
Copyright © 2011 Tech Science Press CMES, vol.80, no.3, pp.201-217, 2011

Applicability of the Boundary Particle Method

F.Z. Wang1,2,3

Abstract: In this paper, we consider the boundary particle method (BPM) which
is excellent in solving inhomogeneous partial differential equations in terms of so-
lution accuracy and simplicity. In order to investigate the applicability of the BPM,
we examine the relationship between its solution accuracy and the effective condi-
tion number. We show that the effective condition number, which estimates system
stability with the right-hand side vector taken into account, is inversely propor-
tional to the root mean square error in the numerical approximation. Moreover,
for noisy-boundary cases, we find that the BPM can not yield reasonable results,
for more noise added to the right-hand side vector, by using Gaussian elimina-
tion. Thus, to solve effectively the discrete ill-conditioned coefficient matrix, we
adopt three regularization techniques under two different regularization parameter
choices. Numerical results indicate that the generalized cross-validation choice rule
for the damped singular value decomposition regularization strategy performs the
best.

Keywords: Effective condition number, noisy-boundary, inhomogeneous, regu-
larization technique, regularization parameter.

1 Introduction

Meshless methods have tremendously attracted many mathematicians and engi-
neers in recent decades [Belytschko, Krongauz, Organ, Fleming, and Krysl (1996);
Nguyen, Rabczuk, Bordas, and Duflot (2008); Ferreira, Kansa, Fasshauer, and
Leitao (2009)]. It can be divided into two types, that is, domain-type meshless
methods and boundary-type meshless methods.

Among the boundary-type meshless methods, the method of fundamental solutions
[Fairweather and Karageorghis (1998); Chen, Karageorghis, and Smyrlis (2008)],
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the boundary node method [Mukherjee and Mukherjee (1997); Li, Huang, and
Miao (2010)], the boundary knot method [Kang and Lee (2000); Chen and Hon
(2003); Wang, Chen, and Jiang (2010)] and the desingularized meshless method
[Young, Chen, and Lee (2005); Chen, Lu, and Hsu (2011)] are typically exam-
ples. These representative boundary-type meshless methods can solve homoge-
neous problems with boundary-only discretization, but require inner nodes in con-
junction with the other techniques to handle inhomogeneous problems, take the
dual reciprocity method (DRM) for example [Golberg (1995); Patridge, Brebbia,
and Wrobel (1992)]. Similar to the DRM, the multiple reciprocity method (MRM)
[Nowak and Neves (1994)] is another choice in dealing with inhomogeneous prob-
lems. The superior advantage of the MRM over the DRM lies in that the former
does not need inner nodes for the particular solution in the process of solving in-
homogeneous problems. To take advantage of its truly boundary-only merit, Chen
[Chen (2002)] developed the MRM-based boundary particle method (BPM). The
BPM is a meshless, integration-free strategy which uses either high-order nonsin-
gular general solutions or singular fundamental solutions as the radial basis func-
tions.

We note that the BPM produces a severely ill-conditioned full coefficient matrix
when using a large number of boundary nodes, which is also encountered in the
other boundary-type methods [Wang, Chen, and Jiang (2010); Chen, Chen, and
Lee (2005); Liu (2008)]. Nevertheless, there often occurs the puzzle that the tra-
ditional L2 condition number is extremely huge, but the approximate solutions are
convincingly correct. Based on the L2 condition number, such numerical solutions
should be distrusted. Thus, an alternative measurement index called the effective
condition number, which takes the right-hand side vector into account, was first in-
troduced in [Christiansen and Hansen (1994)]. Recently, the relationship is studied
between the effective condition number of a linear system and the solution accu-
racy when using the method of fundamental solutions [Drombosky, Meyer, and
Ling (2009)] or the boundary knot method [Wang, Ling, and Chen (2009)]. How-
ever, if more noise is added to the right-hand side vector b, traditional methods like
Gaussian elimination can not yield reasonable results. Thus, some regularization
techniques has been investigated to obtain reasonable results [Wei, Hon, and Ling
(2007); Ramachandran (2002); Chen, Hokwon, and Golberg (2006); Jin and Zheng
(2005a); Jin and Zheng (2005b)].

In this paper, we first investigate the relationship between the solution accuracy and
the effective condition number of a linear system when using the BPM. And then,
we combine the BPM with various regularization techniques to examine Helmholtz
problems under noisy-boundary conditions which are preferably for practical prob-
lems. Numerical experiments show that the Damped Singular Value Decomposi-
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tion (DSVD) using the Generalized Cross-Validation (GCV) regularization param-
eter performs the best in terms of solution accuracy as well as stability.

2 BKM formulation

To briefly illustrate the BPM, we consider the following nonhomogeneous Helmholtz
problem

∆u(X)+λ
2u(X) = f (X) in Ω (1)

u(X) = ū(X) on Γ1 (2)
∂u(X)

∂ n̄
= q̄(X) on Γ2 (3)

where ∆ represents the Laplacian, λ is the wave number, n̄ the unit outward normal,
u and q the potential and its normal derivative (flux), respectively. Ω stands for
the solution domain in Rd , where d denotes the dimensionality of the space, and
∂Ω(= Γ1∪Γ2) its boundary.

Using the superposition theorem, we can divide the solution of Eq. (1) into

u(X) = u0
h(X)+u0

p(X) (4)

where u0
h(X) and u0

p(X) are the zero-order homogeneous and particular solutions,
respectively. Using the MRM [Nowak and Neves (1994)], we can evaluate the par-
ticular solution in Eq. (4) by a sum of higher-order homogeneous solution um

h (X),
namely

u0
p(X) =

∞

∑
m=1

um
h (X) (5)

where the superscript m is the order index of homogeneous solution. Thus, the
solution of inhomogeneous equation Eq. (1) can be rewritten as

u(X) = u0
h(X)+u0

p(X) =
∞

∑
m=0

um
h (X) (6)

On the other hand, the zero-order homogeneous solution u0
h(x) has to satisfy both

the governing equation and the boundary conditions, i.e.

L{u0
h(X)} = 0 in Ω (7)

u0
h(X) = ū(X)−u0

p(X) on Γ1 (8)

∂u0
h(X)
∂ n̄

= q̄(X)−
∂u0

p(X)
∂ n̄

on Γ2 (9)
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where L indicates the Helmhotz operator 4+ λ 2. Eqs. (8) and (9) are in fact the
DRM formula without using inner nodes [Nowak and Neves (1994)]. In contrast,
the MRM also involves the higher order homogeneous solution. Through a similar
incremental differentiation operation over Eqs. (8) and (9) via operator L{·}, we
have successive higher order boundary differential equations

Ln−1{u0
h(X)} = Ln−2{ f (X)}−Ln−1{un

p(X)} on Γ1 (10)

∂Ln−1{un
h(X)}

∂ n̄
=

∂ (Ln−2{ f (X)}−Ln−1{un
p(X)})

∂ n̄
on Γ2 (11)

where L0{ f (x)} = f (x) and Lm{·} = Lm−1{L{·}} = · · · = L{L{L{L{· · ·}}}} de-
notes the m-th order operator of L{·} with m ≥ 1. The n-th order homogeneous
solution can be approximated by

un
h(X) =

N

∑
k=1

β
n
k u∗n(rk) (12)

where N is the number of boundary nodes, k the index of source nodes on bound-
ary, βk the desired coefficients, and rk =‖ X −Xk ‖ the Euclidean distance norm.
u∗n(·) represents the fundamental solution or the nonsingular general solution of op-
erator Ln{·}. Like the MFS, the usage of fundamental solutions requires a fictitious
boundary outside the physical domain. Therefore, we use the nonsingular general
solution rather than the fundamental solution in this paper.

Collocating Eqs. (8)-(11) at all boundary nodes in terms of the representation (12),
we have the BPM boundary discretization equations:

N

∑
k=1

β
0
k u∗0(rik) = ū(x)−u0

p(xi) (13)

N

∑
k=1

β
0
k u∗0(r jk) = q̄(x)−

∂u0
p(x j)
∂ n̄

(14)

N

∑
k=1

β
1
k u∗n(rik) = Ln−2{ f (xi)}−Ln−1{un

p(xi)} (15)

N

∑
k=1

β
1
k u∗n(r jk) =

∂ (Ln−2{ f (x j)}−Ln−1{un
p(x j)})

∂ n̄
(16)

As in the MR-BEM [Nowak and Neves (1994)], the successive process is truncated
at some order M, namely,

LM−1{uM
p }= 0. (17)
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The practical solution procedure is a reversal recursive process:

LM → LM−1→ ··· → L0. (18)

It is noted that due to

Ln−1{u∗n(r)}= u∗0(r), (19)

the coefficient matrices of all successive equations (13)-(16) are the same, i.e.

Aβ
n = bn, n = M,M−1, · · ·1,0. (20)

The LU decomposition algorithm is suitable for this task. We can employ the ob-
tained expansion coefficients β to calculate the BPM solution at any node, i.e.

u(Xi) =
M

∑
n=0

N

∑
k=1

β
n
k u∗n(rik). (21)

For more details, we refer readers to [Chen (2002)].

We find that being a global interpolation approach, the BPM produces an ill-conditioned
coefficient matrix, especially when using a large number of boundary nodes, which
is clearly reflected by its associated huge L2 condition number. It is worthy noting
that the L2 condition number measures the conditioning of coefficient matrix by a
ratio of the maximum and minimum eigenvalues of the coefficient matrix A. The
fixed vector b in the right-hand side of equation

Aα = b (22)

is not considered in the L2 condition number. As an alternative measurement in-
dex, the effective condition number is introduced to include the effect of vector b
[Drombosky, Meyer, and Ling (2009)]. More details are given in the next section.

3 Measurement of the coefficient matrix conditioning

As is known to all, the coefficient matrix A in Eq. (22) can be decomposed as

A = UΣV T , (23)

where U = [u1,u2, · · · ,uN ] and V = [v1,v2, · · · ,vN ] are orthogonal matrices, UTU =
V TV = IN , where IN denotes the identity matrix and Σ is a diagonal matrix with
diagonal elements

σ1 ≥ σ2 ≥ ·· · ≥ σN > 0, (24)
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where σi,1 ≤ i ≤ N are called singular values of A while the vectors ui and vi are
the left and right singular vectors of A, respectively.

Such a process is referred to as the singular value decomposition. The L2 condition
number of a nonsingular square matrix A is defined by Cond(A) =‖ A ‖ · ‖ A−1 ‖,
where the matrix 2−norm is used throughout this paper, the L2 condition number
can be stated as Cond(A) = σ1/σn, where σ1 and σn are the largest and smallest
singular value of A, respectively.

Substituting Eq.(23) into Eq.(22), we have

α =
N

∑
i=1

uT
i b
σi

vi. (25)

For practical applications, the boundary data b may be disturbed by some noise.
Clearly, we should not rely solely on the L2 condition number to predict accu-
racy of the computed solution of all practical ill-conditioned BPM systems. Most
importantly, the solution accuracy of the BPM has an obvious dependence on the
right-hand side vector. Since the L2 condition number does not involve the right-
hand side vector b, any research of the system stability irrelevant to the choice
of b is not appropriate. In many applications, b is problem-dependent but fixed.
Under these conditions, as an alternative tool to estimate the solution accuracy of
the BPM, we consider the effective condition number ECN = ECN(A,b), which is
defined as follows [Drombosky, Meyer, and Ling (2009)].

Consider a perturbed matrix system A(α +4α) = b +4b. From which we can
derive

b =
N

∑
i=1

ξiui, 4b =
N

∑
i=1
4ξiui. (26)

Let ξ = (b1, ...,bN)T = U∗b and 4ξ = (4b1, ...,4bN)T = U∗4b. The solution
can be expressed in terms of the inverse of A, namely

α = A−1b := V Σ
−1UT b, 4α = A−14b. (27)

Suppose p≤ N is the largest integer such that σp > 0, that is

Σ
−1 = Diag(σ−1

1 , ...,σ−1
p ,0, ...,0). (28)

Since U is orthogonal, we have

‖ α ‖=

√
N

∑
i=1

(
ξi

σi
)2, ‖ 4α ‖=

√
N

∑
i=1

(
4ξi

σi
)2 ≤ ‖4b ‖

σN
. (29)
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If both Aα = b and A(α +4α) = b+4b exist, then

‖ 4α ‖
α

≤ Cond(A)
‖ 4b ‖

b
. (30)

Substituting Eq.(29) into the inequality (30) results in a new error bound for Eq.(22)
with the ECN, as an alternative replacement of L2 condition number

ECN(A,b) =
‖ b ‖

σN

√(
ξ1
σ1

)2
+ ...+

(
ξN
σN

)2
. (31)

For other types of ECN, we refer readers to Christiansen and Hansen (1994); Li,
Chien, and Huang (2007); Banoczi, Chiu, Cho, and Ipsen (1998).

4 Regularization methods

Based on the singular value decomposition, we briefly present three commonly
used regularization techniques under two parameter choices, that is, the TSVD,
the Tikhonov regularization (TR) and the Damped Singular Value Decomposition
(DSVD) under parameter choice of the L-curve criterion (LC) and the GCV Wei,
Hon, and Ling (2007); Hansen (1994).

4.1 Regularization techniques for discrete problems

TSVD: The TSVD solution is often used to obtain a better estimate of the least
squares solution. It is given by approximating a rank−N full matrix A by a rank K
matrix in which only the largest K singular values are retained

AK =
K

∑
i=1

uiσivT
i . (32)

In this instance, we can replace matrix A in Eq. (22) by AK , which has a well
defined null space of dimension N−K spanned by the right singular value vectors,
vK+1, ...,vN . The original linear system Eq. (22) is then replaced by the following
problem set of Eq. (33), where b is ideal noise-free data obtained at the minimized
node. The resulting TSVD solution of

min‖α‖2 is subject to min‖AKα−b‖2 = min (33)

is given by

αK =
K

∑
i=1

uT
i b
σi

vi (34)
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where K ≤ N is also a regularization parameter.

TR: The TR replaces the linear system (22) by the minimization problem

minα∈Rn‖Aα−b‖2 + µ
2‖α‖2 (35)

where µ ≥ 0 is a regularization parameter.

Based on the singular value decomposition, we can express Eq. (35) in terms of

αµ = αmin =
l

∑
i=1

fi
uT

i b
σi

vi (36)

where l is the rank of matrix A and the Wiener weights are

fi =
σ2

i

σ2
i + µ2 . (37)

DSVD: A relatively less known regularization technique which is based on the sin-
gular value decomposition is the DSVD. Here, instead of using the filter factors (37)
in the TR, one introduces a smoother cut-off by means of filter factors fi defined as

fi =
σi

σi + µ
(38)

these filter factors decay slower than the Tikhonov filter factors and thus, in a sense,
introduces less filtering.

The suitable value of the regularization parameter µ ≥ 0 is chosen by the LC or the
GCV in this paper.

4.2 Regularization parameters

The appropriate value choice for the regularization parameter µ remains an open
problem till now [Wang, Chen, and Jiang (2010)]. Here, we briefly introduce the
LC criterion and the GCV parameter choice [Hon and Wei (2005); Turco (1998)].

LC for Choosing the Regularization Parameter: The LC is defined as

L := {(log‖αµ‖, log‖Aαµ −b‖) : µ ≥ 0}. (39)

Note here that the L-curve is a continuous curve when the regularization parameter
is real in the TR and the DSVD. In numerical computation, the node with maximum
curvature will be searched as the corner of the L-curve. For the discrete one, such
as in TSVD, a finite set of nodes

{(log‖αq‖, log‖Aαq−b‖) : q = 1,2, ...,N} (40)
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will be obtained and interpolated by a spline curve. The node on the spline curve
with the maximum curvature is then chosen as the desirable regularization param-
eter.

The distinctive feature of the LC lies in that the regularized solution varies with the
regularization parameter µ .

GCV for Choosing the Regularization Parameter: The GCV is a statistical method
which estimates the optimal value of the regularization parameter, by minimizing
the functional

V (K) =
1
N ‖(I−A(K))b‖2

[ 1
N trace(I−A(K))]2

(41)

where A(K) is defined as follows:

AαK = A(K)b (42)

The GCV is a predictive mean-square error criteria, in the sense that it estimates
the minimizer of residual function

T (K) =
1
N
‖A(αK−α)‖2 (43)

In the following section, as a comparison to the BPM with no regularization tech-
nique, numerical results are given by using six regularization methods, that is,
GCV-TR, LC-TR, GCV-DSVD, LC-DSVD, GCV-TSVD and LC-TSVD.

5 Numerical Examples

We consider three numerical cases for inhomogeneous Helmholtz problems. Some
random noise to the boundary conditions is added by

u = u+δ , q = q+δ (44)

where δ = ε ×Rand. We use the uniform random number generator to produce
random numbers Rand in [−1,1]. Here, ε denotes the noise level. The root mean
square error in the following tables is defined as [Wang, Chen, and Jiang (2010)]

RMSE =

√√√√ 1
Nt

Nt

∑
j=1
|
u(X j)− ũ(X j)

u(X j)
|2 (45)

for |u(X j)| ≥ 10−3

RMSE =

√√√√ 1
Nt

Nt

∑
j=1
|u(X j)− ũ(X j)|2 (46)
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for |u(X j)|< 10−3, where j is the index of test nodes we are interested in, u(x j) and
ũ(x j) are the exact and numerical solutions respectively, and Nt denotes the total
tested node number.

For the following three cases, we consider the inhomogeneous Helmholtz equation

∆u(x,y)+λ
2u(x,y) = 2sin(x)cos(y)+4ωxcos(x)cos(y) (47)

with corresponding wave number λ =
√

2 [Chen (2002)].

5.1 Square domain case

In this case, we analyze the inhomogeneous Helmholtz equation (47) on an unit
square domain with only Dirichlet boundary condition. Analytical solution is given
by

u = x2sin(x)cos(y). (48)

The coefficient matrix A is solely determined by the positioning of the boundary
nodes, while the right-hand side vector is determined by the boundary data and the
imposed noise level. Thus, the noise will only affect the right-hand side vector b
rather than the BPM coefficient matrix.

Table 1: Case 1: Boundary node number N = 60.

Noise level Cond ECN RMSE
0.0 2.87×1020 3.62×109 9.32×10−5

0.00001 2.87×1020 1.97×105 9.60×10−3

0.00005 2.87×1020 2.12×104 7.84×10−2

0.0001 2.87×1020 2.35×104 7.16×10−2

0.0005 2.87×1020 2.77×103 2.61×10−1

0.001 2.87×1020 2.28×103 1.41×10−1

0.005 2.87×1020 4.53×102 2.92×100

It is seen from Table 1 that the ECN decreases with more noise added, while the
RMSE performs contrarily. We observe a vertical increase in the ECN as a tiny
amount of noise ε = 0.00001 is added. Even though all runs in Table 1 have exactly
the same L2 condition number, we observe completely different error behaviors in
cases with higher noise levels.

The data in Table 1 strongly support the relation ECN = o(RMSE−1). As more
noise is added, the ECN is small enough to indicate that the BPM solution will not
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be of machine epsilon accuracy. Since only the right-hand vector b is altered, this
example can be considered as an appropriate starting point to show the relationship
between the solution accuracy of the BPM and the ECN. All else stays constant, in-
cluding the ill-conditioned coefficient matrix A. On the other hand, the small ECN
found in Table 1 suggests that numerical solutions are not reliable once the noise
ε = 0.005 is added. Thus, we adopt regularization methods instead of applying
BPM directly under such cases.

Table 2: Case 1: Boundary node number N = 60 and noise level ε = 0.005.

Methods ECN RMSE
LC-TR 4.53×102 4.08×10−4

LC-DSVD 4.53×102 3.89×10−5

LC-TSVD 4.53×102 2.70×10−2

GCV-TR 4.53×102 3.59×10−5

GCV-DSVD 4.53×102 3.36×10−5

GCV-TSVD 4.53×102 2.86×10−5

For fixed noise level ε = 0.005 and boundary node number N = 60, Table 2 shows
the RMSE by using six regularization methods. We observe that the GCV-DSVD
gives the best solution accuracy with RMSE = 2.86× 10−5, while the LC-TSVD
gives the worst one with RMSE = 2.70×10−2.

5.2 Irregular domain case

Next, we consider the inhomogeneous Helmholtz equation as described in Case 1,
but under a complex-shaped geometric domain which is sketched in Fig. 1.

The relationship between the ECN and the BPM solution accuracy is shown in
Table 3. From which we can see that the relation ECN = o(RMSE−1) still holds for
complex-shaped geometry problems. Although all results in Table 3 have exactly
the same L2 condition number, we observe completely different error behaviors for
various noise levels. For the noise-free boundary case, the ECN is of the order 109

even though the L2 condition number is one order smaller than that in Case 1. Once
again, we see the drop in both ECN and maximum error once ε = 0.00001 of noise
is added.

For fixed noise level ε = 0.005 and the boundary node number N = 68, Table
4 gives the solution accuracy in terms of the RMSE by using six regularization
methods. From which we can see that all regularization methods perform very well
with order 10−6 except the LC-TSVD. We observe that the GCV-DSVD performs
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Figure 1: Irregular geometry for Case 2

the best with RMSE = 3.49× 10−6, while the LC-TSVD performs the worst one
with RMSE = 1.16×10−5.

5.3 Mixed boundary case with medium wave number

To more precisely illustrate the relationship between the ECN and the BPM solution
accuracy, we reconsider the inhomogeneous Helmholtz equation (47) but under the
irregular geometry depicted in Fig. 1, which involves mixed boundary conditions,
namely, two adjacent Neumann edges (x = 0,y = 0) and the rest Dirichlet edge.
Analytical solution is given by

u = x2sin(λx)cos(λy) (49)

with corresponding wave number λ = 20.

For fixed boundary node number N = 82, Table 5 describes variation of the ECN
and the RMSE versus the increasing noise level. Also, we see the drop in both ECN
and maximum error once ε = 0.00001 of noise is added. Using the observations
in Table 5, we can conclude that the numerical approximation will agree with the
exact solution up to about one decimal place with noise level ε = 0.005, which is
enough for solving many engineering problems.



Applicability of the Boundary Particle Method 213

Table 3: Case 2: Boundary node number N = 68.

Noise level Cond ECN RMSE
0.0 5.22×1019 9.39×109 7.31×10−5

0.00001 5.22×1019 5.82×105 3.60×10−3

0.00005 5.22×1019 1.45×105 1.80×10−3

0.0001 5.22×1019 1.40×104 1.66×10−2

0.0005 5.22×1019 3.28×103 6.37×10−2

0.001 5.22×1019 1.76×104 5.53×10−2

0.005 5.22×1019 8.25×102 2.32×100

Table 4: Case 2: Boundary node number N = 68 and noise level ε = 0.005.

Methods ECN RMSE
LC-TR 8.25×102 9.35×10−6

LC-DSVD 8.25×102 6.53×10−6

LC-TSVD 8.25×102 1.16×10−5

GCV-TR 8.25×102 3.58×10−6

GCV-DSVD 8.25×102 3.49×10−6

GCV-TSVD 8.25×102 3.73×10−6

For the one decimal solution accuracy of noise level ε = 0.005, we analyze the
RMSE by using six regularization methods whose results are shown in Table 6.
We find that the GCV-DSVD is superior to the other regularization methods with
RMSE = 9.70× 10−3, but the LC-TSVD almost give unreasonable result with
RMSE = 1.07×105 to this case. Although the TSVD under parameter choice of the
LC is effective for solving inverse problems with noisy-boundary conditions Wei,
Hon, and Ling (2007); Hon and Wei (2005), it fails to yield acceptable numerical
approximation here.

6 Conclusions

To investigate applicability of the boundary particle method, we introduce the ECN
and analyze the relationship between the BPM solution accuracy and the ECN.
Numerical results show that the effective condition number, which estimates system
stability with the right-hand side vector taken into account, is inversely proportional
to the RMSE in the numerical approximation.

It is also noted that for more noise added to the right-hand side vector, the BPM can
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Table 5: Case 3: Boundary node number N = 82.

Noise level Cond ECN RMSE
0.0 1.09×1019 2.67×109 1.42×10−4

0.00001 1.09×1019 2.19×106 6.40×10−3

0.00005 1.09×1019 1.28×105 6.70×10−3

0.0001 1.09×1019 1.37×104 3.02×10−2

0.0005 1.09×1019 1.00×104 2.54×10−2

0.001 1.09×1019 3.67×103 1.26×10−1

0.005 1.09×1019 1.48×103 2.77×10−1

Table 6: Case 3: Boundary node number N = 82 and noise level ε = 0.005.

Methods ECN RMSE
LC-TR 1.48×103 3.99×10−2

LC-DSVD 1.48×103 2.41×10−2

LC-TSVD 1.48×103 1.07×105

GCV-TR 1.48×103 9.80×10−3

GCV-DSVD 1.48×103 9.70×10−3

GCV-TSVD 1.48×103 3.65×10−2

not yield reasonable results by using Gaussian elimination. Thus, three regulariza-
tion techniques under two different regularization parameter choices are introduced
to seek for improvement. From the above-tested three numerical examples, we con-
clude that the GCV choice ruler for the DSVD regularization method performs the
best in terms of solution accuracy and stability.

Based on this study, one can use the ECN to determine if the BPM is a feasible
method for solving the partial differential equation in hand. Meanwhile, one can
use the DSVD under parameter choice of the GCV to solve problems with ill-
conditioned coefficient matrix. Moreover, there is much theoretical investigation
that needs to be done in this area of numerical analysis.
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