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Unit Setting Method to Impose EBCs in Meshless Methods

W.L. Yang1, Y.F. Nie2 and Y.T. Wu1

Abstract: Up to now, some methods have been proposed to impose essential
boundary conditions (EBCs) in meshless methods to solve partial differential equa-
tions system. Based on the theory analysis about moving least square (MLS) ap-
proximation and numerical experimentation results, a very simple method to im-
pose EBCs in element-free Galerkin methods, which is the same easy as in finite
element methods, is posed here. Compared with Lagrange multiplier method, the
new method is simple and gives better results at the distributed nodes. The new
method dues to a view point, different from normal understanding, that taking gen-
eralized parameters in MLS approximations as the approximate values of the un-
known field function at the nodes. This key view point leads to directly using unit
setting method or large number setting method in the discrete equations system to
impose EBCs in element-free Galerkin (EFG) method.

Keywords: moving least square approximation, generalized parameter, element-
free Galerkin method, essential boundary conditions.

1 Introduction

The finite element method and the finite difference method which are based on
meshes are the most widely used numerical techniques for modeling and engineer-
ing analysis. However, it is common knowledge that high quality mesh generation
is a far more time-consuming task in these methods, so it has become necessary
to explore other methods which are simple and efficient. Meshless methods, or
meshfree methods, as another kind of numerical methods without the requirement
of mesh generation, have attracted much attention in recent decades [Atluri (2004);
Zhang and Liu (2004); Zhang, Song and Lu (2003)]. Having good adaptability
on crack propagation simulation, analysis of large deformation and moving bound-
ary problem, meshless methods use separated nodes, not mesh to represent the
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problem-domain. Element-free Galerkin (EFG) method [Belytschko, Lu and Gu
(1994)] is one of the meshless methods which is based on moving least square
(MLS) approximation [Lancaster and Salkauskas (1981)] and global Galerkin vari-
ation formulation. MLS approximation, initially used in data fitting and surface
construction, can generate smoother approximate field functions than piecewise
polynomial interpolation used in finite element methods. So, it is usually taken to
construct the trial and test functions in meshless methods. In EFG, the approximate
function uap(x) of the unknown field function can be defined by

uap(x) =
N

∑
i=1

φi(x)ui (1)

where N is the number of nodes discreted in the solving domain; φi(x)(i = 1,2, · · · ,
N) are nodal shape functions of MLS approximation; and data ui(i = 1,2, · · · ,N)
are called generalized parameters in the existing literatures. But as a fitting method
which does not force to realize interpolation, MLS approximation does not pos-
sess the Kronecker delta property generally, that is uap(xi) 6= ui. And therefore,
it is not easy to impose essential boundary conditions (EBCs) directly. Many re-
searchers have put their effort on it [Fernández-Méndez and Huerta (2004)], and
some specific techniques have been developed for the implementation of essential
boundary conditions in EFG method, such as, the Lagrange multiplier method [Be-
lytschko, Lu and Gu (1994); Fernández-Méndez and Huerta (2004)], the penalty
method [Zhu and Atluri (1998)], Nitsche’s method [Griebel and Schweitzer (2002);
Babuska, Banerjee and Osborn (2002)], method coupling to finite elements [Huerta
and Fernández-Méndez (2000)] and so on.

As mentioned in the literature [Fernández-Méndez and Huerta (2004)], there are
various difficulties on the above mentioned methods. For example, by introducing
new multiplier variables, Lagrange multiplier method enlarges the dimension of
linear equations, and at the same time, it is a difficult task to verify the LBB condi-
tion to ensure the uniqueness of the solution. The penalty method is in a dilemma of
choosing proper penalty factor: if the value of the factor is too large, the matrix of
the discrete linear equations is usually ill conditioned; however, if it is too small, the
Dirichlet boundary condition is weakly imposed. Although Nitsche’s method does
not suffer of ill-conditioning, each particular problem has different modification,
so this method is not easy to implement. Implementation of the method coupling
to finite elements in meshless methods leads to a complex process. In a word, up to
now, an ideal method to realize EBCs in meshless methods does not appear. Based
on the theory analysis about MLS approximation and numerical experimentation
results, and through changing our traditional view, this paper points out that EBCs
in EFG method can be imposed the same way easily as in finite element methods.
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2 Analysis on MLS approximation scheme and the new method

2.1 The MLS approximation scheme

Moving least squares may be considered as one of the most effective methods to ap-
proach unknown field function. The nodal shape functions {φi(x)}N

i=1 are obtained
by minimizing a quadratic functional, defined as

J(a) =
N

∑
i=1

wi(x)[pT(xi)a(x)−ui]2 (2)

for each point x in the domain. Here, the approximate function is as follow

uap(x) =
m

∑
i=1

ai(x)pi(x) = pT(x)a(x) (3)

where pT(x) = [p1(x), p2(x), · · · , pm(x)] is a complete monomial basis of order m;
a(x) = [a1(x),a2(x), · · · ,am(x)]T is the coefficient vector; wi(x) is the weight func-
tion associated with node i. If u(xi) = ui(i = 1,2, · · · ,n) are known, Eq. 2 stands
for minimizing weighted discrete error of quadratic functional J with respect to a.
The stationarity of J with respect to a(x) leads to the following linear equations

∂J
∂a

= A(x)a(x)−B(x)u = 0 (4)

that is

A(x)a(x) = B(x)u (5)

where A(x) and B(x) are the matrices defined by

A(x) =
N

∑
i=1

wi(x)p(xi)pT(xi)

B(x) = [w1(x)p(x1),w2(x)p(x2), · · · ,wN(x)p(xN)]

Solving for a(x) from Eq. 5, we obtained

a(x) = A−1(x)B(x) ·u (6)

From Eq. 6, we can see that through minimizing the quadratic functional J, a(x)
is a linear combination of generalized parameters {ui}n

i=1. Substituting a(x) into
Eq. 3 gives the approximate expression Eq. 1 for u(x) at the neighborhood of any
point x. Because the minimum value of J may not be zero, that is, approximation
function uap(x) may not equal to generalized parameters ui = u(xi) at the node xi,
so MLS approximation is a method of data fitting but not interpolation.
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2.2 Analysis on MLS approximation

The approximate function developed by MLS method can be used in the following
way if the sampling data {ui}N

i=1 are known: (1) evaluate approximate value of
the non-sampling point by Eq. 1 naturally because of no other choice; (2) in the
oversight of the observation error, the data satisfy ui = u(xi)(i = 1,2, · · · ,N), so it
is wise to use these sampling data {ui}N

i=1 directly instead of evaluation by Eq. 1
like non-sampling points, and the idea help to avoid further error induced by MLS
approximation. That is to say sampling data are more reliable than approximate
value calculated by MLS approximation. The viewpoint is in coincidence with the
presenter’s who propose the MLS approximation.

While MLS method is taken to approximate the unknown field function which
yields to partial differential equations system or variational principle, the sampling
data ui = u(xi)(i = 1,2, · · · ,N) are unknown. Thus we can only take them as un-
determined parameters to develop approximate expression, i.e. Eq. 1, by MLS
method. Through solving the linear equations system developed by variational
principle with finite freedom, we can only get the approximate values {ūi}N

i=1 of
{ui}N

i=1 which are described in Eq. 1. The error of {ūi}N
i=1 is induced by approxi-

mate of unknown field function, numerical integration, and discretization of vari-
ational principle etc. The fact means that when the undetermined parameters are
evaluated from the linear equations system, the MLS approximate function is de-
veloped by minimizing the following quadratic functional

J(a) =
N

∑
i=1

wi(x)[pT(xi)a(x)− ūi]2 (7)

The approximate function can also be expressed similarly as Eq. 3, that is

uap(x) =
m

∑
i=1

ai(x)pi(x) = pT(x)a(x) (8)

where with substituting Eq. 7 into Eq. 4, the same calculation process(Eq. 4-Eq. 6)
is used for evaluating a(x), and we get

a(x) = A−1(x)B(x) · ū (9)

The implementation of the EFG method on partial differential equations can be
carried out according to the following chart.

In Fig. 1, compound Gauss quadrature formula is used in the integration scheme to
evaluate the integrals. Usually, Gauss points are not sampling points, so we have
to evaluate the integrals on Gauss points by virtue of the approximate function, i.e.
Eq. 1.
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Figure 1: The flow chart of EFG method

In the usual literature, they take nodes value which calculated from approximate
function, i.e. Eq. 8 as approximate value of nodes. For this reason, with the fact that
uap(xi) 6= ūi, EFG method complicates the imposition of essential boundary condi-
tion. Like the statement in the first paragraph of section 2.2, generalized parameters
{ūi}N

i=1 are the better approximate value of nodes compared with {uap(xi)}N
i=1, for

its avoidance error from MLS approximation. Furthermore, the above analysis con-
clusion is tested and illustrated by the latter numerical examples.

3 The method of imposing EBCs and numerical examples

In this section, we consider the following simple two-dimensional boundary value
problem of Poisson equation on the domain D:{
−∆u = f (x,y) (x,y) ∈ D
u|∂D = g(x,y) (x,y) ∈ ∂D

(10)

and EFG method is used to find the numerical solution of the problem. In order to
compare the accuracy of generalized parameters {ūi}N

i=1 and MLS approximation
values {uap(xi)}N

i=1, in the first example Lagrange multiplier method is used to
impose EBCs as in usual literatures. Subsequently, a new method of imposing
EBCs is proposed and some numerical examples are shown. From the computing
results, the accuracy and efficiency of the new method and Lagrange multiplier
method are displayed.

Example 1 Consider a Poisson problem in a two-dimensional domain as show
in Fig. 2 with right hand side f (x,y) = −2(x2 + y2 + x + y + 2) in Eq. 10 and the
boundary condition{

u(0,y) = y2 + y+1,u(8,y) = 73(y2 + y+1) y ∈ [−1,1]
u(x,−1) = x2 + x+1,u(x,1) = 3(x2 + x+1) x ∈ [0,8]

The exact solution of the problem is

u(x,y) = (x2 + x+1)(y2 + y+1) (11)
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The 5×11 uniform nodes are used to discrete the domain (Fig. 2). The EFG method
with linear bases and cubic spline weight function are employed to solve this Pois-
son problem. The relative errors of generalized parameters at five nodes which are
chosen arbitrarily and the corresponding MLS approximation solutions are shown
in Tab. 1.

Figure 2: Distribution of 5×11 uniform nodes

From the data in Tab. 1, we can see clearly that the accuracy of generalized pa-
rameters as the approximation values at the nodes are better than that of evaluated
from MLS approximate function. This phenomenon is inevitable: approximation
function uap(x) is the optimal approximate which aims at approximating the gen-
eral parameters, so the value of generalized parameters at the nodes is of course
better than MLS approximate function. The fact is the same as the analysis result
mentioned above.

Table 1: Relative errors of generalized parameters and approximated solutions

node Generalized MLS Approximated
coordinates parameters(%) solutions(%)
(1.6,-0.5) 3.3989 7.8464
(1.6,0.5) 1.3007 3.3553
(4.0,0.0) 0.7158 4.0266
(6.4,0.5) 0.1287 1.7799
(7.2,0.0) 1.3595 2.0389

Now that both the theory analysis and numerical results indicate that so-called gen-
eralized parameters in literatures are the best approximation values at the discrete
nodes, we should try to use this fact. Generalized parameters are obtained by solv-
ing the linear equations system, and they are the good approximation at nodes, but
some nodes value at the essential boundary are given in the problem. How to realize
the EBCs at the boundary nodes, as a natural choice, let the so-called generalized
parameters at the boundary nodes equal to the given value. Thus, we can reference
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finite element methods to realize the EBCs at boundary nodes. For example, unit
setting method or large number setting method can be used in the discrete equa-
tions system to impose EBCs in EFG method. However, we should note that the
EBCs just be satisfied at the given nodes not the whole boundary because the form
of MLS approximation function is a kind of rational expression.

In the following examples, unit setting method is used to realize EBCs at boundary
nodes. Giving by existing literature [Zhang and Liu (2004)], the overall discrete
relative error (ODRE) is defined as follow

|u−u′|=

√
∑

n
i=1 |u(xi)−u′(xi)|2

∑
n
i=1 u2(xi)

(12)

Example 2 Taking the same nodes distribution, bases function, and weight func-
tion as in Example 1, the right-hand items of Poisson equation are defined as fol-
lows:

a) f (x,y) = 2(x2 + y2 + x+ y+2)
b) f (x,y) =−2cosxsiny
c) f (x,y) = 2ex+y

The corresponding exact solutions of the above problems are:

u = (x2 + x+1)(y2 + y+1) (13)

u = cosxsiny (14)

u = ex+y (15)

where the boundary conditions are prescribed on all boundaries according to Eq. 13,
Eq. 14 and Eq. 15.

The EBCs are imposed by Lagrange multiplier method and unit setting method
in the example. The corresponding overall discrete relative errors are shown in
Tab. 2. The data indicate that unit setting method gives better results compared
with Lagrange multiplier method for all the three different right-hand items. In
addition, unit setting method do not introduce extra unknown variables or adjusting
parameters, and it can be realized easily and save much more time cost, so it is a
simple and reliable method like finite element methods.

Example 3 This example is to test the property of unit setting method while
nonuniform nodes are used. Here the domain of Poisson equation is discretized by
106 irregular nodes as shown in Fig. 3.

The exact solution of Poisson equation is given by

u(x,y) = sin2 xcosy+ exy2
(16)
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Table 2: ODRE of Lagrange multiplier method and unit setting method

case Lagrange multiplier Unit setting
method(%) method(%)

a) 2.6707 0.4521
b) 1.0035 0.9184
c) 3.8108 2.6333

Figure 3: Distribution of 106 non-uniform nodes

Once again, both linear bases function and cubic spline weight function are used.
From the data showed in Tab. 3, we can reach the same conclusion as in Example
2.

Table 3: Relative errors of Lagrange multiplier method and unit setting method

Node coordinates Lagrange multiplier Unit setting
method(%) method(%)

(0.676,0.387) 0.3388 0.1455
(2.104,0.374) 1.5132 0.3433
(0.473,0.512) 0.2193 0.1442
(1.414,0.569) 0.8519 0.7702

ODRE(%) 3.7280 2.4361

4 Conclusions

Both theoretical analysis and numerical results indicate that generalized parameters
give better approximate values at the discrete nodes when MLS method is used to
approach the unknown field function. So, different from conventional thought, we
naturally take generalized parameters in MLS approximations as the approximate
values of the unknown field function at the nodes. Based on the above facts, gen-
eralized parameters at the boundary nodes can be assigned directly to be the given
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boundary values, so imposing EBCs in EFG method can be the same as in finite
element methods, such as large number setting method or unit setting method.
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