) and with the HI
interpolation for the vorticity as the fifth strategy (CHI-HI).

As previously commented, at the local level the Hermitian interpolation is formu-
lated in term of a simple Picard iteration scheme, where the convective term of
the vorticity equation is linearized by using the value of the velocity field at the
previous iteration, ~u∗. In the proposed interpolation strategies only the CHI-HI ap-
proach requires updating of the interpolation matrices at each iteration, due to the
linearization of the convective term of the vorticity PDE operator Mx. Therefore in
the CHI-HI approach, the operators Mx and Mξ in the interpolation matrix need to
be updating at each iteration.

The numerical algorithm can be described as:

• Guess an initial velocity field ~u0 to be used in the linearization of the con-
vective term of the HI local approximation of the vorticity equation and as
initial value on the Newton-Raphson algorithm at the CV global solution.

• Compute the interpolation matrix [C] and the column vector [D]. The vor-
ticity boundary values in [D] are calculated by reconstructing the velocity
gradient according to the used velocity interpolation. Hence, the vector [D]
and the interpolation coefficients [β ] are expressed in terms of the unknown
stencil nodal values of velocity and vorticity fields for the given values of the
boundary velocity. In the CHI-HI strategy it is necessary to use the guess
velocity value at PDE points to compute the interpolation matrix [C], which
are defined by the solution at the previous iteration.
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• Find the interpolation matrix [A]i (or [A], in the CI and CHI cases) and the col-
umn vector [B]i (or [B]). By solving the resulting linear system of equations,
the interpolation coefficients are expressed in terms of the nodal velocity and
vorticity values.

• Solve the system of equations (37) and (38) by means of the Newton Raphson
iterative scheme until a desirable convergence is achieved, where the numer-
ical Jacobian matrix is computed by using a second order finite difference
approximation.

• In the SI-SI, CI-SI and CHI-SI strategies, the obtained values from the Newton-
Raphson algorithm of ū1cells, ū2cells and ω̄cells are the final solution. However
in the CHI-HI scheme, the obtained velocity field is used to update the lin-
earized operators Mx and Mξ of the local interpolation matrices. With this
new local approximation, the above steps are repeated until a tolerance crite-
rion is achieved. The tolerance criterion is applied such that iteration stops if
εRMS < tol, where εRMS is the Root Mean Square residual between velocity
values at present and previous iteration.

5 Numerical results

The CV-RBF method with the interpolation strategies discussed above, were im-
plemented in a FORTRAN 90 code. To test the accuracy of each of the proposed
interpolation schemes, the steady state solution of a two-dimensional lid-driven
cavity viscous flow is considered and the corresponding results compared with pre-
vious numerical solutions. To evaluate each of the interpolation schemes, results
are obtained for Reynolds numbers 100, 400 and 1000 using the five proposed
strategies (SI-SI, HI-SI, CI-SI, CHI-SI,CHI-HI). Next, the same problem is solve
up to Reynolds numbers 5000 by employing the best of the found interpolation
strategy from the previous results. The initial guess value in the algorithm is set to
be equal to the obtained solution at a lower Re.

A square cavity filled with an incompressible, isothermal and Newtonian fluid is
considered. The flow field is due to the motion of the upper wall located at x2 =
L, with a prescribed velocity u1 = U and u2 = 0.The boundary conditions at the
remaining walls are given by a zero velocity, i.e. ui = 0 with i = 1,2, and the
characteristic Reynolds number is defined by Re = UL

ν
, where ν is the kinematic

viscosity.

5.1 Comparison among interpolation strategies

Non-uniform meshes of 21× 21, 41× 41 and 51× 51 Control Volumes (CV) are
used for the numerical simulations of the cases of Re = 100,400 and 1000, respec-
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tively, with refined meshes near the boundaries. The results are compared with
Ghia, Ghia, and Shin (1982) benchmark solutions. The shape parameter values for
the velocity and vorticity MQ functions are kept constant during the solution pro-
cedure with their values expressed in terms of a subdomain characteristic length (h)
according to ci = dih, where di is a proportional factor and i = v,ω for the veloc-
ity and vorticity, respectively. For each interpolation strategy, mesh and Reynolds
number the shape parameter is found by a qualitative assessment between the ob-
tained numerical result and the benchmark solution. The selected values for di are
reported for each of the obtained results.
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Figure 2: Lid-driven cavity results at Re = 100: a. u1 velocity at line x1 = 0.5, b.
u2 velocity at line x2 = 0.5, c. vorticity values at line x2 = 1.0, d. Vorticity contours
using the CHI-SI (−−) and SI-SI (...) strategies
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Figure 3: Lid-driven cavity results at Re = 400: a. u1 velocity at line x1 = 0.5, b.
u2 velocity at line x2 = 0.5, c. vorticity values at line x2 = 1.0, d. Vorticity contours
using the CHI-SI (−−) and SI-SI (...) strategies

At Re = 100, acceptable results were obtained by the use of the HI-SI, CHI-SI and
CHI-HI interpolation strategies. The corresponding velocity profiles at the central
lines of the domain, horizontal and vertical, are shown in Figures 2 a. and 2 b,
while vorticity values along the line x2 = 1.0 and the vorticity contours across the
cavity are shown in Figures 2 c. and 2 d, respectively. The best overall results
were found by using the values of the shape parameters; dv = 5.0 and dω = 4.0 for
the HI-SI strategy, dv = 6.0 and dω = 8.0 for the CHI-SI and dv = 8.0 and dω =
4.0 for the CHI-HI. By using the best values of the shape parameter on the CI-SI
and SI-SI strategies, the obtained u1 profile is slightly underestimated, while larger
discrepancies on the predicted u2 velocity profile are observed, similar behaviour
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Figure 4: Lid-driven cavity results at Re = 1000: a. u1 velocity at line x1 = 0.5, b.
u2 velocity at line x2 = 0.5, c. vorticity values at line x2 = 1.0, d. Vorticity contours
using the CHI-SI (−−) and SI-SI (...) strategies

is observed in the obtained values of the vorticity along the line x2 = 1.0. Figure 2
d. presents the comparison between the vorticity contours computed by the CHI-SI
strategy (continuous line) and the SI-SI (points), which are, respectively, the best
and the worst obtained results.

In the cases of Re = 400 and Re = 1000, the observed behaviour of the different
interpolation strategies was similar to the previous case, with the best results always
obtained when using the HI-SI and CHI-SI strategies, being the results predicted by
the CHI-SI in the two cases almost identically to the benchmark solutions. However
as the magnitude of the Reynolds number increases, the discrepancy between the
obtained results with the other schemes, i.e. SI-SI, CI-SI and CHI-HI, and the
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benchmark solutions were higher. In both cases, Re = 400 and Re = 1000, with the
set of shape parameters used, no acceptable results were found with the use of the
CI-SI and SI-SI strategies.

For Re = 400, the best solutions were obtained for the set of parameters; dv = 6.0
and dω = 5.5 for the HI-SI, dv = 6.0 and dω = 8.0 for the CHI-SI and dv = 9.0 and
dω = 4.0 for the CHI-HI. The results for this case are reported in Figure 3, where
the obtained velocity profiles and vorticity distributions are shown.

The obtained velocity profiles and vorticity distributions, for the case of Re = 1000,
are shown in Figures 4. Of the tested strategies, the best results were obtained
again with the HI-SI and CHI-SI approaches, with shape parameters dv = 5.0 and
dω = 4.5, and dv = 5.0 and dω = 8.0, respectively. The best results with the CHI-HI
strategy was found for values of dv = 4.2 and dω = 1.2, showing slightly discrep-
ancies in the obtained u1 and u2 velocities, as well as the vorticity distribution, in
comparison with the reported values of the benchmark solution. Employing the
Hermitian interpolation (CHI-HI) for the vorticity approximation seems to be an
inadequate strategy for high Reynolds numbers. In this case, the local vorticity in-
terpolation matrix becomes too ill-conditioned before reaching a shape parameter
value that can produces accurate results, requiring the use of sophisticated solver
which is not the intention of this work. Furthermore, the CHI-HI needs a double
iteration strategy (to update the PDE operator Mx) that reduces the computational
efficiency of the algorithm.

The main difference between the HI-SI, CHI-SI and CHI-HI strategies and the SI-
SI and CI-SI schemes is the presence of the vorticity nodal values in the velocity
interpolation. In the HI or CHI for the velocity approximation, the PDE operator Lx

from equation (15) allows to express the velocity values and its gradient in terms
of the vorticity nodal values. Finally, the importance of applying the conservative
interpolation is shown by comparing the obtained results with the HI-SI and the
CHI-SI strategies, with always more accurate solutions with the use of the CHI-SI
strategy. According to the above analysis, the best and more efficient strategy is
the CHI-SI local interpolation scheme, showing almost identical solution than the
benchmark solution for each of the Reynolds numbers considered.

5.2 High Reynolds Numbers solutions

In this section, the proposed CVRBF method is used to solve the two-dimensional
lid-driven cavity problem at Re = 1000, 3200, and 5000. Following our previous
analysis of the different local interpolation strategies, in this section the conserva-
tive and Hermitian interpolation is employed for approximating the velocity com-
ponents while a simple interpolation is used in the vorticity case, i.e. the CHI-SI
strategy, which always produced the best results in the cases previously consid-
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ered. Non-uniform meshes refined towards the walls are used, with 61× 61 CV
elements in the case of Re = 1000, and 81×81 for Re = 3200 and Re = 5000. The
shape parameter were respectively; dv = 8.0, dω = 12.0; dv = 6.3, dω = 10.0 and
dv = 6.5,dω = 10.0 for Re = 1000,3200, and 5000. As before, the obtained results
are compared to those reported by Ghia, Ghia, and Shin (1982).

The Re = 1000 case is solved again using this time a 61× 61 mesh. The velocity
profiles shown in Figure 5 a. are similar to those obtained before using a 51× 51
mesh. However by using the more refine mesh, the vorticity values along the line
x2 = 1.0 and the vorticity contours presented in Figure 6 a. are much closer to the
results reported by Bruneau and Saad (2006); Ghia, Ghia, and Shin (1982); Goyon
(1996), and Clercx (1997).

Simulations at Re = 3200 and Re = 5000 are used as more demanding test for the
robustness of the proposed CVRBF approach. In both cases, with only a mesh of
81×81 CV elements, the obtained solutions for the velocity components (Figure 5
b. and c.) and the vorticity field (Figure 6 b. and c.) are in good agreement with the
benchmark solutions.
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Figure 5: u1 and u2 velocity profiles in lines x1 = 0.5 and x2 = 0.5: a. Re = 1000,
b. Re = 3200, c. Re = 5000

The results shown in this section for the cases of Re = 1000,3200, and 5000 are
as good as or better than some of the most accurate numerical results previous
reported in the literature using high order numerical schemes. See for example
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Figure 6: Vorticity behaviour at line x2 = 1.0 and vorticity contours: a. Re = 1000,
b. Re = 3200, c. Re = 5000

the works of; Kobayashi, Pereira, and Pereiraz (1999), Wei, Ya-li, and Ru-xun
(2009) and Piller and Stalio (2004) where high order CV schemes are reported,
Liu and Leung (2001) for a high order FEM, Sanyasiraju and Chandhini (2008)
and Bourantas, Skouras, Loukopoulos, and Nikiforidis (2010) where local RBF
collocation schemes are used and Bruneau and Saad (2006) where a very dense FD
solutions are reported. It is interesting to observe that the results for the Re = 1000
case reported in those works, showing similar accuracy than the result for the same
Reynolds number reported here, require the use of computational grids that are
significant more dense than the one used in our case, except in the case of Piller
and Stalio result.

Piller and Stalio’s result for Re = 1000 obtained with a CV spectral-like compact
scheme (sixth order scheme) requires only a mesh of 20× 20 elements to achieve
similar accuracy to the one reported here with 51× 51 elements. However, the
compact scheme on staggered grid used in Piller and Stalio’s work employed a
coordinate transformation between the physical and a computational space, a semi-
implicit time stepping scheme that leads to linear systems with 2N unknowns for
each physical variable with N as the number of CV elements, and in the case of
using a coarse grid, as the one used for the Re = 1000 result, needs the use of
compact high order filtering scheme to damp spurious oscillations (wiggles) when
central defined interpolation stencils are used. On the other hand, our scheme,
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which is also based on central defined interpolation stencils, is defined only in the
the physical space, with N unknowns for each physical variable, instead of 2N, and
never needs the use of any filtering scheme (for more detail about the stability of
the type of CVRBF approach used in this work when dealing with scalar transport
equations see Orsini, Power, Morvan, and Lees (2010)). It is important to comment
that in Piller and Stalio’s approach, it is not necessary to use any filtering scheme
to obtain stable solution when fine enough grids are used, as is the case of their
reported solution for Re = 5000 with 160×160 and 320×320 elements. The Piller
and Stalio’s Re = 5000 result with the use of those dense meshes are equivalent
to our solution for the same Reynolds number with only 81× 81 mesh and also
without the need of any filtering scheme.

It is also important to point out that in our solutions the shape parameters used are
not necessary the optimal ones, which were selected by the previously mentioned
simple geometric relation. It is well known that by selecting the optimal values of
the shape parameters in a MQ interpolation and having variable values along the
computational domain it is possible to improve the accuracy of the local interpola-
tion by at least one or two order of magnitude (see Bayona, Moscoso, and Kindelan
(2011)). Consequently, it is expected that by properly selecting the shape param-
eters of the local interpolation our results can be substantially improved, however
this is beyond the scope of the present work. On the other hand, it is also possible to
improve the present solution by using larger interpolation stencils including more
than the CV centre points of just the near neighbours CV elements, as used in the
present work, with the corresponding increase in computational cost and possible
worsening of the conditioning of the interpolation matrices.

6 Conclusions

An implementation of the CV-RBF scheme for the numerical solution of non-linear
coupled system of PDEs is presented with application to 2D driven cavity flow
at different Reynolds numbers, achieving excellent results with the use of course
meshes up to Reynolds numbers 5000. Different velocity and vorticity interpola-
tion strategies at the local level are proposed and tested, from which the best alter-
native is selected among different tested options. Interpolation strategies where the
velocity approximation is not coupled to the vorticity nodal values (simple and
conservative) fail for Re > 400, requiring the use of coupled interpolations for
larger Reynolds numbers. A Hermitian interpolation for the vorticity field is not
a suitable strategy since the obtained interpolation matrix becomes ill-conditioned
before reaching an adequate shape parameter value and the requirement of double-
iteration scheme, which is computationally inefficient. Therefore, for the solution
at Re > 400 a Hermitian and Conservative interpolation is used for the velocity
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components together with a Simple interpolation for the vorticity field. The eval-
uation of the vorticity boundary values is avoided by coupling the vorticity and
velocity governing equations through the local interpolation scheme. Other fea-
tures of the CV-RBF method such as the mesh independency of the interpolation
scheme and the versatility to deal with different kind of boundary condition can be
explored in future applications.
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