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A Numerical Technique Based on Integrated RBFs for the
System Evolution in Molecular Dynamics

N. Mai-Duy1, T. Tran-Cong1 and N. Phan-Thien2

Abstract: This paper presents a new numerical technique for solving the evo-
lution equations in molecular dynamics (MD). The variation of the MD system is
represented by radial-basis-function (RBF) equations which are constructed using
integrated multiquadric basis functions and point collocation. The proposed tech-
nique requires the evaluation of forces once per time step. Several examples are
given to demonstrate the attractiveness of the present implementation.
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1 Introduction

Based on the criterion of timescale, fluid simulations can be categorised into three
regions: atomistic (of the order of nanoseconds), mesoscopic (microseconds) and
macroscopic (seconds). On a macroscopic scale, a fluid can be modelled as a
continuum and its motion is adequately described by the Navier-Stokes equations
which can be solved by traditional discretisation techniques such as finite-difference
and finite-volume methods (e.g. [Roache (1980)]). On a microscopic scale, one
can employ molecular dynamics (MD) simulation methods, which allow all of the
actual atoms to be represented explicitly, thus to have the ability to provide very
detailed information about the behaviour of complex fluid systems (e.g. [Haile
(1992); Leach (2001); Rapaport (2004)]). On a mesoscopic scale, simulations can
be conducted using dissipative particle dynamics (DPD), where each particle is
regarded as a group of molecules (e.g. [Espanol and Warren (1995)]).

In MD and DPD, a large number of particles are usually required. The time evo-
lution of particles is described by the Newton’s equations of motion which can
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be solved numerically. The essential idea of numerical methods is that the time
domain is represented by a set of time steps over which the evolution equations
are integrated. Considerable effort has been made to derive effective and efficient
numerical schemes for the evolution of the particle system.

Radial basis function networks (RBFNs) have emerged as a powerful numerical
tool for the solution of differential equations (e.g. [Fasshauer (2007)]). These ap-
proximators are able to work well (i.e. providing fast convergence) with gridded
and scattered data points. The RBF approximations can be constructed through dif-
ferentiation (DRBFNs) (e.g. [Kansa (1990)]) or integration (IRBFNs) (e.g. [Mai-
Duy and Tran-Cong (2001); Mai-Duy and Tran-Cong (2003); Mai-Duy (2005)]).
The latter has the ability to avoid the reduction in convergence rate caused by dif-
ferentiation and to provide an effective way of implementing derivative boundary
values.

This study is concerned with the application of IRBFNs for solving the evolution
equations in MD. The paper is organised as follows. A brief review of traditional
numerical solvers is given in Section 2. The proposed IRBF method is described
in Section 3 and then verified numerically in Section 4. Section 5 concludes the
paper.

2 Traditional numerical solvers

The equations of motion of particles can be simply written in the form

φ̈(t) = F(φ(t)) (1)

where φ is the field variable representing a component of the position vector; t the
time; F a known function; and dots represent derivatives with respect to time. In
solving (1), the evaluation of F (force) is known to dominate the computational
time. Any numerical solver for the MD equations should be designed to keep
the number of force evaluations as small as possible. Verlet-based and predictor-
corrector integration methods, which require the evaluation of forces once per time
step, have been widely used in MD.

2.1 Verlet-based methods

The original Verlet algorithm [Verlet (1967)] can be described as

φ(t +h) = 2φ(t)−φ(t−h)+h2F(φ(t)) (2)

where h denotes the size of the time step used for the numerical integration.

Implementation of (2) is straightforward. However, its RHS is the sum of a term
of order h2 and terms of order h0. As a result, only a few significant figures of
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F(φ(t)) are actually utilised, which may lead to a loss of precision. There is also
the lack of an explicit velocity term in the equation and one thus has to face diffi-
culties in certain applications. The velocity can be evaluated using the following
approximation

φ̇(t) =
φ(t +h)−φ(t−h)

2h
(3)

which is only carried out after the position at the next time step is obtained. The
following modified Verlet algorithms eliminate these types of problems.

Leap-frog algorithm: [Hockney (1970)]

φ̇(t +h/2) = φ̇(t−h/2)+hF(φ(t)) (4)

φ(t +h) = φ(t)+hφ̇(t +h/2) (5)

Velocity Verlet algorithm: [Swope, Andersen, Berens, and Wilson (1982)]

φ(t +h) = φ(t)+hφ̇(t)+(h2/2)F(φ(t)) (6)

φ̇(t +h) = φ̇(t)+(h/2) [F(φ(t))+F(φ(t +h))] (7)

2.2 Predictor-corrector integration methods

The predictor-corrector methods typically involve three basic steps [Gear (1971)].
First, new positions, velocities, etc., are predicted using the values of the past

φ(t +h) = φ(t)+hφ̇(t)+h2
k−1

∑
i=1

αiF(φ(t +[1− i]h)) (8)

hφ̇(t +h) = φ(t +h)−φ(t)+h2
k−1

∑
i=1

α
′
i F(φ(t +[1− i]h)) (9)

Second, the forces are evaluated at the new positions to give accelerations F(φ(t +
h)). Third, by taking into account the difference between the predicted and com-
puted accelerations, the positions, velocities, etc., are corrected through

φ(t +h) = φ(t)+hφ̇(t)+h2
k−1

∑
i=1

βiF(φ(t +[2− i]h)) (10)

hφ̇(t +h) = φ(t +h)−φ(t)+h2
k−1

∑
i=1

β
′
i F(φ(t +[2− i]h)) (11)
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In (8)-(11), αi, α
′
i , βi and β

′
i are the coefficients that satisfy

k−1

∑
i=1

(1− i)q
αi =

1
(q+1)(q+2)

, q = 0,1, · · · ,k−2 (12)

k−1

∑
i=1

(1− i)q
α
′
i =

1
q+2

(13)

k−1

∑
i=1

(2− i)q
βi =

1
(q+1)(q+2)

(14)

k−1

∑
i=1

(2− i)q
β
′
i =

1
q+2

(15)

In the case of k = 4, {αi}3
i=1 = 1/24×{19,−10,3}, {α ′i}3

i=1 = 1/24×{27,−22,7},
{βi}3

i=1 = 1/24×{3,10,−1} and {β ′i }3
i=1 = 1/24×{7,6,−1}. It is noted that the

force function F is evaluated using the results of the predictor step rather than the
corrected values. Variations of this method include applying the corrector more
than once.

3 Proposed IRBF technique

In this section, a numerical procedure based on IRBFNs and point collocation for
the solution of (1) on a set of points is presented. Integration constants arising from
the RBF construction process allow more preceding information to be incorporated
into the discrete system for the solution at the next time level.

3.1 Constructing the approximations

Second-order derivative of φ is decomposed into RBFs

φ̈(t) =
n

∑
i=1

wigi(t) (16)

where {wi}n
i=1 is the set of network weights and {gi(t)}n

i=1 the set of RBFs. Ex-
pressions for the first-order derivative and function itself are then obtained through
integration

φ̇(t) =
n

∑
i=1

wiHi(t)+ c1 (17)

φ(t) =
n

∑
i=1

wiH̄i(t)+ c1t + c2 (18)
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where Hi(t) =
∫

gi(t)dt, H̄i(t) =
∫

Hi(t)dt and (c1,c2) are the constants of integra-
tion.

A distinguishing feature here is that the present coefficient vector, (w1, · · · ,wn,c1,c2)T ,
is larger than that, (w1, · · · ,wn)T , of the conventional/differential approach.

3.2 Discretising the equations of motion

We implement two IRBFN versions, namely 2-point and 4-point schemes, which
correspond to, in terms of nodes, Verlet-based and predictor-corrector (k = 4) meth-
ods, respectively. It can be seen that the values of φ , φ̇ and φ̈ at t, t−h, t−2h, etc.,
are given. Our objective here is to find the values of φ , φ̇ and φ̈ at t +h.

3.2.1 Two-point IRBFN scheme

The IRBFN approximations are constructed over two points (n = 2), t and t + h.
Owing to the presence of the integration constants, one can incorporate not only
φ(t) and φ̈(t) but also φ̇(t) into the IRBFN system in an exact manner

 φ(t)
φ̈(t)
φ̇(t)

= A1


w1
w2
c1
c2

 (19)

where A1 is defined as

A1 =

 H̄1(t), H̄2(t), t, 1
g1(t), g2(t), 0, 0
H1(t), H2(t), 1, 0

 (20)

Solving (19) gives
w1
w2
c1
c2

= A −1
1

 φ(t)
φ̈(t)
φ̇(t)

 (21)

The new position is then obtained

φ(t +h) = [H̄1(t +h), H̄2(t +h), t +h,1]A −1
1

 φ(t)
φ̈(t)
φ̇(t)

 (22)

from which one can calculate the new acceleration φ̈(t +h).
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To compute φ̇(t +h), an IRBFN system is constructed as follows
φ(t +h)
φ̈(t +h)

φ̈(t)
φ̇(t)

= A2


w1
w2
c1
c2

 (23)

where A2 is defined as

A2 =


H̄1(t +h), H̄2(t +h), t +h, 1
g1(t +h), g2(t +h), 0, 0

g1(t), g2(t), 0, 0
H1(t), H2(t), 1, 0

 (24)

In (23), there are four values included instead of the usual two. These values are
imposed exactly owing to the presence of c1 and c2.

The value of the new velocity is then determined through

φ̇(t +h) = [H1(t +h),H2(t +h),1,0]A −1
2


φ(t +h)
φ̈(t +h)

φ̈(t)
φ̇(t)

 (25)

3.2.2 Four-point IRBFN scheme

The IRBFN approximations are constructed over four points (n = 4), {t− 2h, t−
h, t, t +h}. The solution procedure is similar to that of the 2-point IRBFN scheme.
The IRBFN approximations for the position and velocity are of the forms


φ(t−2h)
φ̈(t−2h)
φ̈(t−h)

φ̈(t)
φ̇(t)

= A1



w1
w2
w3
w4
c1
c2

 (26)



φ(t +h)
φ̈(t +h)

φ̈(t)
φ̈(t−h)
φ̈(t−2h)

φ̇(t)

= A2



w1
w2
w3
w4
c1
c2

 (27)
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where

A1 =


H̄1(t−2h), H̄2(t−2h), H̄3(t−2h), H̄4(t−2h), t−2h, 1
g1(t−2h), g2(t−2h), g3(t−2h), g4(t−2h), 0, 0
g1(t−h), g2(t−h), g3(t−h), g4(t−h), 0, 0

g1(t), g2(t), g3(t), g4(t), 0, 0
H1(t), H2(t), H3(t), H4(t), 1, 0

 (28)

and

A2 =



H̄1(t +h), H̄2(t +h), , H̄3(t +h), H̄4(t +h) t +h, 1
g1(t +h), g2(t +h), g3(t +h), g4(t +h), 0, 0

g1(t), g2(t), g3(t), g4(t), 0, 0
g1(t−h), g2(t−h), g3(t−h), g4(t−h), 0, 0
g1(t−2h), g2(t−2h), g3(t−2h), g4(t−2h), 0, 0

H1(t), H2(t), H3(t), H4(t), 1, 0

 (29)

The IRBFN formulas for computing the new position and velocity thus become

φ(t +h) = [H̄1(t +h), H̄2(t +h), H̄3(t +h), H̄4(t +h), t +h,1]A −1
1


φ(t−2h)
φ̈(t−2h)
φ̈(t−h)

φ̈(t)
φ̇(t)


(30)

φ̇(t +h) = [H1(t +h),H2(t +h),H3(t +h),H4(t +h),1,0]A −1
2



φ(t +h)
φ̈(t +h)

φ̈(t)
φ̈(t−h)
φ̈(t−2h)

φ̇(t)


(31)

One common feature in the two present IRBFN schemes is that information about
the governing equation (1) is used as much as possible. For example, in (23) and
(27), (1) is collocated at every interpolation point.

With (18), (17) and (16), one is also able to observe the variation of φ and its
derivatives between t and t + h. In the proposed technique, the approximations
are of high order and one is able to incorporate more preceding information into
the discrete system in a proper manner. Unlike the predictor-corrector method,
the present value of φ at t + h is unique. Since the values of φ , φ̇ and φ̈ at t + h
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are imposed at the same time ((23) and (27)), their relations, i.e. φ̇ = dφ/dt and
φ̈ = d2φ/dt2, are satisfied exactly.

It can be seen that the process of constructing the IRBFN approximations needs
be done only once. The resultant IRBF approximations can be used for every time
step and for every particle in the system. At each time step, the present technique
requires one force evaluation and the multiplication of matrices and vectors whose
sizes are quite small.

4 Numerical Results

The present IRBFN schemes are implemented with the multiquadric (MQ) function
whose form is

gi(t) =
√

(t− ti)2 +a2
i (32)

where ti and ai are the centre and width of the ith MQ-RBF, respectively. The latter
is simply chosen according to the relation

ai = βh (33)

where β is a positive number. The RBF width can be used to influence the accuracy
of a RBF solution. The best accuracy is often achieved when the value of ai is
large. On the other hand, the matrix condition number grows as the number of
RBF centres and the RBF width increase. This inter-dependence is known as the
uncertainty or trade-off principle. Fortunately, the number of MQ centres in the
present schemes are relatively low (only two and four) which allow larger values of
β to be used here.

4.1 Example 1

Consider the following ODE of motion for a one-dimensional harmonic oscillator

φ̈(t) =−(2π)2
φ(t) (34)

This problem was suggested as a simple exact test for molecular dynamics algo-
rithms [Venneri and Hoover (1987)]. The analytic solution can be verified to be
φe(t) = cos(2πt).
Calculations are carried out over 0≤ t ≤ 1 with various time steps
{1/10,1/14,1/18,1/22, · · · ,1/102}.
Tables 1 and 2 present the relative L2 error, denoted by Ne(φ), of the computed
solution obtained by different techniques.
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Table 1: 1D Harmonic oscillator, two interpolation points: discrete relative L2 error

Ne(φ)
h Verlet Leap-frog vVerlet Present

1.0000e-1 5.1834e-1 5.5036e-2 5.5036e-2 5.4507e-2
7.1429e-2 3.9505e-1 2.8318e-2 2.8318e-2 2.7777e-2
5.5556e-2 3.1659e-1 1.7274e-2 1.7274e-2 1.6725e-2
4.5455e-2 2.6374e-1 1.1638e-2 1.1638e-2 1.1085e-2
3.8462e-2 2.2590e-1 8.3738e-3 8.3738e-3 7.8166e-3
3.3333e-2 1.9753e-1 6.3139e-3 6.3139e-3 5.7541e-3
2.9412e-2 1.7548e-1 4.9307e-3 4.9307e-3 4.3690e-3
2.6316e-2 1.5785e-1 3.9572e-3 3.9572e-3 3.3938e-3
2.3810e-2 1.4344e-1 3.2461e-3 3.2461e-3 2.6814e-3
2.1739e-2 1.3143e-1 2.7108e-3 2.7108e-3 2.1451e-3
2.0000e-2 1.2129e-1 2.2979e-3 2.2979e-3 1.7312e-3
1.8519e-2 1.1259e-1 1.9726e-3 1.9726e-3 1.4051e-3
1.7241e-2 1.0506e-1 1.7118e-3 1.7118e-3 1.1437e-3
1.6129e-2 9.8473e-2 1.4995e-3 1.4995e-3 9.3081e-4
1.5152e-2 9.2663e-2 1.3244e-3 1.3244e-3 7.5518e-4
1.4286e-2 8.7501e-2 1.1783e-3 1.1783e-3 6.0860e-4
1.3514e-2 8.2883e-2 1.0551e-3 1.0551e-3 4.8498e-4
1.2821e-2 7.8729e-2 9.5026e-4 9.5026e-4 3.7976e-4
1.2195e-2 7.4971e-2 8.6030e-4 8.6030e-4 2.8946e-4
1.1628e-2 7.1555e-2 7.8254e-4 7.8254e-4 2.1139e-4
1.1111e-2 6.8437e-2 7.1487e-4 7.1487e-4 1.4344e-4
1.0638e-2 6.5580e-2 6.5561e-4 6.5561e-4 8.3918e-5
1.0204e-2 6.2951e-2 6.0343e-4 6.0343e-4 3.1496e-5
9.8039e-3 6.0526e-2 5.5724e-4 5.5724e-4 1.4917e-5

O(h0.94) O(h1.98) O(h1.98) O(h3.01)



232 Copyright © 2011 Tech Science Press CMES, vol.79, no.4, pp.223-236, 2011

Table 2: 1D Harmonic oscillator, four interpolation points: discrete relative L2 error

Ne(φ)
h Predictor-corrector Present

1.0000e-1 2.7464e-2 1.0063e-2
7.1429e-2 9.3827e-3 2.2737e-3
5.5556e-2 4.1403e-3 7.8787e-4
4.5455e-2 2.1678e-3 3.4399e-4
3.8462e-2 1.2735e-3 1.7581e-4
3.3333e-2 8.1145e-4 1.0037e-4
2.9412e-2 5.4898e-4 6.2104e-5
2.6316e-2 3.8886e-4 4.0966e-5
2.3810e-2 2.8561e-4 2.8459e-5
2.1739e-2 2.1601e-4 2.0629e-5
2.0000e-2 1.6737e-4 1.5520e-5
1.8519e-2 1.3234e-4 1.1952e-5
1.7241e-2 1.0647e-4 9.4772e-6
1.6129e-2 8.6944e-5 7.6480e-6
1.5152e-2 7.1924e-5 6.4127e-6
1.4286e-2 6.0182e-5 5.4785e-6
1.3514e-2 5.0867e-5 4.5454e-6
1.2821e-2 4.3383e-5 4.1820e-6
1.2195e-2 3.7301e-5 3.3929e-6
1.1628e-2 3.2306e-5 3.1211e-6
1.1111e-2 2.8166e-5 2.8360e-6
1.0638e-2 2.4705e-5 2.4722e-6
1.0204e-2 2.1790e-5 2.4024e-6
9.8039e-3 1.9316e-5 2.2701e-6

O(h3.11) O(h3.58)
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Results by the 2-point IRBFN scheme (β = 16) are compared with those predicted
by the Verlet, leap-frog and velocity Verlet algorithms (Table 1).

Results by the 4-point IRBFN scheme (β = 31) are compared with those obtained
by the predictor-corrector integration method with k = 4 (Table 2). Effect of β on
the solution accuracy is investigated in Figure 1, showing that the IRBFN results
are not much different for various large values of β .
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)

Figure 1: 1D Harmonic oscillator, four interpolation points: Effect of β on the
solution accuracy.

It can be seen that the present schemes gives superior accuracy and faster con-
vergence than the traditional methods for the same number of interpolation points
used.

4.2 Example 2

Consider a three-dimensional system of MD particles which is allowed to evolve
to equilibrium. We adopt the Weeks-Chandler-Anderson (WCA) potential, i.e. a
modification of the Lennard-Jones potential,

u(ri j) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

+ ε, ri j < rc = 21/6
σ (35)
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where ri j = ‖ri j‖, in which ri j = ri− r j and ri and r j are the position vectors of
particles i and j, respectively, ε is a parameter characterising the strength of the
interaction, σ the molecular length scale and rc the cut-off distance, i.e. u(ri j) = 0
when ri j ≥ rc. Parameters used here are the same as those in Problem 1 (Chapter 3)
[Rapaport (2004)]. We employ an array of 5×5×5 unit cells and the density of 0.8.
The initial state is a simple cubic lattice so that the system involves 125 particles.
Simulations are carried out with several time steps. For comparison purposes, the
leap-frog and predictor-corrector (k = 4) methods are also employed.
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Figure 2: Energy drift for different time steps by the leap-frog (top) and two-point
IRBFN (bottom) methods. It is noted that solid line represents the case of h =
0.00125, dashed h = 0.0025, dotted h = 0.005, dashdot h = 0.01 and * h = 0.02.
Both plots have the same coordinate scaling.

Results concerning energy conservation are presented in Figures 2 and 3. A total
run involves 200 time units and results are stored at every ten time units. In the case
of two-point discretisations (Figure 2a), the two-point IRBFN scheme (β = 16) and
the leap-frog method both perform well. The total energy is well conserved with
time for a wide range of time step from 0.00125 to 0.01 and slightly increases for
a large time step of 0.02. In the case of four-point discretisations (Figure 2b), for a
given degree of energy conservation, large time steps can be used with the proposed
scheme. For the predictor-corrector method, there are noticeable increases in the
total energy with time for time steps of 0.0025 and 0.005. In contrast, the 4-point
IRBFN scheme (β = 31) works well for all time steps of 0.00125, 0.0025, 0.005
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Figure 3: Energy drift for different time steps by the predictor-corrector (k = 4)
(top) and four-point IRBFN (bottom) methods. It is noted that solid line represents
the case of h = 0.00125, dashed h = 0.0025, dotted h = 0.005 and dashdot h = 0.01.
Both plots have the same coordinate scaling.

and 0.01.

5 Concluding remarks

In this paper, a new numerical technique for solving the evolution equations in
molecular dynamics is presented. The proposed technique is based on high-order
integrated RBFs and point collocation. For a given number of interpolation points,
the proposed technique has the ability to incorporate more preceding information
owing to the presence of the constants of integration. Numerical examples show
that the proposed technique is more accurate and stabler than traditional techniques.
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