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Particle-Packaging Methods for Computational Modeling
of Bones

I. Pérez1, R. Roselló1, C. Recarey1 and M. Cerrolaza2

Abstract: Modeling the geometry and behavior of human bones is of the most
concern when dealing with bone remodelling (external and internal) and poroelastic
analysis. Complex geometries are frequently found in the human skeleton as well as
orthotropic behavior of bone tissue. Spongy bone has a completely different consti-
tution as compared with compact bone, which adds another relevant consideration
if we want to get reliable results in biomechanical analysis. The modeling of both
compact and spongy human-bone tissue is carried out by using packaging-particle
methods. The methods generate circles (2D domains) and spheres (3D domains)
in a random manner for the representation of non homogeneous and porous me-
dia. These methods were optimized with front-advance algorithms, which lead to a
significant reduction of the very large set of circles and spheres. The methods use
non-spherical particles (ellipsoids) to represent spongy bone. Some preliminary
models of human bones are discussed.

Keywords: particles, packaging methods, biomechanics modeling, spongy bone,
compact bone

1 Introduction

Several procedures to generate volumes formed by different types of particles can
be found in technical literature. Feng et al. (2002, 2003) discuss an efficient and
simple algorithm, which can be easily extended to other 2D particles. The authors
present a good survey of the main methods and their basis. The key idea of Feng’s
work is to continuously update (in a dynamic manner) the particle-front surround-
ing all other particles. The updating of this front significantly reduces the amount of
particles that must be considered in order when adding a new one. A local optimal

1 Centre for Computational and Numerical Methods in Engineering, Central University of Las Villas,
Santa Clara, Cuba. Email: {ipm-rosello-recarey@uclv.edu.cu} Phone: + 53 4 2224746

2 International Centre for Numerical Methods in Engineering, Polytechnic University of Catalonia,
Spain. Email: mcerrolaza@cimne.upc.edu (Corresponding author) Phone: + 34 93 4017440



184 Copyright © 2011 Tech Science Press CMES, vol.79, no.3, pp.183-200, 2011

density is then obtained and, as well, the packaging process is very fast. Also, the
area can be further enlarged by a boundary compression and by using gravitational
compaction, thus avoiding instabilities in some particles.

The extension of particle-packaging methods to 3D domains is not a trivial task.
The same authors in other publication (Han et al., 2005) proposed the extension
from 2D to 3D. In this case, it is only needed to detect the intersection of two par-
ticles and to find the center of the new particle to be added, in order that it remains
in contact with the previously found two particles. The ellipsoids packaging were
also described by Wang and Liang (1997), who presented a front-advance algo-
rithm, able to force the tangency between the new ellipse and the previous two.
Wang et al.(1999) have extended this approach to 3D, although in this last case, the
generation algorithm is somewhat slow. It is based on a kinematic scheme consider-
ing no-penetration of solid bodies. Ferrez (2001) discussed an interesting problem
in industry: to determine the optimum proportion of particles having three different
sizes in order to get a set of spheres with maximum density. This is a non-convex
optimization problem, with quadratic restrictions and linear objective function.

Löhner and Oñate (2004) described another general method, also based in front-
advancing techniques, to pack objects of arbitrary shapes. To get denser packaging,
two procedures are discussed: a) to define closer objects during the generation
and b) to move and to enlarge particles after the generation. The formulation is
illustrated with ellipses, sphere collisions or near-sphere shape collisions. When
the intersection of two particles is too complicated, it is recommended to represent
the bodies by spheres. As well, the methods presented in this work are very efficient
and general, since the procedures are suitable for several numerical methods, such
as finite elements or distinct elements. One disadvantage of these methods is that
control over the statistical distribution of particle dimensions may be lost during
the particle enlargement phase.

Pérez et al. (2009) present another method and a computer code, able to pack
several types of particles. The class-design implemented in this work allows the
inclusion of any new particle type. The algorithm needs: a) a procedure to force
the contact of the particle with other two particles (2D case) and three particles
(3D case) and b) an intersection detection algorithm. The author reports some
examples modeled by large sets of particles (O(6) and O(7)), with speeds around
1000 particles/sec. The global volume fraction was over 51%. These authors also
reported interesting results with direct applications to curves and surfaces as well.

There also exist generation schemes based on collective-rearrangement, such as dis-
cussed by Han et al. (2005). These authors developed an algorithm for the 3D pack-
aging of spheres, which is easily adapted to other types of particles. The algorithm
is based on a geometric idea of compression, by employing a neighbor efficient
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search method (Perkins and Williams, 2001). The technique is to generate sev-
eral layers of spheres which are compressed to fill the desired geometry. Another
collective-rearrangement technique is based on particles-layer generation which is
further compressed until an stable position is reached, by using the Conjugate-
Gradient Method (CGM) as suggested by Nandakumar et al. (1999). Particle-
packaging using spheres and non-convex polygons is presented in this work.

Maximum density is required in some practical applications. This can be achieved
by formulating the packaging-particle problem as an optimization problem. Sutou
and Dai (2002) worked with 3D packaging-particles (spheres) to fill the largest pos-
sible volume. This is a non-convex quadratic optimization problem with quadratic
restrictions and linear objective function (some variables are real and some others
are binary). It can also be shown, from a computational point of view, that the
proposed algorithm is efficient.

Ferrez and Liebling (2002) have presented formulations to obtain particle packs
with maximum density and low computational cost. This formulation is quite sim-
ilar to the one presented in Sutou and Dai (2002), except that now all the vari-
ables are real. As well, some interesting problems related to particle-packaging are
discussed. More recently, Siiriä and Yliruusi (2007) discussed the effects of fric-
tion, size and elasticity on the 3D packing of particles, showing that the higher the
friction the smaller the packing density. Their approach was based on Newtonian
mechanics. Jerier et al (2010) proposed a method to pack spherical particles using
controlled overlaping. The particles are defined and created into a tetrahedral mesh,
allowing to get very large scale packages.

The main goal of this paper is to introduce modifications to existing packaging
algorithms in order to efficiently model very complex geometries such as those
encountered in biomechanics and human tissue simulation.

2 Materials and Methods

2.1 Particle-packaging methods

Some particle-packaging algorithms are described in this work. For many applica-
tions, such as the Distinct Element Method (DEM), it is advisable that particles are
as close as possible, each other. Figure 1 illustrates a classical example of particles
modeling an irregular surface

Particle-packaging algorithms allowing up to 51% of volumen fraction (high den-
sity packs) are already developed and tested (Pérez et al., 2009). The algorithm
presented in this work is based on the front-advancing generation scheme of Feng
et al. (2002), and is summarized into three main steps:



186 Copyright © 2011 Tech Science Press CMES, vol.79, no.3, pp.183-200, 2011

 

 

 

 

 

 

 

 

Figure 1: Model of irregular surface: 336344 particles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Flow-chart of particles-packaging proposed algorithm 
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- Define the new particle p in contact with  ppiv 

and one of its neighbours, in such a way that 
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define the new particle

Stop 
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Cext= Cext – {ppiv} 

 

ppiv is surrounded by its neighbours or 

intersects the boundary geometry  

Figure 1: Model of irregular surface: 336344 particles

1. To create the new particle that will be added to the set of particles

2. Active front selection and determination of the new particle position, which
will be in contact with other particles forming part of the front: one in the
2D case or two in the 3D case.

3. Check if the new particle intersects other particles already created. If no
overlapping occurs then the new particle is “approved”, continuing with the
generation cycle until the volume is filled. Otherwise, the new particle posi-
tion is rejected and step 2 is repeated until an active front is not found.

4. To illustrate the algorithm operation, a flow-chart is included below (see fig-
ure 2)

The procedure described above needs to hold an active-front, which is continu-
ously updated either with each new particle or when finding a particle completely
surrounded by others. This can be considered as a front-advancing scheme. Cext

is the active front whereas ppiv is the pivot-particle, representing this part of the
front to grow immediately, since the new particle will be in contact with ppiv and
one of its neighbors as well. Pérez et al. (2009) have implemented this procedure,
also considering some variants of the method which lead to a different geometri-
cal patterns and different degrees of efficiency. The main advantage is that high
density packs can be generated, displaying a volume fraction of 51% and a particle
generation speed of 1260 part/sec.



Particle-Packaging Methods for Computational Modeling of Bones 187

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 ppiv= i   for any i  Cext (randomly selected) 
No Yes

Cext 

Initialization 

- Define 3 initial spheres being in contact  

- Assign  Cext = {1, 2, 3} 

- Generate the random parameters needed to 

define the new particle 

No 

- Define the new particle p in contact with  ppiv 

and one of its neighbours, in such a way that 

does not intersect any other particle and it is 

contained inside the domain 

- Cext= Cext  {p} 

- Generate the random parameters needed to 

define the new particle 

Stop 

Yes
Cext= Cext – {ppiv} 

 

ppiv is surrounded by its neighbours or 

intersects the boundary geometry  

Figure 2: Flow-chart of particles-packaging proposed algorithm

In the described algorithm, the advancing-fronts has triplets of spheres not neces-
sarily tangent each other. Other successful implemented variant includes a fourth
sphere tangent to the previous three (similar as described in Feng et. al, 2002).
This formulation gives average speeds over 3000 part/sec in most cases, and den-
sities close to 50% for a U[1,2] distribution of the spheres radii. The advantage
of the methods described in this section is that they allow the generation of high
density packs but they are not able to reproduce the bone trabeculas (spongy bone).
Thus, by introducing some modifications, we will be able to deal with complex
geometries usually encountered when modeling human bones.
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2.2 Geometric modeling of bone tissues

Spongy bone can be regarded as a continuum medium displaying elongated holes
following the stress lines, i.e., an orthotropic material (see for instance Goldstein
et. al., 1991). This has been modeled, in this work, by using packages having
either circular or spherical particles. The generated domain has elliptic holes with
their main axis following a predetermined orientation. This research has devel-
oped several methods to get particle-packages forming elliptic holes (resembling
the typical trabeculae organization). These holes are coated by a compact layer of
particles, which can be used to model spongy bone surrounded by cortical bone.
These methods are:

Method 1

Once a mesh of rectangles is superimposed to the particle pack, the ellipses are
defined inside the rectangles (having their axes parallel to the rectangle sides) and
then, the circles inside the ellipses are deleted. The ellipses can be defined by using
a binary matrix whose terms are calculated either deterministically or randomly.
For instance, see the figure 3 and its associated matrix.

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Uniform elliptic holes: matrix and graphic representation

Method 2

In this method, a large-size circles pack is superimposed over a small-size circles
pack. Then, the small circles inside the ellipses defined by the large circles are
deleted. As well, the ellipses has a small angle of inclination, defined randomly.
In figure 4, a 600 units-side square has been filled with circles of distributed radii,
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Figure 4: Random elliptic holes

following U[1,2]. The elliptic holes have been obtained from a circle package of
distributed radii following U[30,60].

Method 3

A particle Pi is randomly selected. Then another particle is defined concentrically
to Pi, having a radius randomly selected between the minimum and the maximum
radii of the particle-packaging. The selection of Pi is carried out by generating a
random number between one and the number of particles of the pack. The new
circle Pk which is defined over Pi, will be centered at Pi and its radius follows a
distribution whose maximum value (radiusmax) and minimum value (radiusmin) are
calculated by

radiusmax =
Rpartmax

Dr
(1)

radiusmin =
Rpartmin

Dr
(2)
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where Rpartmax and Rpartmin are the maximum and minimum particles radii and
Dr (density relation) is the relation between the porous and the dense zone of the
material being studied. In this manner, to compute the new radius (r’k) a random
number is generated, following the distribution U[radiusmax, radiusmin], as shown
in figure 5. 
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Figure 5: Concentric circle Pk over Pi

In the next step, all particles intersecting the new circle P’k go again to previous
step. This process is repeated until a predetermined quantity of the particles is
deleted. This quantity is calculated by multiplying the total number of particles
times the density relation. Two examples of particle-package are shown in figures
6 and 7.

Method 4

The radius threshold (Rt) is calculated from Rpartmaxand Rpartmin and the density
relation as follows:

Rt = Rpartmax−Dr ∗ (Rpartmax−Rpartmax) (3)

Then, all particles having a radius larger than Rt are deleted. Figures 8 and 9 display
preliminary results obtained in this research. It can be observed that the algorithm
allows the reduction of the density in an uniform way.

Method 5
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Figure 6: Particle pack obtained with Rpartmax =2.0 and Rpartmin =1.0. Dr=0.5

 

 

 

 

 

 

 

 

 Figure 7: Particle pack obtained with Rpartmax =2.0 and Rpartmin =1.0. Dr=0.3
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 Figure 8: Particle pack obtained with Rpartmax =2.0 and Rpartmin =1.0. Dr=0.3

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Particle pack obtained with Rpartmax =2.0 and Rpartmin =1.0. Dr=0.15
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The method proposed herein has been combined with a front-advancing technique.
Although it is recommended to reduce the material density below a percentage
value, it is not the best alternative for the problem discussed here. The method
builds a particle-packaging, which representation involves circles treated as par-
ticles as well as circles treated as holes. In this sense, each type of elements
(particles and holes) has its own distribution, and both will be built through the
front-advancing method. Each advance-front can be formed by either two holes,
two particles or by a particle and a hole. The geometric problem faced herein is
the same as in the classical variants, except that now all circles representing holes
will be deleted at the process end. To determine if the forthcoming element to be
added will represent a particle or a hole, a probability value is associated to each
element, having in mind that where Phole is the probability that the circle is a hole
and Ppart is the Phole + Ppart = 1 probability that the circle is a particle. In this
manner, by generating a random number between 0 and 1 and having the proba-
bility associated to one of these elements, it is possible to obtain porous packages
with a front-advancing technique. Figures 10 and 11 illustrate two of these porous
packages.

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Porous package obtained: radiushole ∼U[3,5], radiuspart ∼U[1,2], Phole
=0.02

There exists a relationship between the probabilities of particles and holes and the
final material density of the generated domain. To have some degree of control over
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Figure 11: Porous package obtained: radiushole ∼U[3,10], radiuspart ∼U[1,2], Phole
=0.02

 

 

 

 

 

 

 

 

 

 
Figure 12: Ellipse of axes a and b, circumscribed over a circle of radius b.
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Figure 13: Porous package obtained: radiushole ∼U[3,5], radiuspart ∼U[1,2], Phole
=0.02, φ ∼U [0◦,30◦]

this relationship it is required to carry out a statistical study, which is beyond the
objectives of this work.

Method 6

This method is an extension of method 5 and it is based on the apparent elliptic-
shape associated to bone trabeculae, which has been modeled with ellipses inclined
zero degrees. Circles representing the holes are generated inside the ellipses (see
figure 12) and then, all particles having its center inside any of these ellipses are
deleted, in such a way that elliptic holes remain into the circled-particles packaging.

As shown in figure 12, ellipses are circumscribed around large circles, being coin-
cident the circle radius and the ellipse minor axis. Figures 13 and 14 show particle-
packages obtained with method 6.

3 Results: Modeling of Human Bones

The already described methods have been extended to three-dimensional domains,
by creating ellipsoidal voids in the particle-package. An ellipsoid can be repre-
sented by the parameters {xc,yc,zc, a, b, θ z, θ x}, where x, y and z are the center
coordinates, a and b are the ellipsoid axes (the two minor axes are similar) and θz,
θx are the angles of inclination of the ellipsoid.
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 Figure 14: Porous package obtained: radiushole ∼U[3,5], radiuspart ∼U[1,2], Phole
=0.02, φ ∼U [30◦,90◦]

To obtain the initial geometry a small cube was filled with spheres. Then, some
spheres were removed thus leaving ellipsoidal holes where the distributions θz, θx

were U[0, 2π] and U[-εz, εz] respectively, being εz=0.358. Figure 15 displays a thin
slice of this cube. It can be noted in the figure that the external part has no holes and
it works to model the cortical bone, whereas the internal part has elliptic holes, thus
being suitable to model spongy bone. These aspects are of the most concern when
dealing with internal and external bone remodeling (Cowin and Hegedus, 1976;
Martínez and Cerrolaza, 2006; Martínez et al., 2006) and poroelastic bone analysis
(González et al., 2009).

The algorithm proposed in this work is used to generate particle-packages for mod-
eling three human bones: skull, hip and mandible. All of these bones have complex
geometries. The three dimensional domains are first represented with a boundary
element mesh and then modeled with the particle-packing algorithm, as shown in
figures 16, 17 and 18.

Good results have been obtained, but however some aspects must be improved. For
instance, it is mandatory to carry out extensive studies on the trabeculas shape, in
order to model them in a better way. Other relevant subject is the CPU time for
models generation. When the external boundary is not too complex, large sets of
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Figure 15: Extension to 3D of method 6

 

 

 

 

 
 

Figure 16: Human skull: a) boundary element mesh b) 1101921 particles model

particles can be obtained in a very efficient way. For instance, a simple cube is filled
with 1931732 particles in approximately 85 minutes using a personal computer of
2.66 GHz. However, for real complex geometries as shown in figures 16-18, a lot
of time is employed to check whether a point is inside (or not) of the 3D boundary.
Then, it is necessary to implement methods for improving the efficiency of the
algorithm (see Goodman and Rourke, 1997). This is currently being done.
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Figure 17.   Human hip: a) boundary element mesh  b) 349748 particles model 

 

Figure 17: Human hip: a) boundary element mesh b) 349748 particles model

 

 

 

 

 

 

 

 

 

 
Figure 18: Human mandible: a) boundary element mesh b) 73605 particles model

4 Discussion and Conclusions

In this research some particle-packaging methods for simulations and analysis with
the Discret Element Method of human bones have been developed and discussed.
The methods allow the user to consider very complex geometries and orthotropy.
The methods were validated by modeling the human skull, hip and mandible.

When dealing with spongy (trabecular) bone, the use of elliptical holes carried
out after very compact packages of circles or spheres was extremely useful for
modeling this kind of bone. On the other side, compact bone has been successfully
modeled using very dense particle-packages. The denser the package obtained, the
better the results obtained for compact bone. This is the first step to model and to
analyze complex geometries of human bones, just before the structural simulation.

The spatial orientation of the ellipsoids is of the most concern to deal with the
modeling of bone mechanical properties. Spheres are not recommended to achieve
this goal.
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Further research is deserved (and mandatory) to get a more precise understanding
of spongy bone behavior and geometry, in order to obtain more accurate statistical
distributions for the particles, since there is no a direct relationship between the
dimensions of the particles and many geometric and mechanical characteristics of
spongy bone.

Perhaps, one of the key aspects regarding the efficiency of this kind of algorithms is
to optimize the verification if a particle is inside (or not) of the 3D boundary. This
is a time consuming process and further mathematical and computational effort is
being done to reduce the CPU time in this step.
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