
Copyright © 2011 Tech Science Press CMES, vol.79, no.2, pp.131-158, 2011

The Configuration Evolution and Macroscopic Elasticity
of Fluid-filled Closed Cell Composites: Micromechanics

and Multiscale Homogenization Modelling

Lianhua Ma1, Bernard F. Rolfe2, Qingsheng Yang1,3 and Chunhui Yang2,3

Abstract: For fluid-filled closed cell composites widely distributed in nature, the
configuration evolution and effective elastic properties are investigated using a mi-
cromechanical model and a multiscale homogenization theory, in which the effect
of initial fluid pressure is considered. Based on the configuration evolution of the
composite, we present a novel micromechanics model to examine the interactions
between the initial fluid pressure and the macroscopic elasticity of the material.
In this model, the initial fluid pressure of the closed cells and the corresponding
configuration can be produced by applying an eigenstrain at the introduced ficti-
tious stress-free configuration, and the pressure-induced initial microscopic strain
is derived. Through a configuration analysis, we find the initial fluid pressure has
a prominent effect on the effective elastic properties of freestanding materials con-
taining pressurized fluid pores, and a new explicit expression of effective moduli is
then given in terms of the initial fluid pressure. Meanwhile, the classical multiscale
homogenization theory for calculating the effective moduli of a periodical hetero-
geneous material is generalized to include the pressurized fluid “inclusion” effect.
Considering the coupling between matrix deformation and fluid pressure in closed
cells, the multiscale homogenization method is utilized to numerically determine
the macroscopic elastic properties of such composites at the unit cell level with
specific boundary conditions. The present micromechanical model and multiscale
homogenization method are illustrated by several numerical examples for valida-
tion purposes, and good agreements are achieved. The results show that the initial
pressure of the fluid phase can strengthen overall effective bulk modulus but has no
contribution to the shear modulus of fluid-filled closed cell composites.
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1 Introduction

It is well known that typical fluid-filled closed cell composite is a kind of porous
material. In general, porous materials can contain isolated closed voids or intercon-
nected open cell structures (Gibson et al, 1997), such as saturated rocks, salt water
ice, polymer foams, plant cells and biological tissues. The existences of voids and
fluids at the micro-scale have significant influences on macroscopic mechanical
properties of porous materials. In typical open cell porous media, the fluid in pores
can flow from one pore to the others. In the past decades, numerous studies have
been devoted to the macroscopic properties of such porous materials. The specific
nature of mechanical behavior of the fluid-saturated porous media was recognized
early in poromechanics developed by Biot (Biot, 1954). Ever since, poromechan-
ics and effective medium theory have entered a large number of engineering appli-
cations, ranging from traditional geophysical field to biomechanical engineering.
Many investigations on their effective properties of fluid-saturated porous media
have been reported (Budiansky and O’Connell, 1976; Coussy, 1995; Dormieux et
al., 2006).

It is noted that the classical poroelasticity is mostly restricted to open-cell porous
materials, where the fluids can freely flow through open pores and can be squeezed
out in deformations. However, for some unique fluid-filled closed cell materials,
such as metal foams filled with fluids (Ozgur et al.,1996), closed cell rocks, foamed
polymers, plant cells and carrot tissues (Kimmel, 1992; Warner et al, 2000), it is
well accepted that the structure of the fluid-filled closed cell material resembles
that of a closed cell impermeable solid filled with a pressurized liquid. For ex-
ample, in carrot tissue, the turgor can induce the overall deformation of the tis-
sue, and the experimental results show that turgor pressure plays a major role in
the macroscopic elasticity of the carrot tissue (Georget, 2003). Several investiga-
tions of effective properties of materials with closed fluid-filled pores have been
reported. O’Connell and Budiansky (O’Connell and Budiansky, 1974, 1976) ex-
amined the effective elastic properties of fluid-filled materials with different ge-
ometries of pores. The fluid pressure polarization phenomenon was addressed by
Zimmerman (1991). Kachanov et al. (Kachanov, Shafiro et al, 1993-1997) consid-
ered an arbitrary orientational distribution of crack-like cavities, the fluid pressure
polarization and the impact of fluid on stress interactions on cracks. In addition
to these micromechanics methods, some experimental observations and numerical
simulations have also been done on the effective elastic behaviors of fluid-filled
closed cell material, especially of plant materials. In the field of botany, the typical



The Configuration Evolution and Macroscopic Elasticity 133

plant and food materials are usually treated as a special kind of fluid-filled closed
cell composites. A model of a liquid filled closed cell structure was used to ex-
amine the effective elasticities of plant materials such as potatoes (Nilsson, 1958),
carrot tissues (Georget et al., 2003) and yeast cells (Stenson et al., 2009). For these
unique fluid-filled materials, the experimental measurements show that the overall
elastic moduli increase linearly with initial fluid pressure. In the aspect of numeri-
cal modeling, Cheng et al (1987) developed a finite element model to simulate the
mechanical deformations of cells and embryos. Ozgur et al. (1996) used a special-
ized finite element program to model the effective mechanical behaviors of closed
cell metal composites filled with hydrostatic fluids. Smith et al. (1998) also used a
finite element approach to extract the elastic properties of plant cells, but introduced
the possibility of permeable cell walls. Hartmann et al. (2004, 2006) numerically
modeled the compression deformation of a yeast cell subjected to high hydrostatic
pressure, where it is assumed that the cytoplasm behaves like pure fluid. Zhang, Lv
and Zheng (2010) reported an extended multiscale finite element method for mod-
eling the mechanical analysis of closed liquid cell materials. In their work, a higher
order coarse-grid element was constructed to characterize the mechanical defor-
mations of such materials with greater accuracy. Huang et al. (2011) developed a
boundary element technique to solve the elastic problems of 2D closed solids with
many fluid-filled pores of various shapes. Although numerical studies can yield
accurate results in some occasions, only limited circumstances were modeled with
specific geometries of pores.

In previous models, the effect of initial fluid pressure and configuration evolution
were not fully considered. Actually, for typical freestanding closed cell materials
filled with pressurized fluids, there are initial pressures in closed cells. The ini-
tial pressures can induce residual stresses in pore/matrix phase and also cause ini-
tial macroscopic deformations leading to configuration change of such materials.
The main purpose of this paper is to develop an analytical micromechanics model
and an asymptotic homogenization-based finite element model for the problems of
closed-cell composites containing pressurized fluid-filled pores, and to investigate
the effective properties of such materials. The major addressed issue in this paper
is the treatment of the initial pressure and closed fluid inclusions in the compos-
ites. Three different configurations are firstly introduced to facilitate the effect of
initial fluid pressure, and then the fluid-pressure induced initial macroscopic strains
can be determined by the proposed micromechanics method and the multiscale ho-
mogenization model. Based on the configuration evolution and the derived initial
macroscopic strains, the effective elastic properties of such materials in initial state
can be further obtained by the present models.

The contents of this paper are organized in five major sections. The microme-
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chanical model of fluid-filled closed cell materials is described, and explicit ex-
pressions of effective properties for closed cell porous composites with inner fluid
pressures are derived in Section 2. The multiscale homogenization-based method
for macroscopic behavior and micromechanical deformations of solids containing
periodical fluid-filled pores are given in Section 3, where the periodical boundary
conditions of a unit cell subjected to internal pressures are presented. In Section
4, the proposed models are applied to analyze the overall elastic stiffness of fluid-
filled closed-cell composites. The effects of fluid pressure, bulk modulus and pore
shape on effective properties are then discussed in detail. Section 5 summarizes the
conclusions and future work based on the results obtained..

2 Micromechanics of fluid-filled closed cell composites

The equivalent inclusion model is one of the effective methods for estimating a
homogenized elastic property of composite materials. It was originally used for the
determination of effective properties of composites containing solid inclusions. In
this section, an equivalent inclusion method based on the Mori-Tanaka model (Mori
and Tanaka, 1972) is extended to the composites containing fluid-filled pores. 
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Figure 1: The representative volume element (RVE) of fluid-filled closed-cell com-
posites subjected to pore pressure p0 and macroscopic strain ε0

The Representative Volume Element (RVE) of a closed-cell material with a suffi-
ciently large number of pores is chosen, as shown in Figure 1, with an arbitrary
distribution of pores. For the solid containing fluid-filled pores, the solid phase is
assumed to be linear elastic and impermeable, and the pore space is filled with a
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fluid at a pressure p, which is identical in all pores. The fluid phases in the com-
posites can be represented as an equivalent isotropic elastic solid, with the shear
modulus µ f = 0. Therefore, the compression stiffness tensor of the pore can be
given as,

C f
i jkl = k f δi jδkl (1)

where δi j is the Kronecker delta function, k f is the bulk modulus of the fluid.
Throughout the present paper, Einstein’s summation convention over the repeated
indices is satisfied. If the material is subjected to tension loads, the pore is equiv-
alent to the cavity without fluid. Thus its bulk modulus reduces to zero and the
corresponding elastic stiffness tensor becomes zero tensor C f

i jkl = 0.

2.1 Micromechanical model without initial fluid pressures

To simplify the derivation, the case of the fluid pressure-free is firstly considered.
According to Eshelby’s equivalent inclusion theory (Eshelby, 1957), an eigenstrain
ε∗ for a particular pore can be calculated by embedding the pore into the matrix. It
is assumed that a uniform stress is applied at infinity, the induced internal stress in
the pore domain can be expressed as,

Pi j = C f
i jkl (ε̄

s
kl +Sklmnε̄

∗
mn) = Cs

i jkl (ε̄
s
kl +Sklmnε̄

∗
mn− ε̄

∗
kl) (2)

where Pi j is the internal pore stress, ε̄s
i j is the average elastic strain in the matrix,

Cs
i jkl is the stiffness tensor of the matrix, Si jkl is the Eshelby’s tensor depending

on pore shape and elastic properties of the matrix, ε̄∗i j is the hypothetic eigenstrain
in the equivalent inclusions caused by the presence of the pore replacing matrix
material.

Gassmann (1951) and Brown et al. (1975) have shown that pore pressure, p f ,
can be calculated from the total change of pore volume for compressive loading.
Mathematically it has the form,

p f =−k f
δVp

Vp
(3)

where δVp/Vp is the normalized pore volume change, which can be expressed by
the sum of total normal strains,

δVp

Vp
= ε̄

s
ii +Siikl ε̄

∗
kl (4)

The pore stress, Pi j, is then given by,

Pi j =−p f δi j (5)
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Because the fluid in pores cannot bear tensile and shear loads, each component of
the elastic stiffness tensor remains zero when the material is subjected to tensile or
shear load.

According to the Mori-Tanaka model (Mori and Tanaka, 1972), for the fluid-filled
closed-cell materials without initial pore pressure, the effective elastic stiffness is
thus written as,

C̄i jkl =
(

ϕsCs
i jmnImnpq +ϕ fC

f
i jmnÃmnpq

)(
ϕsIpqkl +ϕ f Ãpqkl

)−1 (6)

where Ii jkl is the identity tensor; φs and φ f are the volume fraction of the solid
matrix and closed pores, respectively, with φs +φ f = 1, and Ãi jkl is defined by

Ãi jkl =
[
Ii jkl +Si jmn

(
Cs

mnpq
)−1
(

C f
pqkl−Cs

pqkl

)]−1
(7)

In particular, as the pore is spherical, the Eshelby’s tensor is isotropic, and the
effective properties of the composites can be characterized by the effective bulk
modulus K̄ and shear modulus Ḡ,

K̄ = km

(
1+

ϕ f (k f−km)
α(1−ϕ f )(k f−km)+km

)
, α = 1+vm

3(1−vm)

Ḡ = µm

(
1+ ϕ f

β(1−ϕ f )−1

)
, β = 2(4−5vm)

15(1−vm)

(8)

where vm, km and µm are the Poisson’s ratio, bulk and shear modulus of the solid
matrix, respectively. When the pores are subjected to tension load, the overall
properties are equivalent to those of closed-cell porous materials, and Eq. (8) can
be reduced to the results of Tandon and Weng (1988).

It is worth noting that the macroscopic moduli of such materials can also be esti-
mated by other well-developed methods, for example, the dilute scheme, the self-
consistent method (Hill, 1965), and the generalized self-consistent method (Chris-
tensen and Lo, 1979).

2.2 Micromechanical analysis of closed cell solids with initial fluid pressures

Now let us consider the effective properties of the materials with a given initial fluid
pressure. As mentioned above, in the initial state of the closed cell materials with
fluid-filled pores, the pore domain is pressurized by a fluid pressure. Accordingly,
the solid matrix is also initially prestressed for the whole material in order to be
self-equilibrated. For the macroscopic elasticity of solids containing initial residual
stress, it is essential to introduce a fictitious stress-free configuration to examine the
elastic stresses and strains in both solid and fluid phase.
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Figure 2: The evolution of micromechanical model for a fluid-filled closed-cell
composite described by three configurations

For convenience, we define the following terminology to describe the three con-
figurations of the RVE: the fictitious stress-free configuration, the initial configu-
ration, and the current configuration. The fictitious stress-free configuration refers
to the imaginary zero-stress state of both the solid phase and the pores, which can
be obtained by hypothetically releasing the initial pressure in the fluid pores, and
having the fluid pore and solid matrix return to their stress-free state. The so-
called fictitious stress-free configuration was first introduced by Sun, Huang et al
(2004, 2006) to study the elastostatic problems of multi-phase material involving
surface/interface energy effects. Based on the fictitious stress-free configuration
concept, we apply the initial pressure on the fluid in the pores and thus the solid
matrix will deform until a new equilibrium state is reached, which is the initial
configuration where the material does not experience any external load. It should
be pointed out that the initial elastic field in this configuration is compatible. This
is entirely due to the existence of the initial fluid pressure. When an additional
external load is applied on the initial configuration, the RVE will further deform
and reach to a new equilibrium configuration, which is defined as the current con-
figuration. Figure 2 illustrates the evolution of three configurations for the RVE
of a fluid-filled closed cell material. The fictitious stress-free configuration intro-
duced here can be used to characterize the local average strains of the material and
to deduce the initial macroscopic strains. Considering the similar configuration
evolutions, Zhang et al (2009) proposed a micromechanics model to investigate
the effects of gas pressure on the macroscopic elastoplastic properties of porous
materials.

At the fictitious stress-free configuration, we can apply another extra eigenstrain,
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ε̃
p0
i j , on the pores to produce an initial fluid pressure. In such case, the internal pore

stress can be written as,

P0
i j = C f

i jkl

(
ε̃

s
kl + ε̃

f
kl− ε̃

p0
kl

)
= Cs

i jkl

(
ε̃

s
kl + ε̃

f
kl− ε̃

∗
kl− ε̃

p0
kl

)
(9)

where P0
i j is the initial pore stress related to initial pore pressure by P0

i j = −p0δi j,
ε̃s

i j is the initial average strain in the matrix produced by initial pore pressure, ε̃∗i j

is the hypothetic eigenstrain in the equivalent inclusions, and ε̃
f

i j is referred to as
the average perturbing strain in the fluid phase, which is related to ε̃∗i j and ε̃

p0
i j as

follows,

ε̃
f

i j = Si jkl
(
ε̃
∗
kl + ε̃

p0
kl

)
(10)

In addition, self-equilibrium of the fluid-filled composites in the initial state leads
to,

(1−ϕ f )
(
Cs

i jkl ε̃
s
kl
)
+ϕ f P0

i j = 0 (11)

Combining Eq.(9) and Eq.(11), we have

ε̃
s
i j +ϕ f

(
ε̃

f
i j− ε̃

∗
i j− ε̃

p0
i j

)
= 0 (12)

And substituting Eq. (10) into Eq. (12) gives

ε̃
s
i j =−ϕ f

(
Si jkl - Ii jkl

)(
ε̃
∗
kl + ε̃

p0
kl

)
(13)

Using Eq.(10), we have

ε̃
f

i j =
1

ϕ f

[(
Si jkl

)−1− Ii jkl

]−1
ε̃

s
kl (14)

The initial strain of solid phase ε̃s
i j can be easily obtained by Eq.(11)

ε̃
s
i j =−

ϕ f

1−ϕ f

(
Cs

i jkl
)−1 P0

kl (15)

The induced initial macroscopic strain of the composite with respect to the fictitious
stress-free configuration can be written as,

ε̄
0
i j = (1−ϕ f ) ε̃

s
i j +ϕ f

(
ε̃

s
i j + ε̃

f
i j

)
(16)



The Configuration Evolution and Macroscopic Elasticity 139

Substituting Eq. (14) and (15) into Eq.(16), and after some algebraic operations,
the initial macroscopic strain ε̄0

i j can be simply expressed by

ε̄
0
i j =−

ϕ f

1−ϕ f

(
Ii jkl−Si jkl

)−1 (Cs
klmn)

−1 P0
mn (17)

As seen from Eq.(17), the produced initial macroscopic strain, ε̄0
i j, can be deter-

mined by the initial pore pressure and the properties of the solid matrix.

To determine the effective stiffness of the material with respect to the initial con-
figuration, we apply a uniform stress, σi j, at infinity and then get the current con-
figuration of the RVE, as shown in Figure 2(c). Because the initial strains exist in
the initial configuration, the overall stress-strain relationship in the current config-
uration can be expressed as a function of the initial strainε̄0

i j

σi j = C̄0
i jkl
(
εkl− ε̄

0
kl
)

(18)

where εi j is the uniform strain from the fictitious stress-free configuration to the
current configuration, and the effective stiffness C̄0

i jkl can be determined by Eq.(6).

It is emphasized that, in Eq(18), both εi j and C̄0
i jkl are with respect to the fictitious

stress-free configuration. In reality, only the initial and current configurations may
be experienced, and the introduced fictitious stress-free configuration is just used to
produce the initial pore pressure and initial matrix stress. Although, in continuum
mechanics, any configuration can be chosen as a reference configuration, yet for
the sake of convenient measurement and simplicity, the initial configuration will be
specifically taken as the reference configuration. Therefore, the problem becomes
a determination of the effective stiffness with respect to the initial configuration.

Introducing the uniform strain, ε ′i j, of the material from the initial configuration to
the current configuration, Eq.(18) can be then expressed as,

σi j = C̄′i jklε
′
kl (19)

where C′i jkl is the corresponding effective stiffness with respect to the initial con-
figuration. The uniform strain ε ′i j with respect to the initial configuration can be
related to εi j using the pressure-induced initial strain ε̄0

i j with respect to the ficti-
tious stress-free configuration,

εi j− ε̄
0
i j = Λi jklε

′
kl (20)

where Λi jkl is fourth-order tensor, and it’s non-zero components are expressed as

Λ1111 = 1+ ε̄0
11, Λ2222 = 1+ ε̄0

22, Λ3333 = 1+ ε̄0
33

Λ2323 = 1+ ε̄0
23, Λ1313 = 1+ ε̄0

13, Λ1212 = 1+ ε̄0
12

(21)
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Combining Eq.(18), (19) and (20), we have

C̄′i jkl = C̄0
i jmnΛmnkl (22)

According to Eq.(17), the initial pressure can only produce initial volumetric or
normal strain of the RVE, and the initial shear strains are zero due to the pressurized
fluid not being able to resist shear deformation. In other words, every solution of ε̄0

i j

is such that the shear components ε̄0
i j (i 6= j) are zero. Particularly if the pressure in

closed cells is free in the initial configuration, each component of ε̄0
i j is zero. In this

situation, Eq. (22) can be degenerated to Eq.(6). It can be observed that the fluid
pressure-induced initial macroscopic strain plays an important role in determining
the effective moduli with respect to the initial state.

It is noted that the micromechanical models only analytically capture macroscopic
properties of both arbitrary and periodic structures, but cannot directly characterize
microscopic inhomogeneous deformations.

3 Multiscale model based on asymptotic homogenization method

For heterogeneous materials composed of a periodic array of microscopic unit cells,
alternative approach to predict their effective properties is the multiscale asymp-
totic expansion homogenization method developed in the 1970s and early 1980s
(Benssousan et al., 1978; Lions, 1981). As a systematically mathematical ap-
proach, the asymptotic homogenization method has been successfully applied in
the estimation of the effective material properties of composites (Bakhvalov and
Panasenko, 1984; Hassani and Hinton, 1998; Okada, Fukui and Kumazawa, 2004;
Yang and Becker, 2004; Haasemann, Kastner and Ulbricht, 2006). Compared the
micromechanical model presented in Section 2, the asymptotic homogenization
theory provides us two sets of partial differential equations at two length scales:
one is the microscopic equation to be solved by using a microscopic unit cell; and
the other is the macroscopic one to be solved for unknown macroscopic compo-
nents. By solving these equations, predictions of the macroscopic or homogenized
properties based on a periodic microstructural unit cell and calculations of micro-
scopic and macroscopic stresses can be achieved simultaneously. Although the
multiscale homogenization theory was widely employed to determine the effective
properties of periodical composites, no application for liquid filled composite was
reported. This section is devoted to the derivation of the effective coefficients for
solids containing periodic fluid-filled pores. The governing equations for both solid
and pore are obtained by using the method of multiscale expansions in the context
of the asymptotic homogenization theory.
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3.1 Effective properties of periodic composites with fluid-filled pores

Consider a closed cell composite with periodic pores without any initial hydraulic
fluid pressure as depicted in Figure 3, Ω corresponds to the domain of the overall
fluid-filled composite in the three-dimensional space occupied by the medium, Γ

is the boundary of Ω, Y is the open subset of a space occupied by a basic unit
cell, which can be divided into a solid phase Y1 and a fluid phase Y2 to describe the
periodic microstructure of a fluid-filled composite. In real heterogeneous materials,
the size of a unit cell is typically very small and can be represented by a ratio defined
by η = l/L, where l is the characteristic length of the unit cell and L is that of the
macroscopic region as shown in Figure 3. Hereby, two distinct length scales, i.e.,
the macroscopic scale x and the microscopic one y are introduced, with a relation
of y = x/η .
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Figure 3. Characteristic dimensions of a fluid-filled closed-cell composite at two scales. 
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Figure 3: Characteristic dimensions of a fluid-filled closed-cell composite at two
scales.

A high level of heterogeneity in the microstructure causes a rapid variation of evo-
lutionary variables, e.g., deformations and stresses in a small neighborhood of the
macroscopic scale x with a Y-periodicity. This corresponds to a microscopic scale
y and consequently, all variables are assumed dependent on the small parameter η ,
i.e.

Φ
η = Φ(x,x/η) (23)

Using the chain rule on differentiation,

∂Φη(x)
∂xi

=
∂Φ(x,y)

∂xi
+

1
η

∂Φ(x,y)
∂yi

(24)
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where the superscript η denotes the association of the function Φ (x, y) with the
two length scales x and y. In this notation, the governing equations in different
domains occupied by elastic solid phase and hydraulic fluid phase are respectively
given as

dσ
η

i j

dx j
+ f i = 0 in Y η

1 (25)

σ
η

i j = Cη

i jklε
η

kl in Y η

1 (26)

ε
η

kl =
1
2

(
∂uη

k
∂xl

+
∂uη

l
∂xk

)
in Y η

1 (27)

d pη

dV η
+

ρRkη

f

m
= 0 in Y η

2 (28)

pη =−kη

f ε
η
v in Y η

2 (29)

where σ
η

i j , Cη

i jkl and fi is the stress tensor, the tensor of elastic constants and body
force of solid phase, respectively, and V η denotes the deformed volume of pores
when subject to compression load, pη is the corresponding pressure field in pores,
ρR is the reference fluid density at zero pressure, m is the total fluid mass in the
pore, and ε

η
v is the volumetric compression strain of the fluid. For the closed pore

subjected to compression load, a change δdV η of the fluid volume dV η can be
expressed as

ε
η
v =

δdV η

dV η
=

dδV η

dV η
in Y η

2 (30)

In the construction of the homogenization theory, the displacements uη and the
change of fluid volume δV η are assumed as asymptotic expansions with respect
toη

uη

i (x) = u0
i (x,y)+ηu1

i (x,y)+η
2u2

i (x,y)+ · · · ,y = x/η in Y η

1 (31)

δV η(x) = δV 0(x,y)+ηδV 1(x,y)+η
2
δV 2(x,y)+ · · · ,y = x/η in Y η

2 (32)

where each term of which is a periodic function with respect to y. Applying Eq.(24)
to the partial differentials of strain-displacement given by Eq.(27) and stress-strain
relations described in Eq.(26) of solid matrix yields,

ε
η

i j =
1
η

ε
−1
i j (x,y)+ ε

0
i j (x,y)+ηε

1
i j (x,y)+ · · · in Y η

1 (33)
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where

ε
−1
i j (x,y) =

1
2

(
∂u0

i
∂y j

+
∂u0

j

∂yi

)
(34)

ε
0
i j (x,y) =

1
2

[(
∂u0

i
∂x j

+
∂u0

j

∂xi

)
+

(
∂u1

i

∂y j
+

∂u1
j

∂yi

)]
(35)

ε
1
i j (x,y) =

1
2

[(
∂u1

i

∂x j
+

∂u1
j

∂xi

)
+

(
∂u2

i

∂y j
+

∂u2
j

∂yi

)]
(36)

The elastic coefficients Ci jkl are the periodic functions of x and depend on η and
thus Cη

i jkl = Ci jkl
(
x
/

η
)
.

The stress of solid matrix can be written as

σ
η

i j =
1
η

σ
−1
i j (x,y)+σ

0
i j (x,y)+ησ

1
i j (x,y)+ · · · in Y η

1 (37)

where

σ
n
i j (x,y)= Cη

i jklε
n
kl (x,y) , n =−1,0,1, ... (38)

From Eqs.(35) and (37), we have

σ
0
i j = Cη

i jkl

(
∂u0

k
∂xl

+
∂u1

k
∂yl

)
in Y η

1 (39)

Substituting Eqs. (34)-(36) for the expansion of σ
η

i j into Eq.(25) and equating the
powers of η results in the following set of equations

∂σ
−1
i j

∂y j
= 0,

∂σ
−1
i j

∂x j
+

∂σ0
i j

∂y j
= 0,

∂σ0
i j

∂x j
+

∂σ1
i j

∂y j
+ fi = 0 in Y η

1 (40)

Then integrating Eq. (40) and applying the divergence theorem to the integral in Y1
give that u0

i is a function of x only, and u1
i can be expressed in the form

u1
i =−Φ

kl
i (x,y)

∂u0
k

∂xl
in Y η

1 (41)

where Φkl
i is an unknown third order Y-periodic characteristic tensor.
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Substituting Eq.(41) into Eq.(39) yields

σ
0
i j =

(
Cη

i jkl−Cη

i jmn
∂Φkl

m

∂yn

)
∂u0

k
∂xl

in Y η

1 (42)

For the subset of fluid domain Y η

2 , introducing Eq.(32) into Eq.(30) and using
Eq.(24), we have

ε
η
v =

1
η

ε
−1
v (x,y)+ ε

0
v (x,y)+ηε

1
v (x,y)+ · · · in Y η

2 (43)

where

ε
−1
v (x,y) =

∂δV 0

∂y
(44)

ε
0
v (x,y) =

∂δV 0

∂x
+

∂δV 1

∂y
(45)

ε
1
v (x,y) =

∂δV 1

∂x
+

∂δV 2

∂y
(46)

Substituting Eq.(43) into Eq.(29), the fluid pressure of the pore is given by

pη =
1
η

p - 1 (x,y)+ p0 (x,y)+η p1 (x,y)+ · · · in Y η

2 (47)

where

pn (x,y) =−kη

f ε
n
v (x,y) , n =−1,0,1, ... (48)

From Eq.(45) and Eq.(48), we obtain

p0 =−kη

f

(
∂δV 0

∂x
+

∂δV 1

∂y

)
in Y η

2 (49)

Considering the analogy with u0
i , both of the functions δV 0 and p0 only depend on

x.

Similarly to Eq.(41), the function δV 1 takes the form

δV 1 =−ψ (x,y)
∂δV 0

∂x
in Y η

2 (50)

where ψ is another characteristic function of the terms inside the fluid domain.
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Further from Eqs.(49) and (50),

p0 =−kη

f

(
1− ∂ψ

∂y

)
∂δV 0

∂x
in Y η

2 (51)

Because the hydrostatic fluid in the pore cannot resist any shear deformation, the
pore stresses, P0

i j, is taken as the form

P0
i j =−p0

δi j in Y η

2 (52)

Then integrating on the whole domain Y leads to the homogenized stress of the unit
cell subjected to an external compression load

σ̄
0
i j =

1
|Y |

(∫
Y1

σ
0
i jdY1 +P0

i j |Y2|
)

= Ci jkl
∂u0

k
∂xl

in Y η (53)

Introducing Eqs.(42) and (52) into Eq.(53) and taking Eq.(47) into account, we
have

Ci jkl
∂u0

k
∂xl

=
1
|Y |

∫
Y1

(
Cη

i jkl−Cη

i jmn
∂Φkl

m

∂yn

)
∂u0

k
∂xl

dY1 +ϕ f k
η

f

(
1− ∂ψ

∂y

)
∂δV 0

∂x
δi j (54)

where φ f is the volume fraction of the fluid phase in the unit cell space.

In the homogenization theory, ∂u0
k

∂xl
and ∂δV 0

∂x characterize the unidirectional initial
strain of the solid and the initial volumetric strain of the pore fluid, respectively.
If they are both set to unit values, i.e. ∂u0

k
∂xl

= ∂δV 0

∂x = 1.0, we can then obtain the
effective elastic tensor of the composite from Eq.(54)

Ci jkl =
1
|Y |

∫
Y1

(
Cη

i jkl−Cη

i jmn
∂Φkl

m

∂yn

)
dY1 +ϕ f k

η

f

(
1− ∂ψ

∂y

)
δi j (55)

Noted that Eq.(55) is only applicable for calculating the effective compression ten-
sor. In fact, since the fluid cannot resist tensile deformation, the corresponding
effective elastic tensor under tension can be determined by simply eliminating the
last term of Eq.(55).

The characteristic functions Φ and ψ in Eq.(55) can be numerically determined
by using a standard finite element discretization with specific boundary conditions
(Wang et al., 2006). For the structure containing hydrostatic fluids, we used hy-
drostatic fluid elements provided by a commercial finite element analysis package–
Abaqus to calculate fluid pressures and deformed volumes. These elements provide
the coupling between the deformation of the fluid-filled structure and the pressure
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exerted by the contained fluid along the boundary of the pore. The fluid volume,
V̄ , derived from the fluid pressure should equal the actual volume, V , of the pore.
This is achieved by augmenting the virtual work expression for the structure with
the constraint equation

V −V̄ =0 (56)

and the total virtual work can be expressed as

δΠ
∗ = δΠ− pδV −δ p(V −V̄ ) (57)

where δΠ∗ is the augmented virtual work expression, and δΠ is the virtual work
expression for the structure without the fluid phase, −pδV is the virtual work con-
tributed by the pore fluid pressure, δ p can be regarded as a Lagrange multiplier
enforced constraint V −V̄ =0. This augmented expression represents a mixed for-
mulation in which the structural displacements and fluid pressure are primary vari-
ables.

Once the displacements of solid structure and deformed fluid pressure are solved
by the finite element method, we can compute the effective stiffness Ci jkl of the
fluid-filled structure by Eq.(55).

3.2 Boundary conditions of the RVE subjected to inner pressure

In contrast to the micromechanical model discussed in Section 2, the initial config-
uration can be easily obtained by applying internal pore pressure to the fictitious
stress-free configuration. By applying an initial pore pressure, the corresponding
macroscopic strains of the unit cell are produced in the initial configuration. It
is emphasized that the produced initial macroscopic strain is with respect to the
fictitious stress-free configuration.

Before applying the fluid pressure in the fictitious stress-free configuration, periodic
boundary conditions were applied to the faces of the 3D RVE because the effective
behavior derived under these conditions is always bounded by those obtained un-
der internal pressures (Hazanov and Huet, 1994; Khisaeva and Ostoja-Starzewski,
2006).

Let x1,x2 and x3 be the Cartesian coordinates corresponding to axes parallel to
the RVE edges as shown in Figure 4. u(x1,x2,x3) is the displacement vector at a
point with coordinates (x1,x2,x3). The periodic boundary conditions (PBC) can be
expressed in terms of the macroscopic strain ε̄0

i j induced by the internal pressure,
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Figure 3. Characteristic dimensions of a fluid-filled closed-cell composite at two scales. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. 3-D RVE with initial pore pressure p0 
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Figure 4: 3-D RVE with initial pore pressure p0

which stands for the relative strain between opposite faces, as follows

ui (a1,x2,x3)−ui (0,x2,x3) = ε̄0
i ja j, 0≤ x2 ≤ a2,0≤ x3 ≤ a3

ui (x1,a2,x3)−ui (x1,0,x3) = ε̄0
i ja j, 0≤ x1 ≤ a1,0≤ x3 ≤ a3

ui (x1,x2,a3)−ui (x1,x2,0) = ε̄0
i ja j, 0≤ x1 ≤ a1,0≤ x2 ≤ a2

(58)

where a1,a2 and a3 are the edge lengths of RVE alongx1,x2 and x3 directions,
respectively. It is pointed out that the initial macroscopic strain ε̄0

i j is unknown
when the RVE is subjected to an internal pressure. Therefore, the PBCs defined in
Eq.(58) cannot be directly applied on the RVE in fictitious stress-free configuration
before solving. To describe the boundary conditions of RVE subjected to internal
pressure, we eliminate ε̄0

i j in Eq.(58) and obtain the following boundary conditions
for the 3D RVE alternatively,

u(1)
i (a1,x2,x3)−u(1)

i (0,x2,x3) = u(2)
i (a1,x2,x3)−u(2)

i (0,x2,x3) = · · ·
= u(m1)

i (a1,x2,x3)−u(m1)
i (0,x2,x3)

u(1)
i (x1,a2,x3)−u(1)

i (x1,0,x3) = u(2)
i (x1,a2,x3)−u(2)

i (x1,0,x3) = · · ·
= u(m2)

i (x1,a2,x3)−u(m2)
i (x1,0,x3)

u(1)
i (x1,x2,a3)−u(1)

i (x1,x2,0) = u(2)
i (x1,x2,a3)−u(2)

i (x1,x2,0) = · · ·
= u(m3)

i (x1,x2,a3)−u(m3)
i (x1,x2,0)

(59)

where u(m) is the displacement vector of the mth node for each face, m1, m2 and m3
are corresponding node numbers at three pairs of faces.

These boundary conditions must be enforced by using coupling constraint equa-
tions (CCEs). In the finite element analysis, CCEs are applied between degrees
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of freedom (DOFs) in pairs of faces, edges and vertices. From the structure of
3D RVE shown in Figure 4, each common edge belongs to two faces while each
corner belongs to three faces. On every edge, each component of displacements
would be used to impose two CCEs, one from each face. Similarly, since three
faces converge at a vertex, three periodic CCEs, one from each face, need to be
imposed using a single component of displacements. Once a DOF has been used
in a CCE, it can not be used in another CCE. As a corollary, constraint equations
on faces, edges and vertices of the RVE must be applied separately from Eq.(59).
Furthermore, only three equations, one for each component of displacement ui can
be written between a pair of faces, edges and vertices.

For the points in three pairs of faces (except points in edges and vertices), CCEs
are applied as follows

u(1)
i (a1,x2,x3)−u(1)

i (0,x2,x3) = u(2)
i (a1,x2,x3)−u(2)

i (0,x2,x3) = · · ·
= u(n1)

i (a1,x2,x3)−u(n1)
i (0,x2,x3)

u(1)
i (x1,a2,x3)−u(1)

i (x1,0,x3) = u(2)
i (x1,a2,x3)−u(2)

i (x1,0,x3) = · · ·
= u(n2)

i (x1,a2,x3)−u(n2)
i (x1,0,x3)

u(1)
i (x1,x2,a3)−u(1)

i (x1,x2,0) = u(2)
i (x1,x2,a3)−u(2)

i (x1,x2,0) = · · ·
= u(n3)

i (x1,x2,a3)−u(n3)
i (x1,x2,0)

(60)

where n1, n2 and n3 are corresponding node numbers of three pairs of faces (except
points in edges and vertices).

For the points in six pairs of edges (except points in vertices), CCEs are reduced to
the following constraint equations (with i= 1, 2, 3), as follows,

ui (x1,a2,a3)−ui (x1,0,0) = ui (x1,a2,x3)−ui (x1,0,x3)+ui (x1,x2,a3)
−ui (x1,x2,0)

ui (x1,0,a3)−ui (x1,a2,0) =−ui (x1,a2,x3)+ui (x1,0,x3)+ui (x1,x2,a3)
−ui (x1,x2,0)

ui (a1,x2,a3)−ui (0,x2,0) = ui (a1,x2,x3)−ui (0,x2,x3)+ui (x1,x2,a3)
−ui (x1,x2,0)

ui (a1,x2,0)−ui (0,x2,a3) =−ui (x1,x2,a3)+ui (x1,x2,0)+ui (a1,x2,x3)
−ui (0,x2,x3)

ui (a1,a2,x3)−ui (0,0,x3) = ui (a1,x2,x3)−ui (0,x2,x3)+ui (x1,a2,x3)
−ui (x1,0,x3)

ui (a1,0,x3)−ui (0,a2,x3) =−ui (x1,a2,x3)+ui (x1,0,x3)+ui (a1,x2,x3)
−ui (0,x2,x3)

(61)

Four pairs of corners also need to be constrained simultaneously. For each pair,
the corners are located symmetrically with respect to the center of the RVE and the
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resulting CCEs are applied as follows,

ui (a1,a2,a3)−ui (0,0,0) = ui (a1,a2,x3)−ui (0,0,x3)+ui (x1,x2,a3)
−ui (x1,x2,0)

ui (a1,a2,0)−ui (0,0,a3) = ui (a1,a2,x3)−ui (0,0,x3)−ui (x1,x2,a3)
+ui (x1,x2,0)

ui (a1,0,a3)−ui (0,a2,0) = ui (a1,0,x3)−ui (0,a2,x3)+ui (x1,x2,a3)
−ui (x1,x2,0)

ui (a1,0,0)−ui (0,a2,a3) = ui (a1,0,x3)−ui (0,a2,x3)−ui (x1,x2,a3)
+ui (x1,x2,0)

(62)

Applying the initial pore pressure in the fluid domain and these three groups of
coupling constraint equations on the boundary of solid domain, respectively, we
can calculate the initial strain ε̄0

i j of a unit cell by FEM, then Eqs.(58) can also be
determined. Finally, the effective elastic stiffness is obtained with the application
of Eq.(55) and note that the applied initial directional strain with respect to the
fictitious stress-free configuration is 1+ ε̄0

i j.

4 Numerical examples and discussions

In this section several numerical examples are presented to demonstrate the veri-
fication, validity and efficiency of these two proposed models. Numerical results
obtained are compared with those from other methods available in the literature,
and further combined effects of porosity, pore shape, pore pressure and fluid prop-
erty on the effective properties are investigated.
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Figure 5. Deformation configurations of a unit cell with a spherical fluid-filled pore 

( 015 , 0.1f f= % p = kφ ): (a) Fictitious stress-free configuration, (b) Initial configuration, (c)-(e) 

Current configuration for RVE subjected to initial uniaxial strains, where (c) x direction, (d) y 

direction and (e) x-y shear direction. 
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Figure 6. Variations of K  with pressures and porosities 

 
 

Figure 5: Deformation configurations of a unit cell with a spherical fluid-filled pore

In the present examples, effective properties of a fluid-filled rock are investigated.
The solid was assumed to be isotropic with elastic constants Es = 6.0GPa, vs = 0.25
(Xu, 1998). The pore fluid was assumed to have a bulk modulus of k f =2.25GPa.
The pore shape was chosen as spherical and ellipsoidal, respectively, for the two
examples, and the pores were periodically distributed in the solid matrix. Using
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the proposed micromechanical model and multiscale homogenization model, we
obtained the effective bulk and shear moduli. For the local deformations of unit cell
based on the homogenization method, the typical deformation configurations of the
central surface of the unit cell with a spherical fluid pore are shown in Fig 5. We
applied the initial pore pressure and the corresponding CCEs according to Eqs.(60)-
(62) in the fictitious stress-free configuration, and then the initial configuration of
the RVE is obtained. Simultaneously, the macroscopic initial strains ε̄0

i j produced
by the inner pressure were computed. To determine effective elastic tensors of unit
cell, we further applied the unit initial strain with respect to the initial configuration
in every direction and then different current configurations, as depicted in Figs.
5(c)-(e), were determined. Finally the effective elastic tensors were calculated by
using Eq.(55) and periodical boundary conditions.
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( 015 , 0.1f f= % p = kφ ): (a) Fictitious stress-free configuration, (b) Initial configuration, (c)-(e) 

Current configuration for RVE subjected to initial uniaxial strains, where (c) x direction, (d) y 

direction and (e) x-y shear direction. 
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Figure 6: Variations of K̄ with pressures and porosities

4.1 Effects of internal pressures on effective bulk modulus

For the effective properties of closed cell materials with internal pressure, the vari-
ations of effective bulk modulus K̄ with initial pressure and porosity are shown in
Figures 6-7. As shown in Figure 6, the initial pressure of the fluid can dramatically
strengthen the effective bulk modulus. A good agreement is achieved on the re-
sults between the micromechanical model and multiscale homogenization model,
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Figure 7. Comparisons of different models on fluid bulk modulus and pressure   
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especially when the volume fraction of pores is relatively small. Due to the lim-
itation of the micromechanical model, the differences between the two results are
relatively larger in the case of larger porosity. Figure 7 shows the comparisons
between the present models and other developed micromechanical models such as
the self-consistent and generalized self-consistent methods. The results obtained
from the present micromechanical model are very close to those of the generalized
self-consistent model, and both of them are a bit higher than those of self-consistent
model and the multiscale homogenization model. From Figure 7, we also find that
the bulk modulus has a nearly positive linear tendency with the initial pressure.

4.2 Effects of fluid properties on effective bulk and shear moduli

For the closed cell material with a constant pore volume fraction (φ f =10%), the
variations of effective bulk modulus K̄ with fluid bulk moduli and pressures are
described in Figure 8. The effective bulk modulus K̄ depends on both the initial
pressure and the fluid bulk modulus, whereas the effective shear modulus Ḡ is
independent of them. From the comparisons of different models, it is observed that
the results of the micromechanical model and generalized self-consistent models
agree well with the homogenization-based results. When the fluid bulk modulus
is relatively small, the self-consistent method can underestimate the overall bulk
modulus.

For the effective shear modulus, the comparisons between other models and the
multiscale homogenization model are also shown in Figure 9. Because the fluid
pore cannot resist shear deformations, the macroscopic shear modulus decreases
when the pore volume fraction increases. The effective shear modulus from the
micromechanical model and the generalized self-consistent models are much closer
to that from the multiscale homogenization model.

4.3 Effective properties of fluid-filled materials with ellipsoidal pores

Consider another example of fluid-filled materials with ellipsoidal pores, on the x1-
x2- x3 orthogonal coordinate system, the geometry of fluid pore in the unit cell is
analogous to a spheroid with the rotation axis parallel to the x1-axis. The equation
of the spheroid is described by

(x1)
2

a
+

(x2)
2

b
+

(x3)
2

b
≤ 1 (63)

where α = a/b is defined as the aspect ratio of the spheroid.

Similar to the first example discussed above, we calculated the effective elastic
tensors of the materials with ellipsoidal fluid pores by the present micromechan-
ical model and the multiscale homogenization model. Based on results from the
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  Figure 9. Shear modulus G  by different models 
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Figure 10. The deformation configurations of central surface of unit cell with an ellipsoidal fluid 

pore ( 020%, 0.1 , 2f f= p = k =φ α ): (a) Fictitious stress-free configuration, (b) Initial 

configuration, (c)-(e) Current configuration for RVE subjected to initial uniaxial strains, 

where (c) x direction, (d) y direction, and (e) x-y shear direction 

 
 

Figure 9: Shear modulus Ḡ by different models
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Figure 10: The deformation configurations of central surface of unit cell with an
ellipsoidal fluid pore

multiscale homogenization model, Figure 10 illustrates the evolution of local de-
formation configurations of the central surface of the unit cell with an ellipsoidal
fluid pore (φ f = 20%, p0 = 0.1k f ,α = 2.0).

The effective elastic coefficients C1111,C2222(C3333)of the closed-cell composite
against the initial pore pressures p0 are plotted in Figure 11. It can be seen that
effective elastic coefficients C1111 and C2222(C3333) monotonously increase when
the initial pore pressures increase. When the initial pressure p0 is relatively small,
the comparison between C1111 and C2222(C3333) has a large difference. The larger
the initial pressure, the smaller the gap between C1111 and C2222(C3333), which
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Figure 11: Variations of effective elastic coefficients C1111,C2222(C3333) with initial
pore pressures

implies that the contribution of p0 on C2222(C3333) is greater than on C1111.

For effective shear coefficients, e.g., G12(G31) and G23, the shear components of
effective elastic tensor are independent of fluid properties, and they only depend
on the volume fraction of pores. In the case of the aspect ratio ofα = 2, the re-
lationships between effective shear coefficients and the volume fraction of pores
are plotted in Figure 12. The straight line from the Mori-Tanaka model is a slightly
higher than the results from the multiscale homogenization model in the case of rel-
atively large pore fraction. It is observed that, with the increasing volume fraction
of pores, the effective shear moduli show a negative linear tendency, and the differ-
ence between G12(G31) and G23becomes larger, which indicates that the apparent
anisotropic shear properties are influenced by the presence of ellipsoidal pores.

5 Conclusions

Effective properties of composites with closed cells filled with pressurized fluid
are investigated using a micromechanical model and a multiscale homogenization
theory. By introducing the configuration variations, the explicit formulations of
effective properties with respect to the initial state are derived from the present
micromechanical model incorporating the fluid pressure effect. Alternatively, the
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Figure 12: Variations of effective shear moduli G12(G31),G23 with volume frac-
tions of pores

multiscale homogenization model, in conjunction with the corresponding boundary
conditions, is developed to numerically compute effective moduli of periodic ma-
terials by considering the coupling between solid deformations and fluid pressures.
Numerical examples are investigated with two types of pore geometries: sphere
and ellipsoid, and contributions of the initial fluid pressure in the pores on material
properties are incorporated to the proposed models successfully. To verify and val-
idate these two models, the results are compared and a good agreement is found.
Further the results show that the fluid pressure within the pores can strengthen the
overall bulk modulus, whereas it has no contribution to shear components of the
macroscopic elastic tensor due to the inherent characteristics of the fluid and pres-
sure. The strengthen effect of initial fluid pressure on macroscopic bulk modulus
can be attributed to the configurations evolution.

The present models can be extended for the determination of effective elasto-plastic
behavior of closed-cell porous materials in a nonlinear scope.
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