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Elasto-Plastic Analysis of Structural Problems Using
Atomic Basis Functions

V. Kozulić1 and B. Gotovac1

Abstract: The numerical model for the elasto-plastic analysis of prismatic bars
subjected to torsion is developed. The functions implemented in this model are
Fup basis functions which belong to the class of atomic functions. The collocation
method is used to form a system of equations in which the differential equation
of the problem is satisfied in collocation points of closed domain, while boundary
conditions are satisfied exactly at the domain boundary. The propagation of plastic
zones in the cross-section is monitored by applying the incremental-iterative proce-
dure until failure. An approximate solution of arbitrary accuracy is attained by hi-
erarchically increasing the number of basis functions during non-linear calculation
(multilevel approach) in places where plastic yielding occurs. The results obtained
by the proposed method are compared with the existing exact solutions and numer-
ical solutions obtained by the Finite Element Method. It can be concluded that the
presented numerical model efficiently simulates the real non-linear behavior of the
structure and provides excellent results for the elaborated problems.

Keywords: torsion problem of prismatic bars, plastic failure, atomic basis func-
tions, universality, collocation method, multilevel base.

1 Introduction

The most widely used methods for numerical analysis of structural problems are fi-
nite difference, finite element and boundary element methods. A strong contender
to complement the mesh-based methods is a newly emerging family of so-called
meshless or meshfree methods for solving PDEs. The problems particularly suited
for a meshfree solution approach are those posing major difficulties to the mesh-
based methods: for example, problems involving large local gradients and singu-
larities, multi-scale problems, strongly nonlinear problems, etc. Various meshless
methods for solving the elastic torsion problems were developed by many authors.
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Among them, numerical methods for obtaining solutions of the elastic torsion prob-
lem with complicated shapes of the cross-section are very interesting [Liu (2007)].

In this paper, we study the problem of elasto-plastic torsion of prismatic bars. Solv-
ing of non-linear engineering problems, in distinction from linear analyses, requires
more complex numerical tool and therefore, larger number of numerical operations.
For example, in elasto-plastic analyses it is interesting to detect plasticized zones
and monitor their propagation parallel with the increase of load. In numerical pro-
cedures based on the weak formulation, plastic failure always records before it
really happens. This is the consequence of the fact that the yielding criterion [Hill
(1985)] is not tested in the same points in which displacements are calculated. More
efficient solution of non-linear problems can be obtained by applying the procedure
of the strong formulation with an arbitrary increase in the number of basis functions
on the domain.

In the numerical modeling of elasto-plastic behaviour of prismatic bars subjected
to torsion, we implemented the Fup basis functions which belong to the class
of atomic functions [Rvachev and Rvachev (1971); Kravchenko, Rvachev, and
Rvachev (1995)]. This is the first use of atomic basis functions in elasto-plastic
analysis of the torsion problem. These basis functions possess the characteristics
of practical application of splines (compact support) and, at the same time, the
property of universality [Gotovac and Kozulić (1999)] which is a characteristic of
algebraic and trigonometric polynomials. Because of the property of universal-
ity, it is possible to hierarchically increase the number of basis functions during
non-linear calculation (multilevel approach). We created numerical model by ap-
plying the collocation method and incremental-iterative procedure for monitoring
the propagation of plastic zones in the cross-section.

This paper is divided into six sections including this introduction. Section 2 presents
a short description of the main features of the Fup basis functions. Section 3 gives
the governing equations of the torsion problem and mathematical description of
particular steps in the incremental-iterative procedure for non-linear analysis. The
numerical model created by using Fup functions and collocation technique (Fup
Collocation Method) is explained in Section 4. In Section 5 the new method is
illustrated on some examples and obtained results are compared with the existing
exact solutions and numerical solutions obtained by the FEM. Finally, we give a
summary and conclusions in Section 6.

2 Fup basis functions

Fup basis functions belong to a class of atomic functions which are infinitely-
differentiable functions with compact support [Rvachev and Rvachev (1971); Go-
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tovac and Kozulić (1999)]. Atomic functions y(.) are defined as solutions of differ-
ential functional equations of the following type:

Ly(x) = λ

M

∑
k=1

Ck y(ax−bk) (1)

where L is a linear differential operator with constant coefficients, λ is a nonzero
scalar, Ck are coefficients of the linear combination, a > 1 is a parameter that defines
the length of the compact support, and bk are coefficients that determine displace-
ments of the basis functions. Rvachev and Rvachev (1971), in their pioneering
work, called these basis functions “atomic” because they span the vector spaces of
all three fundamental functions in mathematics: algebraic, exponential and trigono-
metric polynomials. Also, atomic functions can be divided into an infinite number
of smaller pieces that maintain all their properties, implying a so-called “atomic
structure.”

The simplest function, which is the most-studied of the atomic basis functions, is
the up(x) function, Fig. 1. The function up(x) is a smooth function with com-
pact support over [-1,1], which is obtained as a solution of a differential functional
equation

up′(x) = 2 up(2x+1)−2 up(2x−1) (2)

with the normalized condition
∫

∞

−∞
up(x) dx =

∫ 1
−1 up(x) dx = 1. The function up(x)

can be expressed as an inverse Fourier transform:

up(x) =
1

2π

∞∫
−∞

eitx
∞

∏
j=1

(
sin(t 2− j)

t 2− j

)
dt. (3)

Since Eq. 3 represents an exact but mathematically-intractable expression, Rvachev
(1982) and Gotovac and Kozulić (1999) provided a numerically more-adequate
expression for calculating the function up(x):

up(x) = 1 −
∞

∑
k=1

(−1)1+p1+...+pk pk

k

∑
j=0

C jk(x−0, p1 . . . pk) j (4)

where coefficients C jk are rational numbers determined according to the following
expression:

C jk =
1
j !

2 j( j+1)/2 up(−1+2−(k− j)) ; j = 0,1, ... , k; k = 1,2, ... , ∞. (5)
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Calculation of the up(−1+2−r) ; r∈[0,∞] in binary-rational points (Eq. 5), as well
as all details regarding the calculation of the function up(x) values, are provided in
[Gotovac and Kozulić (1999)] and [Gotovac and Kozulić (2002)]. The argument
(x−0, p1...pk) in Eq. 4 is the difference between the real value of coordinate x and
its binary form in k bits, where p1...pk are digits, 0 or 1, of the binary representation
of the x coordinate. Therefore, the accuracy of the x coordinate computation, and,
thus the accuracy of the up(x) function at an arbitrary point, depends on machine
accuracy.

From Eq. 2, it can be seen that the derivatives of the up(x) function can be calcu-
lated simply from the values of the function itself. The general expression for the
derivative of the mth degree is

up(m)(x) = 2C2
m+1

2m

∑
k=1

δk up(2mx+2m +1−2k) , m ∈ N (6)

where C2
m+1 = m (m+1)/2 is the binomial coefficient and δk are the coefficients

with value ±1, according to the recursive formulas δ2k−1 = δk, δ2k = −δk, k ∈
N, δ1 = 1. It can be observed that the derivatives consist of the up(x) function
compressed to an interval of 2−m+1 length, with ordinates extended by the 2C2

m+1

factor, see Fig. 1.

The Fupn(x) function satisfies the following differential-functional equation:

Fup′n(x) = 2
n+2

∑
k=0

(
Ck

n+1−Ck−1
n+1

)
Fupn(x)

(
2x−2−n−1k +2−n−2(n+2)

)
(7)

where n is the Fup order. Index n also denotes the highest degree of the polyno-
mial that can be expressed exactly as a linear combination of n + 2 Fupn(x) basis
functions, uniformly displaced by a characteristic interval 2−n.

For n = 0, Fup0(x) = up(x), since Fupn(x) and its derivatives can be calculated us-
ing a linear combination of displaced up(x) functions instead of using their Fourier
transforms:

Fupn(x) =
∞

∑
k=0

Ck(n) up
(

x−1− k
2n +

n+2
2n+1

)
(8)

where C0(n) = 2C2
n+1 = 2n(n+1)/2. In turn, Ck(n) = C0(n) ·C′k(n), where a recursive

formula is used for calculating auxiliary coefficients C′k(n):

C′0(n) = 1 , when k = 0; i.e., when k > 0

C′k(n) = (−1)kCk
n+1−

min{k ;2n+1−1}
∑
j=1

C′k− j(n) ·δ j+1
. (9)
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where n is the Fup order. Index n also denotes the highest degree of the polynomial that 
can be expressed exactly as a linear combination of n+2 Fupn(x) basis functions, 

uniformly displaced by a characteristic interval n2− . 
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Figure 1:  Function up(x) and its first four derivatives 
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Figure 1: Function up(x) and its first four derivatives
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The Fupn(x) is defined over the compact support [−(n+2) 2−n−1 ; (n+2) 2−n−1].
Fig. 2 shows the Fup2(x) function and its first three derivatives, which are used in
this paper.

The Fupn(x) is defined over the compact support [ 1n1n 2)2n(;2)2n( −−−− ++− ]. Fig. 2 
shows the Fup2(x) function and its first three derivatives, which are used in this paper. 
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Figure 2:  Function Fup2(x) and its first three derivatives 

The basis function for numerical analyses of two-dimensional problems is obtained from 
the Cartesian product of two one-dimensional Fup functions defined for each direction: 

( ) ( ) ( )yFupxFupy,xFup nnn ⋅= . (10) 

Calculations of all required derivatives of the function Fupn(x,y) can be written in an 
analogue form. Fig. 3 gives an axonometric presentations of basis function Fup2(x,y) and 
its partial derivatives. 
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The basis function for numerical analyses of two-dimensional problems is obtained
from the Cartesian product of two one-dimensional Fup functions defined for each
direction:

Fupn (x,y) = Fupn (x) ·Fupn (y) . (10)

Calculations of all required derivatives of the function Fupn(x,y) can be written
in an analogue form. Fig. 3 gives an axonometric presentations of basis function
Fup2(x,y) and its partial derivatives.

The Fupn(x) is defined over the compact support [ 1n1n 2)2n(;2)2n( −−−− ++− ]. Fig. 2 
shows the Fup2(x) function and its first three derivatives, which are used in this paper. 
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3 Equations of elastic and elasto-plastic torsion problem

The elastic torsion of a bar is a classical problem in the theory of elasticity [Tim-
oshenko and Goodier (1961); Lurie (1970)]. This problem may be formulated in
terms of the Dirichlet boundary value problem of the Poisson equation:

∂ 2Φ(x,y)
∂x2 +

∂ 2Φ(x,y)
∂y2 =−2Gϑ ; Φ |

Γ
= 0 (11)

where Φ(x,y) is the stress function, G is the shear modulus, while ϑ is the angle
of twist per unit length of a bar. Shear stress components are determined according
to the following expressions:

τxz = ∂Φ/∂y; τyz =−∂Φ/∂x. (12)

Torsion rigidity of the cross-section for ϑ = 1 is the double volume under the sur-
face of the stress function Φ:

Ct = 2
∫∫

Φ dxdy. (13)
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In case of a cross-section with multiple boundary, unknown constant values of the
stress function at inner boundaries Γi are determined based on the theorem on circu-
lation of shear stresses. The following condition must be satisfied at each boundary
of the opening:

−
∫
Γi

∂Φ

∂ni
dΓ = 2Gϑ Ai, i = 1,2, ...,n (14)

where Ai is the area of each opening, ni is the normal to the inner boundary Γi,
while n is the number of openings.

The material starts to deform plastically when the resulting shear stress in a point
reaches a critical value τY . Then, the Poisson equation is satisfied in elastic part of
the domain while the yielding criterion [Hill (1985)]:(

∂Φ

∂x

)2

+
(

∂Φ

∂y

)2

= τ
2

Y (15)

is satisfied in its plastic part. The greatest value of the torsion moment occurs
when the entire cross-section is plasticized. It is the limit torsion moment Mpl .
Elasto-plastic analyses includes determination of the angle of twist ϑ at which
plasticization begins as well as monitoring of the expansion of plastic zones until
limit moment Mpl is reached.

Numerical analysis of the given problem is performed by incremental-iterative pro-
cedure as follows:

1. In the first incremental step for an elastic state with the given rotation angle
ϑ1, values of the stress function Φ and Ct of the cross-section are calculated.

2. In the next incremental step, increase of load ∆ϑ is added i.e. ϑk = ϑk−1 +
∆ϑ .

3. Increase of the stress function ∆Φ is calculated. So, total values of the stress
function are Φk = Φk−1 +∆Φ. For such stress state, torsion moment Mcalc is
calculated.

4. A control of plastic yielding is made by using the resulting shear stress τ .
If τ < τY in all points of the cross-section, the procedure continues with the
next load increment. If in some points τ ≥ τY , iterations within the current
incremental step are performed.

5. In the points where plasticization occurred, values of the stress function re-
turn to a limiting value Φred .



Elasto-Plastic Analysis of Structural Problems Using Atomic Basis Functions 259

6. For such reduced stress function Φred , torsion moment Mep of partially plas-
ticized cross-section is calculated and residual moment of torsion is ∆M =
Mcalc−Mep.

7. Elastic part of the cross-section is loaded with a residual moment of torsion,
namely with the equivalent angle of twist ∆ϑekv.

8. Iterative procedure is repeated until ∆M ∼= 0. Then, the next load increment
follows.

9. Incremental-iterative procedure ends when Mcalc ≥Mpl .

The basic yield criterion τ = τY is not numerically favorable for calculating values
of the stress function Φ and residual load ∆ϑekv when the cross-section is partially
plasticized. Therefore, we modified the basic yield criterion into the criterion of
testing the stress function Φ where the idea of R–functions is used for the determi-
nation of its limit values. R–functions are the real functions with the real continu-
ous arguments, which at the same time have several properties of Boole’s functions
[Rvachev (1982)].

Limiting values Φpl are values of the stress function when the entire cross-section
is plasticized. Then, the stress function Φ forms a surface with the constant incli-
nation covering the entire cross-section.

E.g. for a polygonal area Ω, Fig. 4, R-function is sought in the form ω (x,y) =
ω1Λω2Λω3Λω4 where ω (x,y)≥ 0 , ∀ (x,y) ∈ Ω̄; ω (x,y) < 0 , ∀ (x,y) /∈ Ω̄.

2) In the next incremental step, increase of load ϑΔ  is added i.e. ϑΔϑϑ += −1kk . 

3) Increase of the stress function ΔΦ  is calculated. So, total values of the stress function 
are ΔΦΦΦ += −1kk . For such stress state, torsion moment Mcalc is calculated. 
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Each component of the sought R-function must satisfy conditions:

ωi|Γi
= 0;

∂ωi

∂ni
|Γi = τY (16)

and, thus, has the following form:

ωi (x,y) = τY ·
−x(yi+1− yi)+ y(xi+1− xi)− xi+1yi + xiyi+1√

(yi+1− yi)
2 +(xi+1− xi)

2
≥ 0 (17)

By analogy, when the cross-section side is a segment of circular arc, see Fig. 5,
function ωi (x,y) has the following form:

ωi (x,y) = Sign (P∆) ·
{

τY ·
(

R−
√

(x− xc)
2 +(y− yc)

2
)}

≥ 0 (18)

Each component of the sought R-function must satisfy conditions: 

0
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Figure 5:  Determining of the R-function component for the boundary segment in the 
form of circular arc 
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Figure 5: Determining of the R-function component for the boundary segment in
the form of circular arc

In the cross-section point with coordinates (x,y) for a convex domain, value Φpl is
determined as Φpl = min {ω1, ω2, . . . ,ωn} where n is the number of sides on the
domain boundary. If the angle between two adjacent sides i, i + 1 is greater than
180◦ (concave corner), bigger value is selected between ωi (x,y) and ωi+1 (x,y).

4 Solution procedure by the Fup Collocation Method (FCM)

Approximate solution of the stress function Φ(x,y) in Eq.11 is assumed in the
form of linear combination of basis functions Fup2(x,y). A system of equations
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is formed by the collocation method where differential equation of the problem is
satisfied in collocation points of a closed domain while boundary conditions are
satisfied exactly at the domain boundary. It is known that functionality of the col-
location method depends on the selection of basis functions and collocation points.
Prenter (1989) proved the stability of numerical procedure with the spline functions
when collocation is performed in so-called natural knots. He developed proofs for
existence and uniformity of the solution and error estimate. Since Fup functions
can be regarded as splines of an infinite degree, it can be shown that for them it is
also optimal to perform collocation in natural knots of basis functions, i.e. vertices
of basis functions situated in a closed domain such as e.g. for the base in x-direction
formed by functions Fup2(x) shown in Fig. 6.
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This selection of collocation points provides the simplest numerical procedure,
banded collocation matrix is obtained, which is diagonally dominant and thus well
conditioned. This selection also implies uniformly distributed nodes set in each
coordinate direction.

4.1 Analyses of rectangular domains

Approximate solution base is formed on the unit virtual domain defined in the sys-
tem (ξ ,η) according to a scheme shown in Fig. 7.

For rectangular cross-section of a×b dimensions, differential equation of the prob-
lem and boundary condition from Eq.11 can be written in the system (ξ ,η) as:

1
a2

∂ 2Φ(ξ ,η)
∂ξ 2 +

1
b2

∂ 2Φ(ξ ,η)
∂η2 =−2Gϑ ; 0≤ ξ ≤ 1 , 0≤ η ≤ 1, (19)

Φ(ξ ,η) = 0 for ξ = 0, ξ = 1, η = 0, η = 1. (20)
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Collocation is performed in (Nξ + 1)× (Nη + 1) equidistant points, while basis
functions with vertices outside the domain, see Fig. 7, are retained so the basis
functions set can be complete. Governing equation (19) is satisfied in all collocation
points of the domain except in corners:

Nξ +1

∑
i=−1

Nη+1

∑
j=−1

Ci j

(
1
a2

∂ 2Fi j (ξ ,η)
∂ξ 2 +

1
b2

∂ 2Fi j (ξ ,η)
∂η2

)
=−2Gϑ , (21)

boundary condition (20) is satisfied in all collocation points of the domain sides:

Nξ +1

∑
i=−1

Nη+1

∑
j=−1

Ci j ·Fi j (ξ ,η) = 0, (22)
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while three more conditional equations are satisfied in corners:

Nξ +1

∑
i=−1

Nη+1

∑
j=−1

1
a2 Ci j

∂ 2Fi j (ξ ,η)
∂ξ 2 = 0

Nξ +1

∑
i=−1

Nη+1

∑
j=−1

1
b2 Ci j

∂ 2Fi j (ξ ,η)
∂η2 = 0

Nξ +1

∑
i=−1

Nη+1

∑
j=−1

1
a2 b2 Ci j

∂ 4Fi j (ξ ,η)
∂ξ 2∂η2 = 0

. (23)

In the equation system (21)-(23), Nξ and Nη denote numbers of partitions of a
unit domain in directions ξ and η respectively; i and j are counters of the basis
functions in ξ i.e. η directions, while Fi j (ξ ,η) is the basis function Fup2 (ξ ,η)
with the vertex at the point (i, j). Depending on the number of partitions, function
Fup2 (ξ ,η) support is condensed to (4∆ξ×4∆η); ∆ξ = 1/Nξ , ∆η = 1/Nη . Partial
derivatives values of basis functions in Eqs. (21)-(23) are determined according to
the following expression:

∂ (m+n)Fi j (ξ ,η)
∂ξ m∂ηn =

(
1

4∆ξ

)m

·
(

1
4∆η

)n

· Fup(m+n)
2

(
1

4∆ξ
ξ − i

4
,

1
4∆η

η− j
4

)
.

(24)

Since the function Fup2 (ξ ,η) is a finite function with the support consisting of
4×4 characteristic intervals (see Fig. 2), the solution function value at collocation
point (i, j) can be approximated by linear combination in the following form:

Φ(ξi,η j) =
i+1

∑
k=i−1

j+1

∑
l= j−1

Ckl ·Fkl (ξi,η j). (25)

Values of all other basis functions at the point (i, j) are equal to zero. Therefore,
a support domain of the point (i, j) is nine. In such a way, banded matrix of the
system is obtained.

4.2 Analyses of curvilinear domains

FCM can be applied successfully to curvilinear domains, too.

Parametric form is extremely adequate for description of surfaces and, using the
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Coons formulation [Yamaguchi (1988)], can be written in the following form:

P(ξ ,η) =
[
(1−ξ ) ξ

] [Q(0,η)
Q(1,η)

]
+
[
Q(ξ ,0) Q(ξ ,1)

] [1−η

η

]
−

−
[
(1−ξ ) ξ

] [Q(0,0) Q(0,1)
Q(1,0) Q(1,1)

] [
1−η

η

] (26)

where Q(0,0), Q(0,1), Q(1,0) and Q(1,1) are position vectors at the four corners
while Q(ξ ,0), Q(ξ ,1), Q(0,η) and Q(1,η) are four boundary curves, see Fig. 8.
Changing the parameters ξ and η in equal steps on the interval [0,1], using Eq. 26,
equidistant collocation points within the given domain are obtained.
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Figure 8:  A Coons surface patch 

Thus, for curvilinear domains, partial differential equation of the torsion problem, Eq.11, 
has the following collocation form: 
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Partial derivatives of elements of the inverse mapping matrix in expressions of Eq. 28 are 
determined by derivations of parametric equations of a surface (Eq. 26), while partial 
derivatives of the basis functions are determined according to Eq. 24. 

4.3 Multilevel approach 

Hierarchic expansion of an approximate solution base is realized by an algorithm in 
which new functions, which are all images of the same mother basis function, are added 
to the base of an initial solution, but displaced and compressed or stretched in comparison 
with the initial base. 
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41  of the length of basis function support at zero level. At higher levels of 
approximation, the base is built by analogy. Fig. 9 shows the distribution of collocation 
points, in which vertices of basis functions are at the zero, first and second levels of 
approximation. Compression of the functions to 1/2 of the support from the preceding 
level is the consequence of basic properties of atomic functions [Gotovac and Kozulić 
(1999)]. 
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Thus, for curvilinear domains, partial differential equation of the torsion problem,
Eq.11, has the following collocation form:

Nξ +1

∑
i=−1

Nη+1

∑
j=−1

Ci j·
[

FXX
∂ 2Fi j (ξ ,η)

∂ξ 2 +FXE
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∂ξ ∂η
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∂η2 +

+FX
∂Fi j (ξ ,η)

∂ξ
+ FE

∂Fi j (ξ ,η)
∂η

]
=−2Gϑ

(27)
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Partial derivatives of elements of the inverse mapping matrix in expressions of Eq.
28 are determined by derivations of parametric equations of a surface (Eq. 26),
while partial derivatives of the basis functions are determined according to Eq. 24.

4.3 Multilevel approach

Hierarchic expansion of an approximate solution base is realized by an algorithm in
which new functions, which are all images of the same mother basis function, are
added to the base of an initial solution, but displaced and compressed or stretched
in comparison with the initial base.

When (Nξ +3)×(Nη +3) basis functions mutually displaced by ∆ξ in one and ∆η

in the other coordinate direction are selected, as shown in Fig. 7, then the selected
base is at the “zero level” of approximation. At the first level, functions Fup2 (ξ ,η)
are added, displaced by ∆ξ/2 ; ∆η/2 in reference to the functions of zero level,
and compressed to a support length (2∆ξ )× (2∆η). At the second level, added
basis functions are displaced by ∆ξ/4 ; ∆η/4 in reference to “zero level” with the
support length (∆ξ ×∆η), which is 1/4 of the length of basis function support at
zero level. At higher levels of approximation, the base is built by analogy. Fig. 9
shows the distribution of collocation points, in which vertices of basis functions are
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at the zero, first and second levels of approximation. Compression of the functions
to 1/2 of the support from the preceding level is the consequence of basic properties
of atomic functions [Gotovac and Kozulić (1999)].

Numerical tests [Kozulić and Gotovac (2000)] for different densities of collocation
points showed that it is sufficient to satisfy the boundary conditions with basis
functions of zero level while basis functions of higher levels correct the solution.

5 Numerical examples

5.1 Torsion of a prismatic bar with a square cross-section

Elastic torsion of a bar with a square cross-section shown in Fig. 10 is analyzed for
ϑ = 1 by FCM. An analytic solution for this shape of a cross-section is given by
Timoshenko and Goodier (1961). The effect of hierarchic increasing a number of
basis functions is illustrated. Fig. 11 shows the convergence diagrams of numerical
solutions for torsion rigidity value when number of basis functions increases at zero
level only, and when approximate solution base is expanded with basis functions of
the first and second levels. It can be observed that with the same total number of
basis functions, much better numerical solution is obtained if multilevel approach
is applied.

Numerical tests [Kozulić and Gotovac (2000)] for different densities of collocation points 
showed that it is sufficient to satisfy the boundary conditions with basis functions of zero 
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Elasto-plastic behaviour of the cross section was analyzed both with numerical model 
based on the Finite Element Method and numerical model based on the Fup Collocation 
Method. Assuming that the bar is not deformed until the yielding limit is exceeded, limit 
torsion moment can be determined according to expression 3/)a8( 3

Yτ  and, for values 
given in Fig. 10, equals Mpl = 4666.667 kNcm. Numerical model by the FEM uses eight-
node isoparameteric finite elements with Lagrange polynomials of the 2nd degree as 
basis functions. Tab. 1 shows the comparison of numerical values obtained by these two 
methods for the torsion moment and the appurtenant angle of twist ϑ at which the full 
plasticization of a cross-section is registered. 

Table 1: Comparison of numerical results obtained by FEM and FCM 

 FEM: number of finite elements FCM: number of collocation points Exact 
values 

25 100 625 11×11 21×21 51×51 

Mpl 4480.01 4619.99 4659.25 4620.00 4655.00 4664.80 4666.67 

ϑpl 4.58 7.72 17.91 40.73 141.17 1475.37 ∞ 

Figure 10: Square cross-section
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Figure 11: Convergence diagrams for
Ct

Elasto-plastic behaviour of the cross section was analyzed both with numerical
model based on the Finite Element Method and numerical model based on the
Fup Collocation Method. Assuming that the bar is not deformed until the yielding
limit is exceeded, limit torsion moment can be determined according to expres-
sion (8τY a3)/3 and, for values given in Fig. 10, equals Mpl= 4666.667 kNcm.
Numerical model by the FEM uses eight-node isoparameteric finite elements with
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Lagrange polynomials of the 2nd degree as basis functions. Tab. 1 shows the com-
parison of numerical values obtained by these two methods for the torsion moment
and the appurtenant angle of twist ϑ at which the full plasticization of a cross-
section is registered.

Table 1: Comparison of numerical results obtained by FEM and FCM

FEM: number of finite elements FCM: number of collocation points Exact
25 100 625 11×11 21×21 51×51 values

Mpl 4480.01 4619.99 4659.25 4620.00 4655.00 4664.80 4666.67
ϑ pl 4.58 7.72 17.91 40.73 141.17 1475.37 ∞

In real, indefinitely large angle of twist is required to obtain full plasticization of the
cross-section. So, from the results given in Tab. 1 one can observed that numerical
solution obtained by the FCM described the real elasto-plastic behavior of a bar
better than the model by the FEM. In the moment when numerical models register
full plasticization of the cross-section and interrupt numerical procedure, model by
the FCM gives the limiting values of the stress function Φ in all calculation points
of the domain while this can never be achieved by the FEM.

Gradual plasticization of the cross section with the increase in the angle ϑ obtained
by Fup Collocation Method is given in Fig. 12. Plastic zones first occur at the
domain boundary, and then spread towards the inside. We started calculation with
initial density of 11 collocation points in each coordinate direction. When collo-
cation points are detected in which plasticity criterion is satisfied, number of basis
functions is increased only in plastic part of the cross-section according to a scheme
given in Fig. 9, while in elastic core initial density at zero level is retained. Thus,
movement of the plastic zone boundary is successfully simulated until elastic core
completely disappears.

In real, indefinitely large angle of twist is required to obtain full plasticization of the 
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5.2 Plastic yielding of a bar with a triangular cross-section

Plastic yielding of a bar with a triangular cross-section is analyzed by the FCM
using the conditions of symmetry as shown in Fig. 13.

Theoretical value of the limit torsion moment is equal to the double volume under
the stress function surface for a completely plastic cross-section:

Mpl =
2
√

3
27
· τY ·a3 (29)

and, for given values of τY and a, is Mpl = 3103.835. Fig. 14 shows isolines of
stress function Φ in the plan and shapes of the stress function over the cross-section
ranging from elastic to completely plastic state.

Tab. 2 gives a convergence of numerical solutions. N denotes total number of the
Fup2 (ξ ,η) basis functions per each coordinate direction obtained by a hierarchic
expansion of the approximate solution base until plastic failure is registered.

Table 2: Convergence of numerical solutions for triangular cross-section

N=4 N=10 N=20 N=50 Exact
Mpl 2888.599 3066.411 3094.227 3102.273 3103.835
ϑ pl 196.102 240.026 7602.955 44788.654 ∞
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Theoretical value of the limit torsion moment is equal to the double volume under the 
stress function surface for a completely plastic cross-section: 

3
Ypl a

27
32M ⋅⋅= τ  (29) 

and, for given values of τY and a, is 3103.835M pl = . Fig. 14 shows isolines of stress 

function Φ in the plan and shapes of the stress function over the cross-section ranging 
from elastic to completely plastic state. 
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Figure 14:  Plastic yielding of a triangle cross-section obtained by FCM: 

a), b) for ϑ = 2.0; c), d) for ϑ = 4.1; e), f) for ϑ = 44788.6 

Figure 14: Plastic yielding of a triangle cross-section obtained by FCM: a), b) for
ϑ = 2.0; c), d) for ϑ = 4.1; e), f) for ϑ = 44788.6
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5.3 Cross-section in the form of an eccentric ring

Elastic and elasto-plastic analyses of a bar with a cross-section in the form of an
eccentric ring, shown in Fig. 15, were made by FCM. An analytic solution exists
for this shape of a cross-section [Lurie (1970)].

A real domain of a cross-section is mapped into the virtual unit domain using Eq.
26 where sides (1) and (2), see Fig. 16, are described using the parametric equations
of a circle; sides (3) and (4) overlap in a real domain.

Tab. 2 gives a convergence of numerical solutions. N denotes total number of the 
( )ηξ ,Fup2  basis functions per each coordinate direction obtained by a hierarchic 

expansion of the approximate solution base until plastic failure is registered. 
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Figure 16: Mapping of the considered domain

Convergence of torsion rigidity value Ct and stress function value Φ on the inner
boundary Γ1 with an increase in the number of collocation points is given in Tab. 3.
Fig. 17 shows the stress function surface obtained by the Fup Collocation Method
for ϑ = 1.0.

Table 3: Numerical results of elastic analyses depending on Nξ and Nη

Number of coll. points:
(Nξ +1)×(Nη+1)

Φ |
Γ1

Φ−Φexact
Φexact

Ct
Ct−Ct exact

Ct exact

Nξ =10 , Nη=20 41.387 5.32 % 28345.72 2.57 %
Nξ =20 , Nη=40 40.279 2.50 % 27976.24 1.24 %
Nξ =50 , Nη=100 39.649 0.90 % 27768.75 0.48 %
Nξ =100 , Nη=200 39.445 0.38 % 27701.30 0.24 %
Exact solution [Lurie (1970)] 39.297 – 27634.63 –

For the purpose of elasto-plastic analysis, twist angle ϑ increases to the full plastic



Elasto-Plastic Analysis of Structural Problems Using Atomic Basis Functions 271

yielding. Theoretical value of the limit torsion moment Mpl for the yield stress
value τY = 14.0, is 37708.746.

Fig. 18 shows surface shapes and isolines of the stress function Φ obtained for
different load increments, from fully elastic to fully plastic state.

Tab. 4 gives numerical values of torsion moment and the appurtenant angle of
twist ϑ at which the full plasticization of a cross-section is registered for different
densities of collocation points.

Table 4: Convergence of numerical results for elasto-plastic analysis

Num. of coll.
points
(Nξ +1)×(Nη+1)

Nξ = 6
Nη = 12

Nξ = 10
Nη = 20

Nξ = 20
Nη = 40

Nξ = 50
Nη = 100

ANALYTIC
VALUES

Mpl 36675.289 37380.531 37619.290 37694.477 37708.746
ϑpl 12.651 123.014 361.527 999088.787 ∞
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Figure 17:  Stress function surface Φ(x,y) for elastic state of a bar 
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Figure 17: Stress function surface Φ(x,y) for elastic state of a bar

6 Conclusions

Numerical model for elasto-plastic analyses of a prismatic bar subjected to torsion
is described in this work. It enables analyses of bars with cross-sections of different
shapes including a single and multiple boundary.



272 Copyright © 2011 Tech Science Press CMES, vol.80, no.4, pp.251-274, 2011

Y X

Z

c)

Y X

Z

e) f)

d)

Y X

Z

a) b)

 

Figure 18:  Plastic yielding of a cross-section in the form of an eccentric ring: 
a), b) for ϑ = 0.5; c), d) for ϑ = 3.285; e), f) for ϑ → ∞ 

Figure 18: Plastic yielding of a cross-section in the form of an eccentric ring: a), b)
for ϑ = 0.5; c), d) for ϑ = 3.285; e), f) for ϑ → ∞
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The procedure is based on the use of atomic functions, particularly Fup basis func-
tions, and collocation method. The basic yield criterion in elasto-plastic torsion
problem i.e. that the resulting shear stress in a point is reached a critical value,
is modified into the criterion of testing the stress function where the idea of R–
functions is used for determination of its limit values. Hierarchic increase in the
number of basis functions in the model provides a simple way to increase the ac-
curacy of an approximate solution in places where plastic yielding occurs and also
accelerates the convergence of incremental-iterative procedure. FCM can be ap-
plied successfully in the curvilinear domains by using the Coons formulation for
parametric description of surfaces.

The numerical examples show that the new method efficiently simulates the real
non-linear behavior of the structure by comparing with the exact solutions. More
accurate results are attained with the FCM in comparison with the Finite Element
Method which always records plastic failure before it really happens. In the Fup
Collocation Method, the criterion of plasticity is tested in the same points for which
the values of the solution function are calculated i.e. in collocation points. Thus,
the numerical procedure with the FCM is stable until plastic failure occurs.
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