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High-Order Upwind Methods Based on C2-Continuous
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Abstract: In this paper, 2-node integrated radial basis function elements (IRBFEs)
[CMES, vol.72, no.4, pp.299-334, 2011] are further developed for the simulation
of incompressible viscous flows in two dimensions. Emphasis is placed on (i) the
incorporation of C2-continuous 2-node IRBFEs into the subregion and point col-
location frameworks for the discretisation of the stream function-vorticity formu-
lation on Cartesian grids; and (ii) the development of high order upwind schemes
based on 2-node IRBFEs for the case of convection-dominant flows. High levels
of accuracy and efficiency of the present methods are demonstrated by solutions of
several benchmark problems defined on rectangular and non-rectangular domains.
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1 Introduction

Cartesian-grid-based subregion/point collocation methods can be very economical
owing to the facts that (i) generating a grid and integrating the governing equations
in these methods are low-cost; and (ii) FFT can be applied to accelerate computa-
tional processes, e.g. Huang and Greengard (2000). The approximations for the
dependent variables and their spatial derivatives can be constructed globally on the
whole grid or locally on small segments of the grid. Examples of local approxima-
tion schemes include standard control-volume (CV) methods and finite-difference
methods. For the former, the fluxes are estimated by a linear variation between two
grid points, e.g. Patankar (1980); Huilgol and Phan-Thien (1997). The use of two
grid points allows for the consistency of the fluxes at CV faces - one of the four ba-
sic rules to guarantee a physically realistic solution (Patankar (1980)). For the latter,
local approximations can be constructed in each direction independently using two
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nodes (first-order accuracy) and three nodes (second-order accuracy). With two-
node-based local approximations, Cartesian grid based methods typically produce
solutions which are continuous for the fields but not for their partial derivatives, i.e.
C0 continuity. The grid thus needs to be sufficiently fine to mitigate the effects of
discontinuity of partial derivatives.

The Navier-Stokes (N-S) equations involve two main terms, namely convection and
diffusion. At high values of the Reynold number, the convection term is dominant
and the numerical simulation of the N-S equations becomes challenging. Various
treatments for the convection term have been proposed in the literature. Those
which take the influence of the upstream information of the flow into account, e.g.
the upwind differencing (Courant, Isaccson, and Rees (1952); Gentry, Martin, and
Daly (1966)), hybrid (Spalding (1972)), power-law (Patankar (1981)) and QUICK
(Leonard (1979)) schemes are known to provide a very stable solution. To maintain
a high level of accuracy, an effective way is to employ high-order upwind schemes
with the deferred-correction strategy, e.g. Khosla and Rubin (1974); Ghia, Ghia,
and Shin (1982).

Radial basis functions (RBFs) have been successfully used for the approximation
of scattered data. They have recently emerged as an attractive tool for the solution
of ordinary and partial differential equations (ODEs and PDEs), e.g. Fasshauer
(2007); Atluri and Shen (2002); Chen, Karageorghis, and Smyrlis (2008). RBF-
based approximants are able to produce fast convergence especially for regular
node arrangements such as those based on Cartesian grids. They can be con-
structed through a conventional differentiation process, e.g. Kansa (1990), or an
integration process, e.g. Mai-Duy and Tran-Cong (2001); Mai-Duy and Tanner
(2005); Mai-Duy and Tran-Cong (2005). The latter helps avoid the reduction of
convergence rate caused by differentiation and provide effective ways of impos-
ing the derivative boundary values. RBF-based approximants can be constructed
globally or locally. Global RBF-based methods are very accurate, e.g. Cheng,
Golberg, Kansa, and Zammito (2003); Huang, Lee, and Cheng (2007). However,
they result in a system matrix that is dense and usually highly ill-conditioned. The
use of RBF-approximants in local forms has the ability to circumvent these dif-
ficulties, e.g. Shu, Ding, and Yeo (2003); Šarler and Vertnik (2006); Divo and
Kassab (2007). Recently, a local high order approximant based on 2-node elements
and integrated RBFs (IRBFs) for solving second-order elliptic problems in the CV
framework has been proposed by An-Vo, Mai-Duy, and Tran-Cong (2011). In such
2-node elements (IRBFEs), the integration constants are exploited to include the
first derivatives at the element extremes in the approximations. It was shown that
such elements lead to a C2-continuous solution rather than the usual C0-continuous
solution.
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In this study, C2-continuous 2-node IRBFEs are incorporated into the subregion and
point collocation frameworks for solving the N-S equations in the stream function-
vorticity formulation on Cartesian grids. Unlike conventional finite-element-based
methods, the proposed methods can guarantee inter-element continuity of deriva-
tives of the stream function and vorticity of orders up to 2. At high values of the
Reynolds number, to achieve both good accuracy and stability properties, several
high-order upwind schemes are proposed. The resultant system of algebraic equa-
tions is sparse and banded; the solution accuracy can be controlled by means of
the number of RBFs and/or the shape parameter. Several viscous flows defined
on rectangular and non-rectangular domains are considered to verify the proposed
methods.

The remainder of the paper is organised as follows. Brief reviews of the governing
equations and integrated RBF elements are given in Section 2 and 3, respectively.
Section 4 describes the proposed C2-continuous subregion/point collocation tech-
niques for the stream function-vorticity formulation. In Section 5, two benchmark
problems, namely the lid-driven cavity flow and the flow past a circular cylinder in
a channel, are presented to demonstrate the attractiveness of the present techniques.
Section 6 concludes the paper.

2 Governing equations

The dimensionless N-S equations for steady incompressible planar viscous flows,
subject to negligible body forces, can be expressed in terms of the stream function
ψ and the vorticity ω as follows

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 +ω = 0, (1)

∂ 2ω

∂x2 +
∂ 2ω

∂y2 = Re
(

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
, (x,y)T ∈Ω, (2)

where Re = UL/ν is the Reynolds number, in which L is the characteristic length,
U the characteristic speed of the flow and ν the kinematic viscosity. The vorticity
and stream function variables are defined by

ω =
∂v
∂x
− ∂u

∂y
, (3)

∂ψ

∂y
= u,

∂ψ

∂x
=−v, (4)

where u and v are the x and y components of the velocity vector. In this study, the
method of modified dynamics or false transients (e.g. Mallinson and Davis (1973);
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Pozrikidis (1997)) is applied to obtain the structure of a steady flow. The governing
equations (1) and (2) are modified as

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 +ω =
∂ψ

∂ t
, (5)

∂ 2ω

∂x2 +
∂ 2ω

∂y2 −Re
(

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
=

∂ω

∂ t
. (6)

Solutions to (5) and (6), which are obtained from integrating the equations from
a given initial condition up to the steady state, are also solutions to (1) and (2)
respectively.

In the case of subregion collocation, one needs to define control volumes for grid
nodes. Integrating (5) and (6) over a CV of a grid point P, ΩP, leads to the following
equations ∫

ΩP

(
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2

)
dΩP +

∫
ΩP

ωdΩP =
∫

ΩP

∂ψ

∂ t
dΩP, (7)∫

ΩP

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
dΩP−

∫
ΩP

Re
(

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
dΩP =

∫
ΩP

∂ω

∂ t
dΩP, (8)

which ensure that the flow field is conservative for a finite CV.
Applying the Green theorem to (7) and (8), one has∮

ΓP

(
∂ψ

∂x
dy− ∂ψ

∂y
dx
)

+
∫

ΩP

ωdΩP =
∫

ΩP

∂ψ

∂ t
dΩP, (9)∮

ΓP

[(
∂ω

∂x
−Re ω

∂ψ

∂y

)
dy−

(
∂ω

∂y
+Re ω

∂ψ

∂x

)
dx
]

=
∫

ΩP

∂ω

∂ t
dΩP, (10)

where ΓP is the CV boundary. The governing differential equations (5) and (6) are
thus transformed into a CV form (7)-(8) or (9)-(10). It is noted that no approxima-
tion is made at this stage.

3 Definition of integrated-RBF elements

3.1 Brief review of integrated RBFs

For a given ODE/PDE, the integrated-RBF approach consists in decomposing highest-
order derivatives in the ODE/PDE into RBFs and then integrating these RBFs to
yield expressions for lower-order derivatives and finally the original function itself
Mai-Duy and Tran-Cong (2003). In the case of second-order ODEs/PDEs such
as (1) and (2), integrated-RBF expressions employed with the multiquadric (MQ)
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function are given by

∂ 2φ

∂η2 (x) =
n

∑
i=1

wi

√
(x− ci)2 +a2

i =
n

∑
i=1

wiI
(2)
i (x), x ∈Ω, (11)

∂φ

∂η
(x) =

n

∑
i=1

wiI
(1)
i (x)+C1(θ), (12)

φ(x) =
n

∑
i=1

wiI
(0)
i (x)+C1(θ)η +C2(θ), (13)

where Ω is the domain of interest, φ a function, (η ,θ ) the two components of x,
n the number of RBFs, {wi}n

i=1 the set of RBF weights, C1(θ) and C2(θ) the con-
stants of integration which are functions of θ , I(2)

i (x) conveniently denotes the MQ
whose centre and shape parameter are, respectively, ci and ai, I(1)

i (x) =
∫

I(2)
i (x)dη ,

and I(0)
i (x) =

∫
I(1)
i (x)dη . Explicit forms of I(1)

i (x) and I(0)
i (x) can be found in

Mai-Duy and Tran-Cong (2001). In Mai-Duy and Tran-Cong (2003), the shape pa-
rameter was simply chosen as ai = βhi in which β is a given positive number and
hi the distance between ci and its nearest neighbour.

When the analysis domain Ω is a line segment, e.g. in the Cartesian direction η ,
expressions (11), (12) and (13) reduce to

∂ 2φ

∂η2 (η) =
d2φ

dη2 =
n

∑
i=1

wi

√
(η− ci)2 +a2

i =
n

∑
i=1

wiI
(2)
i (η), (14)

∂φ

∂η
(η) =

dφ

dη
=

n

∑
i=1

wiI
(1)
i (η)+C1, (15)

φ(η) =
n

∑
i=1

wiI
(0)
i (η)+C1η +C2, (16)

where C1 and C2 are simply constant values.

Expressions (14), (15) and (16), called 1D-IRBFs, can also be used in conjunc-
tion with Cartesian grids for solving 2D problems. Advantages of 1D-IRBFs over
2D-IRBFs ((11)-(13)) are that they possess some “local” properties and are con-
structed with a much lower cost. However, numerical experiments show that 1D-
IRBFs still cannot work with large values of β . In An-Vo, Mai-Duy, and Tran-Cong
(2011), 1D-IRBF-based schemes were further localised to 2-node IRBF elements
(IRBFEs).

3.1.1 Two-node IRBFEs

These elements are applicable to problems defined on rectangular and non-rectangular
domains. The problem domain is simply discretised by using a Cartesian grid. In
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the case of non-rectangular domain, grid points outside the problem domain are re-
moved while grid points inside the problem domain are taken to be interior nodes.
Boundary nodes are defined as the intersection of the grid lines and the bound-
aries. Over straight-line segments between two adjacent nodal points, 1D-IRBFs
are utilised to represent the variation of the field variable and its derivatives, which
are called 2-node IRBFEs. It can be seen that there are two types of elements,
namely interior and semi-interior elements. An interior element is formed using
two adjacent interior nodes while a semi-interior element is generated by an inte-
rior node and a boundary node (Fig. 1).

Ω

Semi−interior element

Interior grid nodeInterior element

Boundary node

Figure 1: A domain is embedded in a Cartesian grid with interior and semi-interior
elements.

3.1.2 Interior elements

1D-IRBF expressions for interior elements are of similar forms. Consider an inte-
rior element, η ∈ [η1,η2], and its two nodes are locally named as 1 and 2. Let φ(η)
be a function and φ1, ∂φ1/∂η , φ2 and ∂φ2/∂η be the values of φ and ∂φ/∂η at the
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η

φ1 φ2

∂φ1
∂η

∂φ2
∂η

Figure 2: Schematic outline for 2-node IRBFE.

two nodes, respectively (Fig. 2). The 2-node IRBFE scheme approximates φ(η)
using two MQs whose centres are located at η1 and η2. Expressions (14), (15) and
(16) become

∂ 2φ

∂η2 (η) = w1

√
(η− c1)2 +a2

1 +w2

√
(η− c2)2 +a2

2 = w1I(2)
1 (η)+w2I(2)

2 (η),

(17)
∂φ

∂η
(η) = w1I(1)

1 (η)+w2I(1)
2 (η)+C1, (18)

φ(η) = w1I(0)
1 (η)+w2I(0)

2 (η)+C1η +C2, (19)

where I(1)
i (η) =

∫
I(2)
i (η)dη , I(0)

i (η) =
∫

I(1)
i (η)dη with i = (1,2), and C1 and C2

are the constants of integration. By collocating (19) and (18) at η1 and η2, the
relation between the physical space and the RBF coefficient space is obtained

φ1
φ2
∂φ1
∂η

∂φ2
∂η


︸ ︷︷ ︸

φ̂

=


I(0)
1 (η1) I(0)

2 (η1) η1 1
I(0)
1 (η2) I(0)

2 (η2) η2 1
I(1)
1 (η1) I(1)

2 (η1) 1 0
I(1)
1 (η2) I(1)

2 (η2) 1 0


︸ ︷︷ ︸

I


w1
w2
C1
C2


︸ ︷︷ ︸

ŵ

, (20)

where φ̂ is the nodal-value vector, I the conversion matrix, and ŵ the coefficient
vector. It is noted that not only the nodal values of φ but also of ∂φ/∂η are incor-
porated into the conversion system and this imposition is done in an exact manner
owing to the presence of integration constants. Solving (20) yields

ŵ = I −1
φ̂ . (21)
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Substitution of (21) into (19), (18) and (17) leads to

φ(η) =
[
I(0)
1 (η), I(0)

2 (η),η ,1
]
I −1

φ̂ , (22)

∂φ

∂η
(η) =

[
I(1)
1 (η), I(1)

2 (η),1,0
]
I −1

φ̂ , (23)

∂ 2φ

∂η2 (η) =
[
I(2)
1 (η), I(2)

2 (η),0,0
]
I −1

φ̂ . (24)

They can be rewritten in the form

φ(η) = ϕ1(η)φ1 +ϕ2(η)φ2 +ϕ3(η)
∂φ1

∂η
+ϕ4(η)

∂φ2

∂η
, (25)

∂φ

∂η
(η) =

dϕ1(η)
dη

φ1 +
dϕ2(η)

dη
φ2 +

dϕ3(η)
dη

∂φ1

∂η
+

dϕ4(η)
dη

∂φ2

∂η
, (26)

∂ 2φ

∂η2 (η) =
d2ϕ1(η)

dη2 φ1 +
d2ϕ2(η)

dη2 φ2 +
d2ϕ3(η)

dη2
∂φ1

∂η
+

d2ϕ4(η)
dη2

∂φ2

∂η
, (27)

where {ϕi(η)}4
i=1 is the set of basis functions in the physical space. These expres-

sions allow one to compute the values of φ , ∂φ/∂η , and ∂ 2φ/∂η2 at any point η

in [η1,η2] in terms of four nodal unknowns, i.e. the values of the field variable and
its first-order derivatives at the two extremes (also grid points) of the element.

3.1.3 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an interior
node and a boundary node. The subscripts 1 and 2 are now replaced with b (b
represents a boundary node) and g (g an interior grid node), respectively. Assume
that the value of φ is given at ηb. The conversion system can be formed as φb

φg
∂φg
∂η

=

 I(0)
b (ηb) I(0)

g (ηb) ηb 1
I(0)
b (ηg) I(0)

g (ηg) ηg 1
I(1)
b (ηg) I(1)

g (ηg) 1 0




wb
wg

C1
C2

 . (28)

It leads to

φ(η) = ϕ1(η)φb +ϕ2(η)φg +ϕ3(η)
∂φg

∂η
, (29)

∂φ

∂η
(η) =

dϕ1(η)
dη

φb +
dϕ2(η)

dη
φg +

dϕ3(η)
dη

∂φg

∂η
, (30)

∂ 2φ

∂η2 (η) =
d2ϕ1(η)

dη2 φb +
d2ϕ2(η)

dη2 φg +
d2ϕ3(η)

dη2
∂φg

∂η
. (31)
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It can be seen that the conversion matrix in (28) is under-determined and its in-
verse can be obtained using the SVD technique (pseudo-inversion). Owing to the
facts that point collocation is used and the RBF conversion matrix is not over-
determined, the boundary condition φb is imposed in an exact manner. For other
types of semi-interior elements, the reader is referred to An-Vo, Mai-Duy, and Tran-
Cong (2011) for details.

4 Proposed C2-continuous subregion/point collocation methods

In this study, 2-node IRBFEs are extended to the solution of the stream function-
vorticity formulation. In addition, several high-order upwind schemes are incor-
porated into the 2-node IRBFE methods to enhance their performance for the case
of convection-dominant flows. The proposed methods lead to a sparse system and
their solution is a C2 function across IRBFEs.

4.1 Discretisation of governing equations

Two formulations, namely subregion collocation and point collocation, are em-
ployed to discretise the governing differential equations. As mentioned earlier,
the structure of a steady flow is found through the method of false transients. Time
derivative terms in (5) and (6) are simply approximated here with a first-order back-
ward difference.

4.1.1 Subregion collocation

Consider a grid point P surrounded by a rectangular control volume ΩP (Fig. 3).
There are no gaps and overlapping regions between control volumes. For integrals
involving the rate of change and generation, the value of the quantity at P is as-
sumed to prevail over ΩP. Using the middle-point rule to evaluate the integrals of
the convection and diffusion terms over ΩP, equations (9) and (10) become

− AP

∆t
ψP +

[(
∂ψ

∂x

)
e
∆y−

(
∂ψ

∂x

)
w

∆y+
(

∂ψ

∂y

)
n

∆x−
(

∂ψ

∂y

)
s
∆x
]

= −AP

(
ω

0
P +

ψ0
P

∆t

)
, (32)
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Figure 3: Schematic outline for a control-volume in 2D.

− AP

∆t
ωP +

[(
∂ω

∂x

)
e
∆y−

(
∂ω

∂x

)
w

∆y+
(

∂ω

∂y

)
n

∆x−
(

∂ω

∂y

)
s
∆x
]

+Re
[
−
(

ω
∂ψ

∂y

)
e
∆y+

(
ω

∂ψ

∂y

)
w

∆y+
(

ω
∂ψ

∂x

)
n

∆x−
(

ω
∂ψ

∂x

)
s
∆x
]

= −AP

∆t
ω

0
P, (33)

where the superscript 0 represents the value obtained from the previous time level;
the subscripts e,w,n and s denote the values of the property at the intersections of
grid lines and the east, west, north and south faces of a CV; and AP the volume
of ΩP. It can be seen that equations (32) and (33) require the estimation of first
derivative values of ψ and ω at the interface points e,w,n and s.

4.1.2 Point collocation

Consider a grid point P. Collocating (5) and (6) at P, one obtains

−ψP

∆t
+

∂ 2ψP

∂x2 +
∂ 2ψP

∂y2 =−
(

ω
0
P +

ψ0
P

∆t

)
, (34)

−ωP

∆t
+

∂ 2ωP

∂x2 +
∂ 2ωP

∂y2 −Re
(

∂ψP

∂y
∂ωP

∂x
− ∂ψP

∂x
∂ωP

∂y

)
=−ω0

P
∆t
. (35)
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It can be seen that equations (34) and (35) require the estimation of both first and
second derivative values of ψ and ω at the collocation point P.

4.2 Approximations of diffusion term

The diffusion term is treated implicitly. Its role is important at regions where the
strength of the convection term is small. 2-node IRBFEs are employed here for the
approximation of the second terms on the LHSs of (32) and (33) in the subregion
collocation framework and (34) and (35) in the point collocation framework. Let
E,W,N and S denote the east, west, north and south neighbouring nodes of P,
respectively. One can form 4 two-node IRBFEs, namely WP,PE,SP and PN.

4.2.1 Subregion collocation

In the case that WP and PE are interior elements, the values of the flux at x = xe

and x = xw are computed by using (26)(
∂φ

∂x

)
e
=

dϕ1(xe)
dx

φP +
dϕ2(xe)

dx
φE +

dϕ3(xe)
dx

∂φP

∂x
+

dϕ4(xe)
dx

∂φE

∂x
, (36)(

∂φ

∂x

)
w

=
dϕ1(xw)

dx
φW +

dϕ2(xw)
dx

φP +
dϕ3(xw)

dx
∂φW

∂x
+

dϕ4(xw)
dx

∂φP

∂x
, (37)

where φ represents ψ and ω .

In the case that WP is a semi-interior element, the value of the flux at x = xw is
computed by using (30)(

∂φ

∂x

)
w

=
dϕ1(xw)

dx
φW +

dϕ2(xw)
dx

φP +
dϕ3(xw)

dx
∂φP

∂x
. (38)

Expressions for the flux at y = yn and y = ys are of similar forms.

4.2.2 Point collocation

The values of ∂ 2ψ/∂x2 and ∂ 2ω/∂x2 at P can be derived from 2-node IRBFEs in
the x direction, i.e. WP and PE. It will be shown later that these two elements
give the same results, and one can thus choose one of them for calculation, e.g.
WP. Through (27) if WP is an interior element and (31) if WP is a semi-interior
element, the required values are, respectively, estimated as

∂ 2φP

∂x2 =
d2ϕ1(xP)

dx2 φW +
d2ϕ2(xP)

dx2 φP +
d2ϕ3(xP)

dx2
∂φW

∂x
+

d2ϕ4(xP)
dx2

∂φP

∂x
(39)

and

∂ 2φP

∂x2 =
d2ϕ1(xP)

dx2 φW +
d2ϕ2(xP)

dx2 φP +
d2ϕ3(xP)

dx2
∂φP

∂x
, (40)
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where φ represents ψ and ω .

The values of ∂ 2ψ/∂y2 and ∂ 2ω/∂y2 at P can be computed in a similar fashion.

4.3 Approximations of convection term

At high values of the Re number, the third term (i.e. convection term) on the LHS
of (33) or (35) is dominant and strongly affects the stability of a numerical solution.
From a physical point of view, convection is directed by the velocity field from the
upstream to the downstream of the flow. Three high-order upwind schemes, namely
Scheme 1, Scheme 2 and Scheme 3, are proposed here for the discretisation of the
convection term.

4.3.1 Scheme 1 for subregion collocation

This scheme is concerned with an upwind treatment with the deferred correction
strategy. Let f be the intersection of the CV face and the grid line. The value of ω

at point f is computed as

ω f = ωU +∆ω f , (41)

where ωU is the upstream value and ∆ω f the correction term that is a known value.
It is noted that f represents w,e,s and n. ∆ω f is presently derived from the 2-node
IRBFE approximation, i.e. (25) and (29). As an example, when f ≡ w and uw > 0,
one has

ωU = ωW , (42)

∆ω f = (ϕ1(xw)−1)ω0
W +ϕ2(xw)ω0

P +ϕ3(xw)
∂ω0

W
∂x

+ϕ4(xw)
∂ω0

P
∂x

, (43)

where the superscript 0 is used to denote the values obtained from the previous time
level. For a special case, where W is a boundary point, expression (43) reduces to

∆ω f = (ϕ1(xw)−1)ω0
W +ϕ2(xw)ω0

P +ϕ3(xw)
∂ω0

P
∂x

. (44)

When the solution reaches a steady state, ω f s are purely predicted by 2-node
IRBFEs and their accuracy is thus recovered. Velocity values in the convection
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term are simply estimated by a linear profile(
∂ψ

∂y

)
e
=

1
2

(
∂ψ0

P
∂y

+
∂ψ0

E
∂y

)
, (45)(

∂ψ

∂y

)
w

=
1
2

(
∂ψ0

W
∂y

+
∂ψ0

P
∂y

)
, (46)(

∂ψ

∂x

)
n
=

1
2

(
∂ψ0

P
∂x

+
∂ψ0

N
∂x

)
, (47)(

∂ψ

∂x

)
s
=

1
2

(
∂ψ0

S
∂x

+
∂ψ0

P
∂x

)
. (48)

4.3.2 Scheme 2 for point collocation

Without loss of generality, assuming that uP > 0. W thus becomes an upstream
node. A special approximation is constructed over WP for the purpose of comput-
ing ∂ωP/∂x; not only ωW and ∂ωW/∂x but also ∂ 2ωW/∂x2 are employed in the
conversion process

ωP

ωW
∂ωW
∂η

∂ 2ωW
∂η2

=


I(0)
1 (xP) I(0)

2 (xP) xP 1
I(0)
1 (xW ) I(0)

2 (xW ) xW 1
I(1)
1 (xW ) I(1)

2 (xW ) 1 0
I(2)
1 (xW ) I(2)

2 (xW ) 0 0




w1
w2
C1
C2

 . (49)

This leads to
∂ωP

∂x
=

dϕ1(xP)
dx

ωP +
dϕ2(xP)

dx
ωW +

dϕ3(xP)
dx

∂ωW

∂x
+

dϕ4(xP)
dx

∂ 2ωW

∂x2 . (50)

4.3.3 Scheme 3 for point collocation

Assuming that uP > 0. W becomes an upstream point. The value of ∂ω/∂x at P is
estimated over WP with the deferred correction strategy

∂ωP

∂x
=
(

ωP−ωW

h

)
+∆

(
∂ωP

∂x

)
, (51)

where h is the length of WP, the first term on the RHS is simply a standard linear
estimation; and the second term is a correction amount defined as

∆

(
∂ωP

∂x

)
=−

(
ω0

P−ω0
W

h

)
+
(

∂ωP

∂x

)0

, (52)

The value (∂ωP/∂x)0 in (52) is obtained using (26) if WP is an interior element
and using (30) if WP is a semi-interior element. When the flow is steady, the first
term on the RHS of (51) and the first term on the RHS of (52) will cancel out each
other.
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4.4 C2 continuity solution

It can be seen from IRBFE expressions for computing the flux (∂φ/∂x or ∂φ/∂y)
at the CV faces (e.g. (36), (37)) and ∂ 2φ/∂x2 and ∂ 2φ/∂y2 at a nodal point P,
e.g. (39), there are three unknowns, namely φ , ∂φ/∂x and ∂φ/∂y, at a nodal point
P. It is noted that φ represents ψ and ω . Unlike conventional subregion/point col-
location methods, the nodal values of ∂φ/∂x and ∂φ/∂y at P here constitute part
of the nodal unknown vector. One thus needs to generate three independent equa-
tions. The first equation is obtained by conducting subregion/point collocation at
P, i.e. (32)-(33) or (34)-(35), respectively. The other two equations can be formed
by enforcing the local continuity of ∂ 2φ/∂x2 and ∂ 2φ/∂y2 across the elements at
P(

∂ 2φP

∂x2

)
L

=
(

∂ 2φP

∂x2

)
R
, (53)(

∂ 2φP

∂y2

)
B

=
(

∂ 2φP

∂y2

)
T
, (54)

where (.)L indicates that the computation of (.) is based on the element to the left
of P, i.e. element WP, and similarly subscripts R,B,T denote the right (PE), bottom
(SP) and top (PN) elements.

Substitution of (24) into (53) and (54) yields([
I(2)
1 (η2), I

(2)
2 (η2),0,0

]
I −1

φ̂

)
L

=
([

I(2)
1 (η1), I

(2)
2 (η1),0,0

]
I −1

φ̂

)
R
, (55)

where η represents x and η2 ≡ η1 ≡ xP, and([
I(2)
1 (η2), I

(2)
2 (η2),0,0

]
I −1

φ̂

)
B

=
([

I(2)
1 (η1), I

(2)
2 (η1),0,0

]
I −1

φ̂

)
T
, (56)

where η represents y and η2 ≡ η1 ≡ yP. The conditions (53)-(54) or (55)-(56)
guarantee that the solution φ across IRBFEs is a C2 function.

Collection of the governing equations and the continuity equations at the interior
grid points leads to a square system of algebraic equations. Since local approxima-
tions are presently based on two RBFs only, the resultant system matrix is sparse
and a wide range of β can be used. One can thus control the solution accuracy by
means of the number of RBFs and/or the shape parameter. It can be seen that two-
point line elements are well suited to discretisation methods based on Cartesian
grids.

5 Numerical examples

The performance of the proposed C2 discretisation methods with three upwind
schemes, i.e. Scheme 1, Scheme 2 and Scheme 3, is studied through the simu-
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lation of lid-driven cavity flows and flows past a circular cylinder in a channel.
The subregion collocation version is from now on denoted by IRBFE-CVM while
IRBFE-CM is used to represent the point collocation version. For all numerical
examples presented in this study, the MQ shape parameter a is simply chosen pro-
portionally to the element length h by a factor β . The effects of the shape parameter
on the solution accuracy is thus investigated through the parameter β . In the case of
non-rectangular domains, there may be some nodes that are too close to the bound-
ary. If an interior node falls within a distance of h/2 to the boundary, such a node
is removed from the set of nodal points. A steady solution is obtained with a time
marching approach starting from a computed solution at a lower Reynolds number.
For the special case of Stokes equation, the starting condition is the rest state.

The solution procedure involves the following steps
(1) Guess the initial distributions of the stream function and vorticity in the case of
Stokes flow. Otherwise, take the solution of a lower Reynolds number as an initial
guess.
(2) Solve the stream-function equation (32)/(34) subject to Dirichlet boundary con-
ditions, and calculate the nonlinear terms in the vorticity equation (33)/(35) by the
upwind schemes.
(3) Estimate Dirichlet boundary conditions for the vorticity equation (33)/(35) from
the Neumann boundary conditions of the stream function.
(4) Solve the vorticity equation (33)/(35).
(5) Check to see whether the solution has reached a steady state through a condition
on convergence measure

CM(ψ) =

√
N
∑

i=1
(ψi−ψ0

i )2√
N
∑

i=1
ψ2

i

< 10−9, (57)

where N is the total number of grid nodes.
(6) If CM is not satisfactorily small, advance pseudo-time and repeat from step (2).
Otherwise, stop the computation and output the results.

5.1 Lid-driven cavity flow

Lid-driven cavity flow is a very useful benchmark problem for the validation of new
numerical methods in CFD because of its simple geometry and rich flow physics
at different Reynolds numbers. The cavity is taken to be a unit square, with the lid
sliding from left to right at a unit velocity. The boundary conditions for u and v
become
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ψ = 0, ∂ψ/∂x = 0, x = 0, x = 1,
ψ = 0, ∂ψ/∂y = 0, y = 0,
ψ = 0, ∂ψ/∂y = 1, y = 1.

Both IRBFE-CVM and IRBFE-CM are considered here. We take Dirichlet bound-
ary conditions, ψ = 0, on all walls for solving (32) and (34). The Neumann bound-
ary conditions, ∂ψ/∂n (i.e. ∂ψ/∂n = ∇ψ · n̂, where n̂ is the outward unit normal
vector at a point on the boundary), are used to derive computational boundary con-
ditions for ω in solving (33) and (35). Making use of (1), the values of ω on the
boundaries are computed by

ωb =−∂ 2ψb

∂x2 , x = 0 and x = 1, (58)

ωb =−∂ 2ψb

∂y2 , y = 0 and y = 1. (59)

In computing (58) and (59), one needs to incorporate ∂ψb/∂x into ∂ 2ψb/∂x2, and
∂ψb/∂y into ∂ 2ψb/∂y2, respectively. We present a simple technique to derive
boundary values for ω in the context of 2-node IRBFEs. Assuming that node 1
and 2 of an IRBFE are a boundary node and an interior grid node respectively (i.e.
1≡ b and 2≡ g). Boundary values of the vorticity are obtained by applying (27) as

ωb =−∂ 2ψb

∂η2

=−
(

d2ϕ1(ηb)
dη2 ψb +

d2ϕ2(ηb)
dη2 ψg +

d2ϕ3(ηb)
dη2

∂ψb

∂η
+

d2ϕ4(ηb)
dη2

∂ψg

∂η

)
, (60)

where η represents x and y; ψb and ∂ψb/∂η are the Dirichlet and Neumann bound-
ary conditions for ψ , and ψg and ∂ψg/∂η are known values taken from the solu-
tion of the stream-function equation (32)/(34). It is noted that (i) all given boundary
conditions are imposed in an exact manner; and (ii) this technique only requires the
local values of ψ and ∂ψ/∂η at the boundary node and its adjacent grid node to
estimate the Dirichlet boundary conditions for the vorticity equation (33)/(35).

It can be seen that the set of 2-node IRBFEs is generated here from grid lines that
pass through interior grid nodes. As a result, the set of interpolation points does
not include the four corners of the cavity and hence corner singularities do not
explicitly enter the discrete system.

Simulation is carried out for a wide range of Re, namely (100, 400, 1000, 3200).
Grid convergence is studied using 12 uniform grids, i.e. (11× 11, 21× 21, . . . ,
121× 121). Results obtained are compared with the benchmark solutions taken
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from Ghia, Ghia, and Shin (1982) and Botella and Peyret (1998) to assess the per-
formance of the present methods. The former was obtained using a multi-grid based
finite-difference method with fine grids. For the latter, spectral scheme and analyti-
cal method were employed to calculate the regular and singular parts of the solution
and the benchmark results were given for Re = 100 and Re = 1000. In addition,
global 1D-IRBF subregion/point collocation (1D-IRBF-CVM/CM) results and also
standard CV results, recently given in Mai-Duy and Tran-Cong (2009, 2010), are
also included. It is noted that, in Mai-Duy and Tran-Cong (2010), CD-CD means
that both the convection and diffusion terms were approximated with a central dif-
ference, while UW-CD means that the convection term is treated with a first-order
upwind.
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Figure 4: Lid-driven cavity flow, IRBFE-CVM, Re = 1000, grid = 81×81, solution
at Re = 400 used as initial guess: convergence behaviour. Scheme 1 using a time
step of 3× 10−4 converges remarkably faster than the no-upwind version using a
time step of 7×10−6. It is noted that the latter diverges for time steps greater than
7×10−6. CM denotes the convergence measure as defined by (57).
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Figure 5: Lid-driven cavity flow, IRBFE-CM, Re = 1000, grid = 81×81, solution
at Re = 400 used as initial guess: convergence behaviour. Scheme 2 and Scheme
3, using a time step of 3×10−4 and 10−4, respectively, converge remarkably faster
than the no-upwind version using a time step of 8×10−6. It is noted that the latter
diverges for time steps greater than 8×10−6. CM denotes the convergence measure
as defined by (57).

Time-step convergence: The convergence behaviours of IRBFE-CVM and IRBFE-
CM with respect to time are shown in Figs 4, 5 and 6. Results without an upwind
treatment are also presented. It can be seen that solutions converge remarkably
faster for those with upwind than those without upwind. Much larger time steps
can be used for the former. Consider the case of Re = 1000 and a grid of 81× 81
(Figs 4 and 5). IRBFE-CVM reaches CM < 10−9 after about 5× 104 iterations
for its no-upwind version and after about 2.5×103 iterations for Scheme 1, while
IRBFE-CM requires about 6.9×104 for its no-upwind version and about 2.5×103

for Scheme 2, 6.8×103 for Scheme 3. It was reported in Mai-Duy and Tran-Cong
(2010) that the global 1D-IRBF-CVM takes about 8.5× 104 and 1.2× 104 itera-
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tions to have CM < 10−8 for its no-upwind and upwind versions, respectively. It
appears that local IRBF versions help make the convergence faster. In the case of
Re = 3200 and a grid of 91×91, in contrast to the upwind version, the no-upwind
version is not able to reach CM = 10−9 as shown in Fig. 6.

0 1 2 3 4 5 6 7 8 9

x 10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

 

 

Scheme 1

Without upwinding

Number of time steps

C
M

Figure 6: Lid-driven cavity flow, IRBFE-CVM, Re = 3200, grid = 91×91, solution
at Re = 2000 used as initial guess: convergence behaviour. Scheme 1 using a time
step of 10−4 converges remarkably faster than the no-upwind version using a time
step of 8× 10−7. It is noted that the latter diverges for time steps greater than
8×10−7. CM denotes the convergence measure as defined by (57).

Grid-size convergence: The convergence of velocity profiles on the vertical and
horizontal centrelines at Re = (0,100,400,1000,3200) with respect to grid refine-
ment is presented in Figs 7 and 8 and Tabs 1-4. Benchmark results by Ghia, Ghia,
and Shin (1982) and Botella and Peyret (1998) are also included for comparison
purposes. It can be seen that (i) errors relative to the benchmark results are consis-
tency reduced as the grid is refined; and (ii) converged profiles are obtained with
relatively coarse grids (e.g. 21×21 for Re = 100 and 61×61 for Re = 1000).
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Figure 7: Lid-driven cavity flow, IRBFE-CVM: velocity profiles on the vertical
(left) and horizontal (right) centrelines at different grids, results by Ghia, Ghia, and
Shin (1982) were obtained at a grid of 129×129. [∗] is Ghia, Ghia, and Shin (1982)
and [∗∗] is Botella and Peyret (1998).
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Table 2: Lid-driven cavity flow, IRBFE-CVM, Re = 1000: extrema of the vertical
and horizontal velocity profiles through the centrelines of the cavity. [?] is Ghia,
Ghia, and Shin (1982) and [??] is Botella and Peyret (1998).

Method Grid umin y vmax x vmin x

IRBFE-CVM 31x31 -0.36093 0.195 0.35084 0.167 -0.48074 0.899

41x41 -0.37140 0.182 0.36144 0.162 -0.50172 0.905

51x51 -0.37720 0.177 0.36673 0.160 -0.51083 0.907

61x61 -0.38057 0.176 0.36980 0.160 -0.51588 0.908

71x71 -0.38266 0.174 0.37166 0.159 -0.51897 0.908

81x81 -0.38407 0.174 0.37293 0.159 -0.52097 0.909

91x91 -0.38502 0.173 0.37377 0.159 -0.52233 0.909

101x101 -0.38569 0.173 0.37437 0.158 -0.52330 0.909

111x111 -0.38619 0.173 0.37482 0.158 -0.52402 0.909

121x121 -0.38657 0.172 0.37515 0.158 -0.52454 0.909

FDM (ψ−ω) [?] 129x129 -0.38289 0.172 0.37095 0.156 -0.51550 0.906

Benchmark [??] -0.38857 0.172 0.37694 0.158 -0.52708 0.909

Solution quality: The solution qualities of IRBFE-CVM and IRBFE-CM are shown
in Tabs 1-4 and Figs 9-10. Tabs 1-4 reveal that the present results are closer to
the benchmark spectral solutions than the benchmark finite-difference results and
also those of the global 1D-IRBF-CVM. Errors relative to the benchmark spectral
results are less than 1% for Re = 100 using a grid of 41× 41 (Tab. 1) and for
Re = 1000 using a grid of 91× 91 (Tab. 3). These IRBFE results correspond to
β = 15. Tab. 4 indicates that the solution accuracy can be controlled by means of
β . The quality of the solution can be significantly improved at the optimal value
of β . It can be seen from Figs 9-10 that smooth contours are obtained for both the
stream function and vorticity fields and the corner eddies are clearly captured at
relatively coarse grids.
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Table 3: Lid-driven cavity flow, IRBFE-CVM, Re = 1000: percentage errors rela-
tive to the spectral benchmark results for the extreme values of the velocity profiles
on the centrelines. Results of upwind central difference (UW-CD), central differ-
ence (CD-CD) and global 1D-IRBF-CVM are taken from Mai-Duy and Tran-Cong
(2010).

Error (%)
Grid UW-CD CD-CD 1D-IRBF-CVM IRBFE-CVM

umin

31x31 46.10 29.19 11.86 7.11
41x41 38.17 18.13 6.50 4.42
51x51 32.92 12.11 4.09 2.93
61x61 29.12 8.63 2.80 2.06
71x71 26.21 6.46 2.03 1.52
81x81 23.88 5.02 1.54 1.16
91x91 21.95 4.01 1.19 0.91

101x101 20.33 3.28 0.96 0.74
111x111 18.94 2.73 0.78 0.61
121x121 17.74 2.31 0.65 0.51

vmax

31x31 48.01 29.98 11.91 6.92
41x41 39.71 18.45 6.55 4.11
51x51 34.43 12.32 4.13 2.71
61x61 30.62 8.79 2.83 1.90
71x71 27.68 6.58 2.05 1.40
81x81 25.31 5.12 1.56 1.06
91x91 23.34 4.09 1.21 0.84

101x101 21.67 3.35 0.97 0.68
111x111 20.23 2.79 0.79 0.56
121x121 18.98 2.36 0.66 0.48

vmin

31x31 40.12 29.83 11.53 8.79
41x41 30.42 18.08 6.25 4.81
51x51 24.70 11.90 3.87 3.08
61x61 20.94 8.40 2.58 2.12
71x71 18.24 6.25 1.85 1.54
81x81 16.19 4.83 1.39 1.16
91x91 14.56 3.85 1.07 0.90

101x101 13.24 3.14 0.85 0.72
111x111 12.14 2.61 0.70 0.58
121x121 11.22 2.20 0.58 0.48



164 Copyright © 2011 Tech Science Press CMES, vol.80, no.2, pp.141-177, 2011

Table
4:

L
id-driven

cavity
flow

,IR
B

FE
-C

M
,R

e
=

1000:
effects

of
β

on
the

solution
accuracy.

T
he

presentresults
atthe

“optim
al”

value
(i.e.

about3)
w

ith
a

grid
of

51×
51

are
in

better
agreem

entw
ith

the
benchm

ark
spectralresults

than
those

by
1D

-IR
B

F-C
M

using
the

sam
e

grid
and

by
FD

M
using

a
m

uch
densergrid.[?]is

M
ai-D

uy
and

Tran-C
ong

(2009),[??]is
G

hia,G
hia,and

Shin
(1982),and

[?
?
?]is

B
otella

and
Peyret(1998).

M
ethod

G
rid

β
u

m
in

E
rror%

y
v

m
ax

E
rror%

x
v

m
in

E
rror%

x

IR
B

FE
-C

M
51x51

1
-0.36134

7.00
0.188

0.35048
7.02

0.168
-0.48532

7.92
0.898

51x51
3

-0.38803
0.14

0.174
0.37677

0.05
0.161

-0.52184
0.99

0.906

51x51
5

-0.38948
0.23

0.174
0.37832

0.37
0.161

-0.52357
0.67

0.906

1D
-IR

B
F-C

M
[?]

51x51
-0.37985

2.25
0.174

0.36781
2.42

0.160
-0.51469

2.35
0.908

FD
M

(ψ
−

ω
)[??]

129x129
-0.38289

1.46
0.172

0.37095
1.59

0.156
-0.51550

2.20
0.906

B
enchm

ark
[?
?
?]

-0.38857
0.172

0.37694
0.158

-0.52708
0.909



High-Order Upwind Methods 165

(a) Re = 1000

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

[*]

[**]

31x31

61x61

91x91

u

y

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 

[*]

[**]

31x31

61x61

91x91

x
v

(b) Re = 3200

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

[*]

Present (91x91)

u

y

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 

[*]

Present (91x91)

x

v

Figure 8: Lid-driven cavity flow, IRBFE-CVM: velocity profiles on the vertical
(left) and horizontal (right) centrelines at different grids, results by Ghia, Ghia, and
Shin (1982) were obtained at a grid of 129×129. [∗] is Ghia, Ghia, and Shin (1982)
and [∗∗] is Botella and Peyret (1998).

5.2 Flow past a circular cylinder in a channel

We further verify IRFBE-CVM and IRBFE-CM through the simulation of flow
past a circular cylinder in a channel (Fig. 11). Works involving simulation of
such a flow are reported in, for example, Chen, Pritchard, and Tavener (1995),
Sahin and Owens (2004) and Singha and Sinhamahapatra (2010). Let D be the
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(a) Re = 0, 61× 61
ψ ω

(b) Re = 100, 61× 61
ψ ω

(c) Re = 400, 71× 71
ψ ω

Figure 9: Lid-driven cavity flow, IRBFE-CVM: stream and iso-vorticity lines for
several Re numbers and grid sizes. The contour values are taken to be the same as
those in Ghia, Ghia, and Shin (1982) and Sahin and Owens (2003) respectively.
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(a) Re = 1000, 81× 81
ψ ω

(b) Re = 3200, 91× 91
ψ ω

Figure 10: Lid-driven cavity flow, IRBFE-CVM: stream and iso-vorticity lines for
several Re numbers and grid sizes. The contour values are taken to be the same as
those in Ghia, Ghia, and Shin (1982) and Sahin and Owens (2003) respectively.

cylinder diameter and H the channel height. One important geometric parameter
to characterise the flow is the blockage ratio defined as γ = D/H. Chen, Pritchard,
and Tavener (1995) did a numerical linear stability analysis and identified the curve
of neutral stability for Hopf bifurcation at values of γ up to 0.7. Sahin and Owens
(2004) extended the linear stability analysis to a wider range of γ from 0.1 to 0.9
and uncovered the complex dynamics of the flow at sufficiently high values of
the Reynolds number and the blockage ratio. The paper by Anagnostopoulos and
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Figure 11: Flow past a circular cylinder in a channel: schematic representation of
the computational domain.

Iliadis (1996) provided the flow patterns for γ = (0.05,0.15,0.25) and Re = 106
using the finite element technique. Recently, Singha and Sinhamahapatra (2010)
reported the flow patterns for Re = (45,100,150) and γ = (0.5,0.25,0.333,0.125)
using the finite volume technique.

The problem domain is multiply-connected as shown in Fig. 11. We choose the
geometry and boundary conditions here as those in Chen, Pritchard, and Tavener
(1995). The ratio between the upstream and downstream lengths is taken to be
1/3 and the length of the channel is chosen to be 6H to assure the fully developed
conditions of the flow at upstream and downstream boundaries (Chen, Pritchard,
and Tavener (1995)). All lengths are scaled by the channel height H (Fig. 11).
Parabolic velocity profiles can thus be imposed at the inlet and outlet as

uin = uout = u0

(
1
4
− y2

)
, (61)

vin = vout = 0. (62)

Using u0 = 1, the flow rate takes the value

Q =
∫ 1/2

−1/2

(
1
4
− y2

)
dy =

1
6
, (63)

and we define the Reynolds number as Re = 1/(6ν). Fig. 11 displays boundary
conditions for the stream function variable, which are derived from (61)-(62) at the
inlet and outlet, and non-slip conditions at the remaining boundaries. The imposi-
tion of boundary conditions for ω on the walls, inlet and outlet are similar to that
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used in the lid driven-cavity flow, i.e. (60). On the cylinder surface, analytic formu-
lae for computing the vorticity boundary condition on a non-rectangular boundary
Le-Cao, Mai-Duy, and Tran-Cong (2009) are utilised here

ωb =−
[

1+
(

tx
ty

)2
]

∂ 2ψb

∂x2 , (64)

for an x-grid line, and

ωb =−
[

1+
(

ty
tx

)2
]

∂ 2ψb

∂y2 , (65)

for a y-grid line. In (64) and (65), tx and ty are the x- and y-components of the
unit vector tangential to the boundary. The approximations in (64) and (65) require
information about ψ in one direction only and they are conducted here by means
of 2-node IRBFEs, i.e. (27).

We implement Scheme 1 of IRBFE-CVM and Scheme 3 of IRBFE-CM with three
different grids, (127×22,247×42,367×62), to study the flow at Re =(0,25,35,60)
and γ = (0.3,0.5,0.7).
The convergence behaviours of IRBFE-CVM and IRBFE-CM with respect to time
in the case of γ = 0.5, Re = 60 and a grid of 367×62 are shown in Figs 12 and 13.
Results without an upwind treatment are also included. It can be seen that solutions
converge faster for those with upwind than those without upwind. Larger time steps
can be used for the former. In the case of IRBFE-CVM (Fig. 12), CM = 10−9 is
obtained after about 3.3×103 iterations for the no-upwind version and after about
1.8× 103 iterations for Scheme 1. In Fig. 13, IRBFE-CM reaches CM = 10−9

after about 1.7×104 iterations for the no-upwind version and after about 8.3×103

iterations for Scheme 3.

Results concerning the critical Re number and the length of recirculation zones be-
hind the cylinder are shown in Tabs 5 and 6, respectively. For all three grids and
different values of β used, the obtained values are in satisfactory agreement with
those reported in Chen, Pritchard, and Tavener (1995) and Singha and Sinhamaha-
patra (2010).

Contour plots for the stream function and vorticity fields are presented in Figs 14,
15 and 16, while the velocity vector field is displayed in Fig. 17. Stronger interac-
tion in regions between the cylinder and the walls is observed at higher values of
the blockage ratio (Figs 14 and 15). At Re = 60 and γ = 0.5, symmetrical recircu-
lation zones appear behind the cylinder in the stream function field (Fig. 16a). The
flow features are similar to those obtained by Singha and Sinhamahapatra (2010)
at Re = 45 (i.e. Re = 60 according to the present definition of Re) and γ = 0.5.
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Figure 1: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5,
Re = 60, grid = 367×62, solution at Re = 35 used as initial guess: convergence
behaviour. Scheme 1 using a time step of 2×10−4 converges faster than the no-
upwind version using a time step of 10−4. It is noted that the latter diverges for
time steps greater than 10−4. CM denotes the convergence measure as defined
by (??).

Figure 12: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5,
Re = 60, grid = 367× 62, solution at Re = 35 used as initial guess: convergence
behaviour. Scheme 1 using a time step of 2× 10−4 converges faster than the no-
upwind version using a time step of 10−4. It is noted that the latter diverges for
time steps greater than 10−4. CM denotes the convergence measure as defined by
(57).

Fig. 18 shows velocity profiles on the centreline behind the cylinder for the case
of γ = 0.5. It can be seen that the incipience of recirculation zones appears around
Re = 25.
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Figure 13: Flow past a circular cylinder in a channel, IRBFE-CM, γ = 0.5, Re = 60,
grid = 367× 62, solution at Re = 0 used as initial guess: convergence behaviour.
Scheme 3 using a time step of 10−4 converges faster than the no-upwind version
using a time step of 5× 10−5. It is noted that the latter diverges for time steps
greater than 5×10−5. CM denotes the convergence measure as defined by (57).

6 Concluding remarks

In this paper, we have extended our 2-node IRBFEs to the solution of the stream
function-vorticity formulation governing fluid flows in rectangular and non-rectangular
domains. Several high-order upwind schemes based on 2-node IRBFEs were also
proposed and investigated. Attractive features of the proposed point/subregion col-
location methods include (i) a simple preprocessing (Cartesian grids); (ii) a sparse
system matrix (2-node approximations); and a higher order of continuity across
grid nodes (C2-continuous elements). Numerical results show that (i) much larger
time steps can be used with the upwind versions; and (ii) a high level of accuracy



172 Copyright © 2011 Tech Science Press CMES, vol.80, no.2, pp.141-177, 2011

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

(a) γ = 0.3

x

y

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

(b) γ = 0.5

x

y

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

(c) γ = 0.7

x

y

Figure 14: Flow past a circular cylinder in a channel, IRBFE-CVM, Re = 0, grid
= 367×62: streamlines at different values of the blockage ratio.
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Figure 15: Flow past a circular cylinder in a channel, IRBFE-CVM, Re = 0, grid
= 367×62: iso-vorticity lines at different values of the blockage ratio.
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Figure 2: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5,
Re = 60, grid = 367× 62: streamlines and iso-vorticity lines.Figure 16: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5, Re =

60, grid = 367×62: streamlines and iso-vorticity lines.
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Figure 17: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5, Re =
60, grid = 367×62: velocity vector field.
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Table 5: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5: The
critical Reynolds number Recrit for the formation of the steady recirculation zone
behind the cylinder.

Method Grid Recrit

IRBFE-CVM 127x22 27.498

247x42 26.133

367x62 25.078

Chen, Pritchard, and Tavener (1995) 24.3
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Figure 18: Flow past a circular cylinder in a channel, IRBFE-CVM, γ = 0.5: ve-
locity profiles on the centreline behind the cylinder at different Reynold numbers.
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Table 6: Flow past a circular cylinder in a channel, γ = 0.5, Re = 60: minimum
velocity umin and its position on the centreline, and the length of recirculation zones
behind the cylinder (Lw). It is noted that the case of Re = 60 and γ = 0.5 here is
equivalent to the case of Re = 45 and γ = 0.5 in Singha and Sinhamahapatra (2010).

Method Grid β umin x Lw

IRBFE-CVM 127x22 15 -0.067 0.141 0.269
247x42 15 -0.074 0.140 0.270
367x62 15 -0.076 0.139 0.270

IRBFE-CM 367x62 1 -0.076 0.141 0.271
367x62 3 -0.076 0.141 0.270
367x62 5 -0.075 0.140 0.269

Singha and Sinhamahapatra (2010) 0.284
(Re = 45)

is achieved using relatively coarse grids.
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