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Application of Symmetric Hyperbolic Systems for the
Time-Dependent Maxwell’s Equations in Bi-Anisotropic

Media
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Abstract: The time-dependent Maxwell’s equations in non-dispersive homoge-
neous bi-anisotropic materials are considered in the paper. These equations are
written as a symmetric hyperbolic system. A new method of the computation of
the electric and magnetic fields arising from electric current is suggested in the pa-
per. This method consists of the following. The Maxwell’s equations are written
in terms of the Fourier transform with respect to the space variables. The Fourier
image of the obtained system is a system of ordinary differential equations whose
coefficients depend on the 3D Fourier parameter. The formula for the solution of
the obtained system is derived by the matrix transformations. Finally, the electric
and magnetic fields are computed by the inverse Fourier transform. Using this for-
mula the computation of the electric and magnetic fields has been made for the case
when the current is a polarized dipole.

Keywords: Maxwell’s equations, bi-anisotropic material, symmetric hyperbolic
system, analytical method, simulation.

1 Introduction

The bi-anisotropic materials have been predicted by Landau and Lifshitz (1960)
and Dzyalovskii (1960) in their theoretical study. Astrov (1960) was the first
who observed the magnetoelectric effect in chromium oxide. In recent years, many
studies of bi-anisotropic materials have been carried out with the objective to find
materials that show magnetic and electric coupled properties for applications in
the magnetoelectronics technology such as non-volatile memories [Kimuraet et al.
(2003)]. These materials could potentially be used for fabricating devices that in-
clude sensors, actuators and data storage. Now, scientists have identified a poten-
tial magneto-electric material based on a bismuth based oxide (Bi2Fe4O9) with
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favorable properties for magnetoelectric applications [Singhand et al. (2008)]. A
simple classification of the ways magnetoelectric effects may be used in devices
is described in [ Wood and Austin (1974)]. It is mentioned there that there ex-
ists the following areas of possible applications for magnetoelectric materials: (1)
magnetic field switching or modulation of electric polarization; (2) exploitation of
high dielectric constant in high-frequency low-loss microwave Faraday rotators;
(3) efficient generation, modulation, or modification of spin waves or hybrid spin-
electromagnetic waves; (4) use of irreversible light propagation in a sensitive in-
terference sensor. The concept of magnetoelectric composites and their applica-
tions have been discussed in [Grossinger et al. (2007)]. Although the compre-
hension of the mechanisms that favor the interaction between electric and magnetic
fields is not yet absolutely established, there is a great interest in the study of the
electromagnetic wave propagations in bi-anisotropic materials. In the past decade
the significant research progress has been achieved in potential applications of bi-
anisotropic materials. Thus for example, the dyadic Green’s functions for source
radiation and wave propagation in homogeneous bi-anisotropic materials have been
studied in [Li and Lim (2003)], [Dmitriev (2004)]. Plane wave propagations in ho-
mogeneous bi-anisotropic materials have been treated in [Sedyukov et al. (2001)].
The electromagnetic scattering of various homogeneous bi-anisotropic objects has
been examined in [Sedyukov et al. (2001)], [Zhang, Yeo and Leong (2003)]. How-
ever we need to note that the study of electromagnetic fields has been made only
for particular cases of bi-anisotropic materials. The theoretical study of electro-
magnetic bi-anisotropic materials by the time-dependent Maxwell’s equations has
not been done so far. The complexity of the Maxwell’s equations in bi-anisotropic
materials with general structures of anisotropy depends on the complexity of the
constitutive relations for electric and magnetic fluxes. The electric and magnetic
fluxes in bi-anisotropic materials are governed by constitutive relations containing
matrices of permittivity, permeability and magnetoelectric characteristics whose
elements are functions of the position in the three dimensional space. These consti-
tutive relations are more complicated in comparison with constitutive relations of
ordinary isotropic or anisotropic materials.

The motivation of our study is to develop a new method for solving the problems
of electromagnetic radiation in a class of bi-anisotropic materials with the general
structure of anisotropy.

In the present paper the time dependent Maxwell’s equations for homogeneous
non-dispersive bi-anisotropic materials, characterized by arbitrary symmetric posi-
tive definite electric permittivity and magnetic permeability tensors and symmetric
magneto-elastic tensors, are considered. These Maxwell’s equations are written
as a symmetric hyperbolic system. A new method of the computation of electric
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and magnetic fields arising from electric current is suggested in the paper. This
method consists of the following. The Maxwell’s equations as a symmetric hy-
perbolic system are written in terms of the Fourier transform with respect to the
space variables. The Fourier image of the obtained system is a system of ordinary
differential equations whose coefficients depend on the 3D Fourier parameter. The
formula for the solution of the obtained ordinary differential system is derived by
the matrix transformations. Finally, the electric and magnetic fields are calculated
by the inverse Fourier transform. Using this formula the computation and simu-
lation of the electric and magnetic fields has been obtained for the case when the
current is a polarized dipole. These computational examples confirm the robustness
of the suggested method.

2 The time-dependent Maxwell’s equations in bi-anisotropic materials

The electromagnetic wave propagation in bi-anisotropic materials is governed by
Maxwell’s equations [Kong (1990)]:

curlx~H =
1
c

∂~D
∂ t

+
4π

c
~J, curlx~E =−1

c
∂~B
∂ t

, (1)

divx(~D) = ρ, divx(~B) = 0, (2)

where ~E = (E1,E2,E3), ~H = (H1,H2,H3) are electric and magnetic fields, ~D =
(D1,D2,D3) is the electric displacement, ~B = (B1,B2,B3) is the magnetic flux den-
sity, ~J = (J1,J2,J3) is the electric current density, ρ is the density of electric charge,
c is the speed of light in vacuum. The components of the vector functions ~E, ~H, ~D,
~B, ~J and ρ are real valued functions of the position x = (x1,x2,x3) from R3 and the
time t from R. Taking the divergence of (1) and using (2), we find the conservation
law for electric charge and current density:

∂ρ

∂ t
+divx~J = 0. (3)

Remark 1. Equality (3) is a necessary condition that the pair of vector functions
~E, ~H is a solution of Maxwell’s equations (1), (2). We assume that ~J and ρ satisfy
this conservation law.

The properties of bi-anisotropic materials, in which we study electric and magnetic
fields, are constituted by the constitutive relations. These constitutive relations are
given in the following form (see, for example, [Kong (1990)])

~D = ¯̄ε~E + ¯̄
ξ ~H, ~B = ¯̄η~E + ¯̄µ~H, (4)
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where ¯̄ε = (εkm)3×3, ¯̄µ = (µkm)3×3, ¯̄
ξ = (ξkm)3×3, ¯̄η = (ηkm)3×3 are matrices of

electric permittivity, magnetic permeability and magnetoelectric tensors, respec-
tively. Here ¯̄

ξ and ¯̄η are not zero if the medium is bi-anisotropic. If there is no
coupling between electric and magnetic fields, i.e. when ¯̄

ξ = ¯̄η = 0, the medium is
anisotropic. If ¯̄

ξ = ¯̄η = 0 and ¯̄ε = I and ¯̄µ = I, where I is the identity 3×3 matrix,
the medium is isotropic.

According to the theory of continuous groups of symmetry (CGS) developed by
Dmitriev (2000), the number of independent elements in ¯̄ε , ¯̄µ , ¯̄

ξ , ¯̄η for a given bi-
anisotropic medium is completely governed by certain magnetic group symmetry.
From CGS theory we can find a classification of the constitutive tensors ¯̄ε , ¯̄µ , ¯̄

ξ , ¯̄η
for 23 linear complex media [ Li and Yin (2005) ]. In the present paper we assume
that the following 6×6 matrix

¯̄A0 =

(
¯̄ε ¯̄

ξ

¯̄η ¯̄µ

)
(5)

is symmetric and positive definite with constant elements. We suppose also that

~E = 0, ~H = 0, ~J = 0, ρ = 0 for t < 0. (6)

Remark 2. We note that equality (1) under conditions (3), (6) implies (2). This
means that for given ¯̄ε = (εkm)3×3, ¯̄µ = (µkm)3×3, ¯̄

ξ = (ξkm)3×3, ¯̄η = (ηkm)3×3, ~J
and ρ the vector functions ~E, ~H satisfying (1), (6) are a solution of the Maxwell’s
equations under assumptions (3), (4).

The main object of the paper is the initial value problem (IVP) of finding ~E, ~H sat-
isfying (1), (6) for given ¯̄ε = (εkm)3×3, ¯̄µ = (µkm)3×3, ¯̄

ξ = (ξkm)3×3, ¯̄η = (ηkm)3×3,
~J.

3 Representation of (1), (6) as the initial value problem for a symmetric hy-
perbolic system

Equations (1), (6) can be written in terms of ~E(x, t) and ~H(x, t) as follows

1
c

¯̄ε
∂~E(x, t)

∂ t
+

1
c

¯̄
ξ

∂ ~H(x, t)
∂ t

= curlx~H(x, t)− 4π

c
~J, (7)

1
c

¯̄η
∂~E(x, t)

∂ t
+

1
c

¯̄µ
∂ ~H(x, t)

∂ t
=−curlx~E(x, t), (8)
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with the following conditions

~E(x, t)
∣∣∣
t≤0

= 0, ~H(x, t)
∣∣∣
t≤0

= 0. (9)

Equations (7)–(8) with conditions (9) can be presented in the form of an initial
value problem for the following symmetric hyperbolic system:

1
c

¯̄A0
∂~U(x, t)

∂ t
=

3

∑
j=1

¯̄A j
∂~U(x, t)

∂x j
+

1
c
~f (x, t), ~U(x, t)

∣∣∣
≤0

= 0, (10)

where ~U(x, t) and ~f (x, t) are vector columns with six components defined by ~U(x, t)=
(~E(x, t), ~H(x, t))T and ~f =−4π(~J,0,0,0)T (the upper index T means the transpose
of the row vectors to the column vectors ); ¯̄A0 is the 6×6 matrix defined by (5) and
¯̄A j, j = 1,2,3 are matrices of the order 6×6 determined as

¯̄A j =
(

03×3
¯̄B j

( ¯̄B j)T 03×3

)
, (11)

where 03×3 is the 3×3 zero matrix, ( ¯̄B j)T is the transpose matrix of ¯̄B j;

¯̄B1 =

 0 0 0
0 0 −1
0 1 0

 , ¯̄B2 =

 0 0 1
0 0 0
−1 0 0

 , ¯̄B3 =

 0 −1 0
1 0 0
0 0 0

 .

4 Derivation of the formula for the solution of (10)

4.1 Equation for the Fourier image of ~U(x, t)

Let Ũ(ν , t) be the Fourier transform image of the ~U(x, t) with respect to x =(x1,x2,x3)∈
R3, i.e. Ũ(ν , t) = (Ũ1(ν , t),Ũ2(ν , t),Ũ3(ν , t),Ũ4(ν , t),Ũ5(ν , t),Ũ6(ν , t)), where
Ũ j(ν , t) = Fx[E j](ν , t) and ˜U j+3(ν , t) = Fx[H j](ν , t) j = 1,2,3, and the Fourier
operator Fx is given by (see, for example, Vladimirov (1971) )

Fx[E j](ν , t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

E j(x, t)eiν ·xdx1dx2dx3,

ν = (ν1,ν2,ν3) ∈ R3; ν · x = x1ν1 + x2ν2 + x3ν3, i2 =−1.

Equations (10) can be written in the form of their Fourier images as follows

¯̄A0
∂ Ũ(ν , t)

∂ t
+ icA (ν)Ũ(ν , t) = F̃(ν , t), Ũ(ν , t)

∣∣
t<0 = 0. (12)

where A (ν) = ∑
3
j=1 ν j

¯̄A j is the symmetric 6×6 matrix, F̃(ν , t) = Fx[~f ](ν , t) .
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4.2 Construction of the formula for the solution of (12)

The construction of the exact solution of (12) consists of several steps. In the
first step, using the matrix formalism for given symmetric matrix A (ν) and the
symmetric positive definite matrix ¯̄A0 we construct a non-singular matrix ¯̄T and
a diagonal matrix ¯̄D(ν) = diag(d1(ν),d2(ν), ...,d6(ν)) with real valued elements
such that

¯̄T T (ν) ¯̄A0
¯̄T (ν) = ¯̄I, ¯̄T T (ν)A (ν) ¯̄T (ν) = ¯̄D(ν), (13)

where ¯̄I is the identity matrix, ¯̄T T (ν) is the transposed matrix to ¯̄T (ν).
Remark 3. Computing ¯̄D(ν) and ¯̄T (ν) explicitly can be made successively: first,
find ¯̄A−1/2

0 and then construct ¯̄D(ν) and ¯̄T (ν). We note that for a given diagonal
matrix ¯̄A0 = diag(a j j, j = 1,2, ...6) with positive elements on the diagonal the
matrix ¯̄A−1/2

0 is given by

¯̄A−1/2
0 = diag

(
1
√a j j

, j = 1,2, ...6
)

.

For the given positive definite non-diagonal matrix ¯̄A0 we construct an orthogonal
matrix ¯̄R by eigenvectors of ¯̄A0 such that

¯̄RT ¯̄A0
¯̄R = ¯̄L≡ diag(λ j, j = 1,2, ...6),

where ¯̄RT is the transpose matrix of ¯̄R and λk > 0, k = 1,2, ...6 are eigenvalues of ¯̄A0.
Then ¯̄A1/2

0 is defined by ¯̄A1/2
0 = ¯̄R ¯̄L1/2 ¯̄RT , where ¯̄L1/2 = diag(

√
λ j, j = 1,2, ...6).

The matrix ¯̄A−1/2
0 is the inverse to ¯̄A1/2

0 . Let us take the given symmetric ma-
trix A (ν) and the matrix ¯̄A−1/2

0 which assumed to be found. Let us consider
the matrix ¯̄A−1/2

0 A (ν) ¯̄A−1/2
0 which is symmetric. The diagonal matrix ¯̄D(ν) =

diag(d1(ν),d2(ν), ...,d6(ν)) is constructed by eigenvalues of ¯̄A−1/2
0 A (ν) ¯̄A−1/2

0 .
The columns of the orthogonal matrix ¯̄Q(ν) are formed by normalized orthogonal
eigenvectors of ¯̄A−1/2

0
¯̄A(ν) ¯̄A−1/2

0 corresponding to eigenvalues dk(ν), k = 1,2, ...,6.
The matrix ¯̄T (ν) is defined by the formula ¯̄T (ν) = ¯̄A−1/2

0
¯̄Q(ν). We note that com-

puting ¯̄D(ν), ¯̄T (ν) and ¯̄T T (ν) for the diagonalization of matrices A (ν) and ¯̄A0 is
similar to the procedure from the paper [Yakhno (2011)].

In the second step, we are looking for the solution of (12) in the form Ũ(ν , t) =
¯̄T (ν)V(ν , t), where the matrix ¯̄T (ν) is constructed in the first step and a vector
function V(ν , t) is unknown. Substituting Ũ(ν , t) = ¯̄T (ν)V(ν , t) into (12) and then
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multiplying the obtained differential equation by ¯̄T T (ν) and using (13) we find for
ν ∈ R3, t ∈ R

dV(ν , t)
dt

+ ic ¯̄D(ν)V(ν , t) = ¯̄T T (ν)F̃(ν , t), V(ν , t)|t≤0 = 0. (14)

In the third step of the method, using the ordinary differential equations technique
(see, for example Boyce and DiPrima (1992)), the solution of the initial value
problem (14) is obtained in the following form

V(ν , t) = θ(t)
∫ t

−∞

[
cos
(

c ¯̄D(ν)(t− τ)
)

−isin
(

c ¯̄D(ν)(t− τ)
)]

¯̄T T (ν)F̃(ν ,τ)dτ, (15)

where ν ∈ R3, t ∈ R; θ(t) = 1 for t ≥ 0 and θ(t) = 0 for t < 0; cos
(

¯̄D(ν)t
)

and

sin
(

¯̄D(ν)t
)

are the diagonal matrices whose diagonal elements are cos(dn(ν)t)
and sin(dn(ν)t), respectively, n = 1,2, ...,6.

In the last step, using (15) and the equality Ũ(ν , t) = ¯̄T (ν)V(ν , t), we find the exact
solution of (12) by the formula

Ũ(ν , t) = θ(t) ¯̄T (ν)
∫ t

−∞

[
cos
(

c ¯̄D(ν)(t− τ)
)

−isin
(

c ¯̄D(ν)(t− τ)
)]

¯̄T T (ν)F̃(ν ,τ)dτ. (16)

Here ¯̄T (ν), ¯̄D(ν), ¯̄T T (ν) are matrices obtained from ¯̄ε = (εkm)3×3, ¯̄µ = (µkm)3×3,
¯̄
ξ = (ξkm)3×3, ¯̄η = (ηkm)3×3 and the procedure, described in the Remark 3.

4.3 The formula for the solution of (10)

Applying the inverse Fourier transform with respect to ν = (ν1,ν2,ν3) ∈ R3 to the
formula (16) the real valued solution of (10) is obtained in the following form

~U(x, t) =
θ(t)
(2π)3

∫ t

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

¯̄T (ν)
[
cos
(

c ¯̄D(ν)(t− τ)
)

cos(x ·ν)

−sin
(

c ¯̄D(ν)(t− τ)
)

sin(x ·ν)
]

¯̄T T (ν)F̃(ν ,τ)dν1dν2dν3dτ, (17)

where ν = (ν1,ν2,ν3) ∈ R3; x ·ν = x1ν1 + x2ν2 + x3ν3.



240 Copyright © 2011 Tech Science Press CMES, vol.80, no.4, pp.233-250, 2011

5 Computation of the electromagnetic radiation in bi-anisotropic materials
arising from a polarized dipole

The formula (17) has been used for the computation of the electric and magnetic
fields arising from the current ~J =~eδ (x1)δ (x2)δ (x3)δ (t), where~e is a given vector
from R3 and δ (·) is the Dirac delta function. We note that for this case the formula
(17) has the form

~U(x, t) =
θ(t)
(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

¯̄T (ν)
[
cos
(

c ¯̄D(ν)t
)

cos(x ·ν)

−sin
(

c ¯̄D(ν)t
)

sin(x ·ν)
]

¯̄T T (ν)~edν1dν2dν3. (18)

The values of matrices D(ν), T(ν) appearing in (18) have been computed for the
given symmetric positive definite matrix ¯̄A0 and symmetric matrices ¯̄A j, j = 1,2,3
using the following MATLAB codes:

Input: A0

[EigVecA0,EigValA0] = eig(A0);
R = EigVecA0;

PT = R ′;

L = EigValA0;

Mh = sqrt(L );
SqrA0 = P∗Mh∗PT ;

InvSqrA0 = inv(SqrA0);
Output: InvSqrA0 = inv(SqrA0)

and

Input: ν1, ν2, ν3, A1, A2, A3, InvSqrA0

[EigVecA0,EigValA0] = eig(A0);
B = ν1A1 +ν2A2 +ν3A3;

H = InvSqrA0∗B∗ InvSqrA0;

[EigVecH,EigValH] = eig(H);
De(ν) = simpli f y(EigValH);
Q(ν) = simpli f y(EigVecH);
T (ν) = simpli f y(InvSqrA0∗Q(ν));
D(ν) = diag(De(ν))
Output: T (ν),D(ν)



Application of Symmetric Hyperbolic Systems for Maxwell’s Equations in BAMs 241

In this section we consider three homogenous bi-anisotropic materials. The first
one is characterized by the permittivity ε = diag(2.25,1,0.25), permeability µ =
diag(0.25,1,2.25) and magnetoelectric tensors

η = ξ =

 1 0 0
0 0.1 0
0 0 0.01

 .

The second bi-anisotropic material is characterized by the permittivity
ε = diag(2.25,1,0.25), permeability µ = diag(0.25,1,2.25) and magnetoelectric
tensors

η = ξ =

 0 1 0
1 0 0
0 0 0

 .

The third material has the permittivity, permeability and magnetoelectric tensors
given by

ε =

 30.7929 −12.7337 −14.3432
−12.7337 5.51479 5.86982
−14.3432 5.86982 6.74556

 , µ = I,

η = ξ =

 0 0.25 0
0.25 0 0

0 0 0

 .

Applying the method developed in the present paper, we have computed the ma-
trices T∗(ν),T(ν),D(ν). After that, using formula (18) we have calculated the
electric and magnetic fields.

Denoting the solution ~Ek(x, t), ~Hk(x, t)) of (7)–(9) for ~J = ekδ (x1)δ (x2)δ (x3)δ (t),
the electric and magnetic fields ~Ek(x, t), ~Hk(x, t)), arising from the dipole ~J =
ekδ (x1)δ (x2)δ (x3)δ (t), k = 1,2,3, in non-dispersive bi-anisotropic materials, have
been computed. Here e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). The results of
the computation of (E3

1 ,E3
2 ,E3

3 ), (H3
1 ,H3

2 ,H3
3 ) in above mentioned bi-anisotropic

materials are presented in Figs. 1-6.

The 3D surfaces of z = E3
2 (x1,x2,−

√
1/3x1, t) and z = H3

2 (x1,x2,−
√

1/3x1, t)
for the first material at the time t = (0.5)/c) and points x belonging to the plane
x ·−→n = 0, where −→n = (

√
3

2 ,0, 1
2), are presented in Figs.1, 2. In Fig.1(b), the verti-

cal axis is the magnitude of z = E3
2 (x1,x2,−

√
1/3x1, t), t = (0.5)/c, and the hor-

izontal ones are x1 and x2. In Fig.2(b) the vertical axis is the magnitude of z =
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(a) The map of the surface of E3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

(b) 3D surface E3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

Figure 1: Bi-anisotropic material 1. Graphs of the second component of the electric
field ~E3(x, t) for points of the plane x1 +

√
3x3 = 0 at t = 1/(2c).
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(a) The map of the surface of H3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

(b) 3D surface H3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

Figure 2: Bi-anisotropic material 1. Graphs of the second component of the mag-
netic field ~H3(x, t) for points of the plane x1 +

√
3x3 = 0 at t = 1/(2c).
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(a) The map of the surface of E3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

(b) 3D surface E3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

Figure 3: Bi-anisotropic material 2. Graphs of the second component of the electric
field ~E3(x, t) for points of the plane x1 +

√
3x3 = 0 at t = 1/(2c).
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(a) The map of the surface of H3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

(b) 3D surface H3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

Figure 4: Bi-anisotropic material 2. Graphs of the second component of the mag-
netic field ~H3(x, t) for points of the plane x1 +

√
3x3 = 0 at t = 1/(2c).
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(a) The map of the surface of E3
2 (x1,x2,−

√
1/3x1,(0.15)/c).

(b) 3D surface E3
2 (x1,x2,−

√
1/3x1,(0.15)/c).

Figure 5: Bi-anisotropic material 3. Graphs of the second component of the electric
field ~E3(x, t) for points of the plane x1 +

√
3x3 = 0 at t = (0.15)/c.
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(a) The map of the surface of H3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

(b) 3D surface H3
2 (x1,x2,−

√
1/3x1,(0.5)/c).

Figure 6: Bi-anisotropic material 3. Graphs of the second component of the mag-
netic field ~H3(x, t) for points of the plane x1 +

√
3x3 = 0 at t = 1/(2c).
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H3
2 (x1,x2,−

√
1/3x1,(0.5)/c). The different colors correspond to different values

of magnitude. Figs. 1(a), 2(a) contain the map of same surfaces, i.e. view of these
surfaces from the top of z axis. Here x1-axis is horizontal and x2-axis is vertical.
The 3D surface plots of z = E3

2 (x1,x2,−
√

1/3x1, t) and z = H3
2 (x1,x2,−

√
1/3x1, t)

for the second material at the time t = (0.5)/c) and points x belonging to the plane
x ·−→n = 0, where−→n = (

√
3

2 ,0, 1
2), are presented in Figs.3, 4. In Fig.3(b), the vertical

axis is the magnitude of z = E3
2 (x1,x2,−

√
1/3x1,(0.5)/c). In Fig.4(b) the vertical

axis is the magnitude of z = H3
2 (x1,x2,−

√
1/3x1,(0.5)/c). Figs. 3(a), 4(a) contain

the map of same surfaces.

The 3D surface plots of z = E3
2 (x1,x2,−

√
1/3x1, t) for the third material at the

time t = (0.15)/c) and points x belonging to the plane x ·−→n = 0 ( −→n = (
√

3
2 ,0, 1

2))
are presented in Figs.5(a), 5(b). In Fig.5(b), the vertical axis is the magnitude
of z = E3

2 (x1,x2,−
√

1/3x1,(0.15)/c). Fig.5(a) contains the map of same surface
z = E3

2 (x1,x2,−
√

1/3x1, t) at t = (0.15)/c). In Fig.6(b) the vertical axis is the
magnitude of z = H3

2 (x1,x2,−
√

1/3x1, t) (t = (0.5)/c). Fig.6(a) contains the map
of the surface.

6 Summary and conclusion

Applying the approach, developed in this study, the Maxwell’s equations for the
bi-anisotropic materials have been written as a symmetric hyperbolic system. The
Fourier image of this system, with respect to the space variables, is a system of
the ordinary differential equations whose coefficients depend on the 3D Fourier
parameter. The formula for the solution of the obtained system is derived by the
matrix transformations. Finally, the electric and magnetic fields are computed by
the inverse Fourier transform. Using this formula the calculation of the electric and
magnetic fields has been made for the case when the current is a polarized dipole.

The computational experiments have confirmed the robustness of the suggested
method. The visualization of electric and magnetic fields in homogeneous non-
dispersive bi-anisotropic materials by modern computer tools allows engineers to
observe and evaluate the dependence between the structure of the materials and the
behavior of the electric and magnetic fields.
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