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Multidisciplinary Design Optimization of Long Endurance
Unmanned Aerial Vehicle Wing

S. Rajagopal1 and Ranjan Ganguli2

Abstract: The preliminary wing design of a low speed, long endurance UAV is
formulated as a two step optimization problem. The first step performs a single
objective aerodynamic optimization and the second step involves a coupled dual
objective aerodynamic and structural optimization. During the first step, airfoil ge-
ometry is optimized to get maximum endurance parameter at a 2D level with max-
imum thickness to chord ratio and maximum camber as design variables. Leading
edge curvature, trailing edge radius, zero lift drag coefficient and zero lift mo-
ment coefficient are taken as constraints. Once the airfoil geometry is finalized, the
wing planform parameters are optimized with minimization of wing weight and
maximization of endurance. Four design variables from aerodynamics discipline
namely taper ratio, aspect ratio, wing loading and wing twist are considered. Also,
four more design variables from the structures discipline namely the upper and
lower skin thicknesses at root and tip of the wing are added. Constraints are stall
speed, maximum speed, rate of climb, strength and stiffness. The 2D airfoil and
3D wing aerodynamic analysis is performed by the XFLR5 panel method code and
the structural analysis is performed by the MSC-NASTRAN finite element code. In
the optimization process, a multi-objective evolutionary algorithm named NSGA-II
(non-dominated sorting genetic algorithm) is used to discover the full Pareto front
for the dual objective problem. In the second step, in order to reduce the time of
computation, the analysis tools are replaced by a Kriging meta-model. For this dual
objective design optimization problem, numerical results show that several useful
Pareto optimal designs exist for the preliminary design of UAV wing.
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Abbreviations

UAV Unmanned Aerial Vehicle
x̄ Design variable
ḡ Inequality constraint
Cl 2D Lift coefficient for airfoil
Cd 2D drag coefficient for airfoil
Cm0 2D zero lift moment coefficient for airfoil
C∗m0 Maximum allowable 2D zero lift moment coefficient for airfoil
TC Thickness to Chord ratio of wing in percentage
MC Mean camber line of the airfoil cross-section
LEC Leading Edge Curvature of airfoil cross-section
LEC∗ Maximum allowable Leading Edge Curvature of airfoil cross-section
TER Trailing edge angle of the airfoil cross-section
t Endurance in hrs
WW Wing Weight in kg
AR Wing Aspect Ratio
TR Wing Taper Ratio
WL Wing Loading in kg/m2

HCR Loiter Altitude in m
ROC Rate of Climb in m/s
CL 3D Lift coefficient for wing
CD 3D drag coefficient for wing
VMAX Maximum Speed in kmph
VMAX∗ Maximum allowable Maximum Speed at sea-level in kmph
VS Stall Speed in kmph
VS∗ Maximum allowable Stall Speed at sea-level in kmph
σ Von-mises stress in kg/m2

σ∗ Maximum allowable Von-mises stress in kg/m2

δ Maximum displacement on the wing in m
δ ∗ Maximum allowable Maximum displacement on the wing in m

1 Introduction

Aircraft design is an ideal candidate for Multidisciplinary Design Optimization
(MDO), since it governed by four major disciplines: aerodynamics, structure, con-
trol and propulsion. A conventional aircraft design process starts with aerodynamic
design to satisfy the performance requirements and is followed by design iterations
and checks to satisfy requirements from other disciplines such as structures. In
contrast, a good optimal design handles all the inputs from various disciplines and
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performs an interdisciplinary trade off. Nowadays, aircraft designers are looking
for such an optimal solutions through MDO.

In the aircraft design field, many optimization works have been carried out over
the last 30 years. These works primarily focus on obtaining the best aerodynamic
or structural design. Over the last decade, designers have applied MDO to aircraft
design as described by Sobieski and Haftka (1996), Bartholomew (1998) and Kroo
(1997). The survey of developments by Sobieski and Haftka (1996) reports that
MDO methodology has transcended its structural optimization roots and is growing
in scope and depth toward encompassing the complete set of disciplines required
by applications. According to that survey, the two major obstacles in realizing the
full potential of MDO technology appear to be the high computational demands
and complexities arising from organization of the MDO task.

Bartholomew (1998) provides a definition of MDO and discusses the function of
MDO as a key tool in the context of concurrent engineering. He also says that
MDO permits the constraints of a diverse range of disciplines to be addressed from
an early stage of the design process. Kroo (1997) highlights some important as-
pects of MDO applications in the preliminary design phase. Kroo also covers
the evolution of computational tools, strategies and challenges. Most of the re-
searchers focus mainly on applying MDO to the complete aircraft design during
its conceptual design stage [Sobester and Keane (2006); Rajagopal, Ganguli, Pillai
and Lurdharaj (2007)] and to the design of wing [Grossman, Haftka, Kao, Polen
and Rais-Rohani (1990)] during the preliminary design phase. Sobester and Keane
(2006) constructed a multidisciplinary analysis for UAV airframes. They consider
a blended wing body design and illustrate optimization of the geometry using a
constraint analysis. Rajagopal Ganguli, Pillai and Lurdharaj (2007) formulated the
conceptual design of an UAV as an optimization problem and performed the initial
aircraft sizing through the optimization approach. During the conceptual design
phase, the analysis is often done using low fidelity analysis tools such as empirical
relations. Hence the MDO approach does not demand large computing power and
time. On the other hand, during the preliminary design phase, high fidelity analysis
tools such as Computational Fluid Dynamics (CFD), Finite Element Method (FEM)
etc. are used which demand enormous computing power and time. Moreover, the
coupling between the disciplines increases during preliminary design phase thereby
increasing the time and power of computation.

Much research in the field of aircraft design using the MDO approach has fo-
cused on applying MDO for conventional commercial transport aircraft and cur-
rent generation fighters. Grossman, Haftka, Kao, Polen and Rais-Rohani (1990)
integrated aerodynamic and structural design of a subsonic transport wing for min-
imum weight subject to a constraint on range. They recommended two methods
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to alleviate the computational burden. The first method called the modular sensi-
tivity methods reduces the cost of calculating the sensitivity derivatives and allows
the usage of black box disciplinary software packages. They showed in the study
that derivatives of the aeroelastic response and divergence speed can be calculated
without the costly computation of derivatives of aerodynamic influence coefficient
and structural stiffness matrices. The second approach to reduce the computational
cost involved use of sequential approximate optimization. Dovi and Wrenn (1990)
provided an envelope function formulation that converts a constrained optimiza-
tion problem into an unconstrained one. The advantage of this new method for
multi-objective optimization is the elimination of separate optimization for each
objective, which is required by some optimization methods. A typical wide body
transport aircraft was used for comparison studies. The method was compared with
the Penalty function method and Global Criterion method and was found to be
superior. Wakayama and Kroo (1995) performed wing planform optimization for
minimum drag with constraints on structural weight and maximum lift. The study
gave the basic influence of drag, weight and maximum lift on optimal wing plan-
form. It was observed that induced drag and structural considerations strongly favor
highly tapered wings to attain large spans. Moreover, parasite and compressibility
drag have limited effect on wing taper, making maximum lift constraints necessary
for generating realistic tip chords.

Martins and Alonso (2002) demonstrated a new integrated aerodynamic structural
design method for aerospace vehicles. They employed high fidelity models for
both aerodynamic and structural disciplines and also used a high fidelity coupling
procedure. Euler equations were used for aerodynamic analysis and a detailed
FEM model for the primary structure. Carrier (2004) describes the MDO system
implemented at ONERA. It contains different optimization algorithms including
a gradient based optimizer and a GA. The two disciplines of aerodynamics and
structures are analyzed with high fidelity methods whereas the other disciplines
such as engine performance and flight mechanics are evaluated with simpler meth-
ods. This system was applied for optimizing the performance of a high-speed civil
transport aircraft. The overall objective was to maximize the aircraft range while
multiple design constraints are considered. Kumano, Jeong and Obayashi (2006)
describe the MDO system for a small jet aircraft design by integrating the CFD
codes and NASTRAN based aeroelastic structural interface code. They employ a
kriging model to save computational time of objective function evaluation in the
multi-objective genetic algorithm (MOGA). Several non-dominated solutions indi-
cating the trade off among the drag, structural weight, drag divergence and pitching
moment were found. Kim, Jeon and Lee (2006) found an aerodynamic/structural
multidisciplinary design with multiple objectives for a supersonic fighter wing us-
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ing response surface methodology. Nine wing and airfoil parameters were chosen
for the aerodynamic design variables and four structural variables were added to
determine the wing skin thickness. To consider various flight conditions, multi-
point design optimization was performed on the three representative design points.
Morino, Bernardini and Mastroddi (2006) used MDO for the conceptual design of
innovative aircraft configurations based on the integrated modeling of structures,
aerodynamics, and aeroelasticity.

Researchers have applied optimization methodology to specific disciplines like
aerodynamics to address specific, complex and critical issues such as low Reynolds
number flows. Srinath and Mittal (2009) studied the flow over NACA 0012 airfoil at
two different angle of attacks for Reynolds numbers less than 500. It was seen that
the flow is very sensitive to Reynolds number. A continuous adjoint based method
was formulated and implemented for the design of airfoils at low Reynolds num-
bers. Kipouros, Jaeggi, Dawes, Parks, Savill, and Clarkson (2008) demonstrated
the application of a novel multi-objective variant of the Tabu Search optimization
algorithm to the aerodynamic design optimization of turbomachinery blades.

In recent years, UAV’s have gained the attention of aerospace engineers for use
in reconnaissance roles related to counter terrorism. Some unique opportunities
are provided by UAV design as compared to the conventional manned aircraft de-
sign, especially more flexibility in the selection of wing design parameters. Some
recent research activity has focused on UAV applications. Gonzalez, Lee, Srini-
vas and Wong (2006) discuss the use of evolutionary algorithms (EA) for a single
and multi-objective airfoil optimization. They bring out the demerits of applying
the gradient based approach for problems involving multi-objective, multi-modal
and non-differentiable functions. They show that EA’s have the capability to find
global optimum and can be executed in parallel. In another work, Gonzalez, Peri-
aux, Srinivas and Whitney (2006) highlight the difficulties in the design of UAV’s
arising due to the varied and non-intuitive nature of the configurations and missions
that can be performed by these vehicles. An MDO framework was applied and two
case studies were performed using high fidelity analysis codes. The first case study
involves dual objective UAV airfoil section optimization. Detailed design of a sin-
gle element airfoil for a small UAV application similar to the RQ-7A Shadow 200
tactical UAV was performed with the two fitness functions defined as minimization
of drag at two different flight conditions. Three constraints for maximum thickness,
maximum thickness location and pitching moment were used. In the second case
study, multi-criteria wing design optimization for a UAV with the two fitness func-
tions defined as minimization of wave drag and minimization of the spanwise cap
weight was performed. Constraints were imposed on minimum thickness and po-
sition of maximum thickness. Similarly, Lee, Gonzalez, and Srinivas (2008) have
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developed robust evolutionary algorithms for UAV/UCAV aerodynamic and RCS
design optimization. Here, the prime objective was to improve the survivability
and aerodynamic efficiency. The research of Srinivas and co-workers represents a
pioneering effort in the use of MDO for UAV design.

We see that some research has been done on the design optimization of UAV’s.
However, the use of MDO in UAV designs is much less compared to its use in con-
ventional manned aircraft. This is especially true for the application of evolutionary
algorithm to UAV design. Also, most works use simple GA for the optimization
problem and have not exploited the power of evolving multi-objective GAs. The
advantages of evolutionary methods over classical algorithms in single and multi-
objective optimization problems are well highlighted by Goldberg (1989) and Deb
(2001), respectively. This paper investigates the preliminary design of an UAV
wing as an optimization problem. Evolutionary algorithms, which capture the full
Pareto Front for multi-objective problems are used in conjunction with a Kriging
meta-model of the analysis. A low speed, long endurance UAV is illustrated.

2 Problem Formulation

The preliminary design of the UAV under consideration focuses on achieving its
main goal i.e. the long endurance and minimum structural weight. The fuselage
design is usually governed by the amount of the fuel to be carried and the volume
of systems like payload and equipment. Therefore, only the wing design is con-
sidered for the optimization problem. In the optimization process, the design aims
at maximizing the endurance, which is an aerodynamic aspect and minimizing the
wing weight, which is a structural aspect. The optimization problem involves ob-
jective functions, design variables and constraints. The same optimizer is used for
both single and dual objective problems.

2.1 Objective functions

The choice of the objective function in any aircraft optimization problem is dic-
tated by the design mission of the aircraft. Since the design mission of the UAV
under consideration is long endurance, the main objective is chosen as endurance
while formulating the optimization problem. Also, achieving minimum structural
weight is a general challenge for aircraft designers. Therefore, minimization of
wing weight is also considered as another objective for the optimization problem.
Since the aerodynamic analysis of the wing is performed in two steps, the optimiza-
tion methodology is also performed in two parts namely the 2D airfoil optimiza-
tion and 3D wing optimization. In the 2D airfoil optimization, the airfoil geom-
etry is optimized with a single objective of maximizing the endurance parameter
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(C3/2
l /Cd). The lift and drag characteristics correspond to the 2D characteristics of

the airfoil. In the 3D wing optimization, the wing planform parameters are opti-
mized with dual objectives. The first objective function is the maximization of the
endurance parameter (C3/2

L /CD), which reflects the aerodynamic discipline. Here
the lift and drag characteristics correspond to that of the wing. The second objective
function is minimization of the wing weight and reflects the structures discipline.

2.2 Design Variables

The design space is chosen to reflect the effect of aerodynamic and structural disci-
plines. In this study, the wing parameters related to planform, the airfoil shapes and
the structural skin thicknesses are identified as the design variables, as summarized
in Table 1. Usually, apart from the skin thicknesses the spar cap thickness, is also
included for optimization problem. But in order to keep the optimization simpler
with less number of design variables, the spar cap thickness is not included in the
current optimization problem. The design variables for the 2D airfoil optimization
are the first two parameters described in Table 1: the maximum wing thickness to
chord ratio and the maximum camber.

The remaining eight parameters are additional design variables included for the 3D
wing optimization. The 2D design optimization uses 2 design variables while the
3D design optimization uses 8 additional design variables. The design variables are
also explained in detail in Fig 1. Throughout this paper, the design variables are
normalized and presented as ratios with respect to the upper bound value.

2.3 Constraints

Aerodynamic constraints are imposed on the performance parameters of the UAV
and on the airfoil shape. For the 2D airfoil optimization, the aerodynamic con-
straints are imposed on the leading edge curvature (LEC), trailing edge angle (TER),
zero drag and zero moment co-efficient. Moreover, for the 3D wing optimization,
the aerodynamic constraints are imposed on (1) rate of climb (ROC) at that alti-
tude, (2) stall speed (VS) and (3) maximum speed (VMAX) at sea level condition,
which arise from the requirements. The structural constraints imposed are based
on the strength and stiffness of the wing. The maximum stress coming on the wing
structure should be less than the allowable bending stress of the material. This
condition is imposed as the strength constraint. As per the AVP 970 standard, the
maximum wing deflection allowed for an UAV for 1g condition is 1% of the span.
This condition is imposed as the stiffness constraint.
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Figure 1: Schematic representation of the design variables

2.4 Mathematical Representation of 2D airfoil Design Problem

The 2D airfoil design problem can be written as a standard optimization problem:

Maximize f (x̄) = Maximize

[
C3/2

l
Cd

]
(1)
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Table 1: Design Variables. Normalized with Upper Bounds

No Design Variables Notation Usage Lower Bound Baseline Design
1 Maximum Wing

Thickness to chord
Ratio

TC 2D 0.727 0.77

2 Maximum camber MC 2D 0 0.2
3 Wing Aspect Ratio AR 3D 0.727 0.73
4 Wing Loading WS 3D 0.6 0.7
5 Wing Taper Ratio . TR 3D 0.25 0.5
6 Wing twist angle θ 3D 0 0.6
7 Upper skin thick-

ness at root
∆t1 3D 0 0.8

8 Upper skin thick-
ness at tip

∆t2 3D 0 0.8

9 Lower skin thick-
ness at root

∆t3 3D 0 0.8

10 Lower skin thick-
ness at tip

∆t4 3D 0 0.8

Subject to

ḡ1(x̄) = [LEC(x̄)−LEC∗]≤ 0 (2)

ḡ2(x̄) = [−T ER(x̄)+T ER∗]≤ 0 (3)

ḡ3(x̄) =
[
Cm0(x̄)−C∗m0

]
≤ 0 (4)

xl ≤ x̄≤ x̄u (5)

x̄ =
[
TC MC

]T (6)

The 2D optimization problem has one objective function, three constraints and two
design variables. Only the aerodynamics discipline is involved in this problem.

2.5 Mathematical Representation of 3D wing Design Problem

The 3D wing design problem can be written as a standard optimization problem:

Maximize f (x̄) = Maximize

[
C3/2

L
CD

−WW (x̄)

]
(7)
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Subject to

ḡ1(x̄) = [−ROC(x̄)+ROC∗]≤ 0 (8)

ḡ2(x̄) = [V S(x̄)−V S∗]≤ 0 (9)

ḡ3(x̄) = [−V MAX(x̄)+V MAX∗]≤ 0 (10)

ḡ4(x̄) = [σ(x̄)−σ
∗]≤ 0 (11)

ḡ5(x̄) = [δ (x̄)−δ
∗]≤ 0 (12)

x̄l ≤ x̄≤ x̄u (13)

x̄ =
[
AR WS T R θ ∆t1 ∆t2 ∆t3 ∆t4

]T (14)

The 3D optimization problem has two objective functions, seven constraints and
eight design variables. It involves multi-objective optimization. Both aerodynamic
and structural disciplines are involved in this problem.

3 Analysis

As the optimization problem involves analysis in the aerodynamics and structures
discipline, the mathematical model consists of two key components namely (i)
Aerodynamic analysis and (ii) Structural analysis. These analysis procedures are
briefly described below.

3.1 Aerodynamic Analysis

The panel method code XFLR5 is considered for the aerodynamic analysis. Basi-
cally, XFLR5 is a user friendly interface for the XFOIL code developed by Drela
(2001). The XFOIL code uses a higher order panel method with coupled integral
boundary layer. The algorithms for foil analysis implemented in XFLR5 are ex-
actly the same as those of the original XFOIL code, except for the translation from
FORTRAN to C++.

The inviscid formulation of XFOIL is a simple linear-vorticity stream function
panel method. A finite trailing edge base thickness is modeled with a source panel.
The equations are closed with an explicit Kutta condition. A Karman-Tsien com-
pressibility correction is incorporated, allowing good compressible predictions all
the way to sonic conditions. The theoretical foundation of the Karman-Tsien cor-
rection breaks down in supersonic flow, and as a result accuracy rapidly degrades
as the transonic regime is entered. Of course, shocked flows cannot be predicted
with any certainty. However, the UAV considered in this paper operates in flight
conditions which satisfy the assumptions of the code.

As far as the viscous formulation is concerned, the boundary layers and wake are
described with a two-equation lagged dissipation integral BL formulation and an
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envelope end transition criterion, both taken from the transonic analysis/design
ISES code. The entire viscous solution (boundary layers and wake) is strongly in-
teracted with the incompressible potential flow via the surface transpiration model
(the alternative displacement body model is used in ISES). This permits proper
calculation of limited separation regions. The drag is determined from the wake
momentum thickness far downstream. A special treatment is used for a blunt trail-
ing edge which fairly accurately accounts for base drag. The total velocity at each
point on the airfoil surface and wake, with contributions from the freestream, the
airfoil surface vorticity, and the equivalent viscous source distribution, is obtained
from the panel solution with the Karman-Tsien correction added. This is incor-
porated into the viscous equations, yielding a nonlinear elliptic system which is
readily solved by a full-Newton method as in the ISES code.

If lift is specified, then the wake trajectory for a viscous calculation is taken from
an inviscid solution at the specified lift. If angle of attack is specified, then the
wake trajectory is taken from an inviscid solution at that angle of attack. This is not
strictly correct, since viscous effects will in general decrease lift and change the
trajectory. This secondary correction is not performed, since a new source influ-
ence matrix would have to be calculated each time the wake trajectory is changed.
This would result in unreasonably long calculation times. The effect of this ap-
proximation on the overall accuracy is small, and will be felt mainly near or past
stall, where accuracy tends to degrade anyway. In attached cases, the effect of the
incorrect wake trajectory is imperceptible.

Also, wing analysis capabilities using the Vortex Lattice Method (VLM) are added
in the XFLR5 code. The wing is defined as a set of panels. Each panel is defined
by its length, its root and tip chords, by its dihedral angle and by its mesh for VLM
analysis. Twist is processed as a modification of the angle of attack as given in the
guidelines for XFLR5 V2 Rev 5. As discussed in the guidelines, the principle of
a VLM is to assimilate the perturbation generated by the wing to that of a sum of
vortices distributed over the wing’s planform. The strength of each vortex is calcu-
lated to meet the appropriate boundary conditions, i.e. non-penetration conditions
on the surface of the panels. The induced drag is calculated by integration of sur-
face forces at the 3/3 point of the VLM panels. The viscous drag is estimated by
interpolation of XFOIL pre-generated polars from the Cl value resulting from the
linear VLM analysis.

The aerodynamic analysis is performed in two parts: the 2D airfoil analysis and the
3D wing planform analysis. Both these analysis are performed using the XFLR5
code where the 2D airfoil analysis is exactly same as that of the XFOIL code and the
3D wing analysis is done using the VLM method. These codes are well validated
with wind tunnel test experiments and other CFD codes.
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The performance constraints are evaluated using the commercially available and
well-validated aircraft design software RDS based on the book by Raymer (2001)
on the aircraft design, which is introduced after the XFLR5 code. The sizing and
synthesis analysis of this software is well-validated for many aircraft conceptual
design stage applications. The RDS has a propulsion module that generates the
thrust data. The aerodynamic characteristics evaluated by the XFLR5 are used by
the performance module of RDS that evaluates the performance constraints. As far
as the XFLR5 code is concerned, the points where it does not converge are ignored,
during the optimization routine.

3.2 Structural Analysis

In this research, the commercially available and well validated FEM code MSC-
NASTRAN developed by MSC Software Inc. is used for the structural analy-
sis of the wing. This software is used to perform the analysis and estimate the
wing weight. For carrying out the structural analysis using the FEM code MSC-
NASTRAN, the geometry is modeled using commercially available and well val-
idated CAD software CATIA developed by Dassault Systems. This software is
used to generate the model geometry in the CAD environment and this geometric
model is read by the commercially available and well validated mesh generation
code MSC-PATRAN developed by MSC Software Inc. The mesh generated by this
software is analyzed using the FEM solver MSC-NASTRAN.

The structural model is developed by dividing the entire structure into a number of
discrete elements. The basic steps required to perform the structural analysis using
FEM solver MSC-NASTRAN are as follows:

• The continuous structure is represented as a collection of nodal points con-
nected by discrete elements

• From the given element properties, material properties and geometry, the
elemental stiffness matrices are formulated

• The global stiffness matrix corresponding to the full structure is assembled
from the elemental stiffness matrices

• The boundary conditions are applied to constrain the model and the load
vectors are generated

• The static equilibrium matrix {f}=[K]{d} where K is the system stiffness,
f is the load vector and d is the nodal displacement vector is solved. The
unknowns are the nodal displacements which are evaluated by inverting the
stiffness matrix and multiplying by the force vector.
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• Other required outputs like strains and stresses can be derived from the nodal
displacements.

The geometry, loads and boundary conditions, material properties are captured
in the pre-processor MSC-PATRAN. The meshing is also carried out in the pre-
processor itself. For the baseline model in the structural analysis, the wing is made
of three parts in the chordwise direction namely the leading edge box, center sec-
tion and the trailing edge box. For the optimization problem, only the center box
is considered. The center box consists of upper and lower skin and front and rear
spars. The upper and lower skin thicknesses at root and tip are considered as the
design variables. The structural model is created in MSC-PATRAN with loads and
boundary conditions. The element chosen for modeling the wing structure is the
general shell element. Only one half of the wing is modeled with symmetric bound-
ary conditions at the root of the wing. All the six degrees of freedom of the nodes
at the root of the wing takes the values as UZ=0, ROTX=0, ROTY=0. Also, in
order to arrest the rigid body motion of the wing, only node at the wing root takes
the boundary condition UX=0, UY=0. The air loads as generated by the aerody-
namic analysis code XFLR5 are given in each element of the wing as pressure load.
The self weight of the wing structure is also taken into consideration which gives a
weight (inertia) relief for the structure. The wing is a sandwich construction made
up of CFRP skin with Rohacell foam core with epoxy resin system. The material
properties are defined in MSC-PATRAN. The material properties considered for
this optimization problem are tabulated in Table 2. The modeling of the composite
materials is carried out in LAMINATE MODELLER module of the MSC-PATRAN
and is modeled layerwise. The properties given in Table 2 are experimental tested
values of one layer of fabric along with the resin system. Fig 2 gives the FEM
model created in the MSC-PATRAN.

4 Optimization

The optimization process is performed in two steps. First, the airfoil is finalized
through a single objective optimization problem. Once the airfoil is frozen, the
wing planform parameters are arrived at through a dual objective problem. The
optimization model is illustrated in Fig. 3 and is composed of different modules
namely the mesh module, analysis module, meta-model module and optimization
module. For the first step, the analysis module includes only the aerodynamic
analysis which is performed by the XFLR5 code. For the second step, the analysis
module includes both the aerodynamics and structural analysis.

Large computer time remains the biggest challenge in solving any MDO problem.
The computation time increases because of the strong interactions between the dis-
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Figure 2: FEM Model of the 3D wing created in MSC-PATRAN

ciplines and the use of high fidelity codes for aerodynamic and structural analy-
sis. Such codes typically solve partial differential equations through discretization
methods in a procedure which is computationally intensive. Fortunately, the com-
putation time can be drastically reduced if accurate approximate models to replace
the analysis tools can be created. Such models of models, or meta-models, are
very useful in optimization. For example, the response surface method described
by Kim, Jeon and Lee (2006) and Kriging model explained by Kumano, Jeong and
Obayashi (2006) have been successfully applied for MDO problems. While re-
sponse surface methods use polynomial expressions which are locally valid, Krig-
ing is suited to approximate highly nonlinear functions and can be used to create
globally valid meta-models. In the present study, Kriging model is employed for
design of the UAV wing. The meta-model module generates the Kriging model and
validates for sample points.

4.1 Kriging Model

Kriging model has its original roots in the field of geostatistics which is a mixed
discipline of mining, engineering, geology, mathematics and statistics. In this field,
this meta-model is used to predict temporal and spatial correlated data. A wide
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Figure 3: UAV Design Optimization Process

range of correlation functions can be chosen for building the meta-model thereby
making the Kriging meta-models extremely flexible.

The analysis tool is replaced with the Kriging model in the objective function eval-
uation process of MOGA. As the Kriging model introduces uncertainty at the pre-
diction point, the biggest advantage of GA in obtaining the global optimization
may be lost as studied by Jeong, Murayama and Yamamoto (2005). In order to
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retain this advantage, both the prediction value and its uncertainty are to be con-
sidered at the same time. This is captured by updating the Kriging model during
the optimization. If the optimization algorithm is not converged, additional random
designs are initialized and the Kriging model is reconstructed. The Gaussian corre-
lation function used in the meta-model interpolates all data points exactly. Kriging
model takes a combination of a polynomial model and a statistical function and is
written as follows,

y(x) = f(x) + z(x)

where y(x) is the unknown function, f(x) is the known polynomial function and
z(x) is the function from a stochastic process with mean zero, variance and non-
zero covariance. The polynomial function f(x)approximates the design space glob-
ally and the localized deviations are created by the functionz(x). The polynomial
function is taken as a constant term for this study. The covariance matrix of z(x)that
is responsible for the local deviations is,

Cov[z(xi),z(x j)] = σ
2R([R(xi,x j)])

where R is the correlation matrix, and R(xi,x j) is the correlation function between
any two of the sample data points xi and x j. The correlation matrix considered in
this paper is the common Gaussian correlation function,

∏
n
k=1 exp(−θk |dk|)2

where n is the number of design variables, θk is the unknown correlation parameters
used to fit the model and dk is the distance between the kth component of sample
points xi and x j.

The optimization algorithm in this approach is as follows:

• Initially some random designs are initialized. The procedure to identify these
designs is to randomly choose the design points available with 50% on each
sides of the initial population.

• The analysis code is run to construct the Kriging model for the two objective
functions.

• The MOGA is performed on the Kriging model.

• If convergence is not achieved, additional random designs are chosen and the
optimization process is repeated till convergence.

Further details of Kriging model are available in paper by Timothy, Timothy, John
and Farrokh (1998).
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4.2 NSGA II

An important aspect of this paper is the use of a multi-objective genetic algorithm
NSGA-II developed by Deb, Agrawal, Pratap and Meyarivan (2002). This algo-
rithm can give the full Pareto front for multi-objective problems. The merits and
demerits of the classical gradient based approach and evolutionary approach for
a given optimization problem are extensively discussed in literature by Lu and
Zhenghong (2002) and Arora and Marler (2004). In a nutshell, the difficulties en-
countered by the classical optimization algorithm for general optimization problem
occur in situations with (1) non-smooth variables, (2) nonlinear and discontinuous
constraints, (3) noisy functions and (4) multiple minima. However, there are dis-
advantages in evolutionary optimization such as (1) no clearly defined convergence
criteria, (2) parameter tuning mostly by trial and error, (3) computationally expen-
sive population-based approach and (4) slow convergence to optimum. The main
difference between classical optimization and evolutionary algorithm (EA) is that
EA uses a population of solutions in each of the iterations, instead of a single so-
lution. Since a population of solutions is processed in each of the iterations, the
outcome of an EA is also a population of solutions.

When the optimization problem involves more than one objective function, the task
of finding one or more optimum solutions is termed as multi-objective optimization
as defined by Deb (2001). If the objective functions are conflicting in nature, each
objective corresponds to a different optimal solution. Thus, there exist a set of
optimal solutions where a gain in one objective calls for a sacrifice in some other
objective. For a designer, knowing a number of optimal solutions becomes impor-
tant and it also gives considerable insight into the design thereby providing several
feasible and useful design solutions. Therefore, as far as the designer is concerned,
the ideal multi-objective optimization procedure is to find the multiple trade-off
optimal solutions with a wide range of values for the objectives and choose one
of the obtained solutions using higher-level information. Often this higher-level
information would be non-technical, qualitative and experience driven. Most of
the multi-objective optimization algorithms use the concept of domination. This
concept of domination is described in detail by Deb (2001).

The optimization model workflow is created in such a way that for a given starting
value of design variables, it calculates the aerodynamic characteristics namely the
lift, drag and moment coefficient. Using these coefficients, it maximizes the en-
durance of the UAV. Simultaneously, it generates the wing weight and checks for
the violation of strength and stiffness constraints.
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5 Results and Discussion

The low speed UAV under consideration has to loiter over the target area for many
hours at a medium altitude. The all up weight of the UAV under consideration is
1800 Kg. It is a multi-mission UAV which has the capability to carry a variety of
payloads in combinations depending on the mission. From the preliminary weight
estimation, the empty weight fraction is 0.53 and the useful weight (payload weight
and fuel weight) fraction is 0.47. The configuration of the UAV is twin engine wing
mounted propeller driven tractor type. The UAV is powered by two piston propeller
engine. The engine characteristics like the power at different altitudes, fuel con-
sumption are captured in the propulsion module of the RDS. The fuel consumption
of the engine selected is typical of any piston engines of this class which is of the
order of 0.5 lbs/bhp/hr. The power data and its variation with altitude are inputted
as given by the engine manufacturer. Similarly, the geometric data of propeller and
its performance charts are inputted as supplied by the propeller manufacturer. The
thrust generated by the propulsion module of RDS is corrected for the installation
losses based on the experience of flying UAVs. The UAV belongs to the medium
altitude long endurance category and hence flies at reasonably medium altitudes be-
tween 20,000 ft to 25,000 ft. It is a very low speed UAV whose cruise mach number
is around 0.13. In this research, it is assumed that the UAV loiters at the same speed
at same altitude for long hours. Hence the Cl is not changed considerably during
loiter time.

For this study, in both single and dual objective problem, the following parameters
are set for simulations in the genetic algorithm: Population size = 50, Number
of generations = 100, Crossover probability = 0.9, Crossover distribution index =
20, Mutation probability = 0.1, Mutation distribution index = 100. For the kriging
model construction, the number of random designs chosen is 20 and the number of
additional random designs is 10. The optimization problem is performed on a PC
with Windows XP platform and an Intel Pentium IV Processor with 2GB RAM and
a processor speed of 1.86 GHz.

5.1 2D Airfoil Optimization

The baseline airfoil for aerodynamic optimization is the NASA/LANGLEY LS
(1)-0417 (GA (W)-1). The airfoil is discretized into 100 panels in the XFLR5
code. The comparison of baseline and optimized airfoil geometric characteristics
are given in Table 3.

As far as the 2D airfoil design optimization problem is concerned, Fig 4 shows the
comparison of the airfoil geometry for the baseline and optimized design. It can be
seen from Fig 4 and Table 3 that the thickness of the airfoil is increased from 17%
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Table 3: Comparison of geometric characteristics of baseline and optimized airfoil

Characteristics Baseline airfoil Optimized airfoil
Maximum thickness to chord ratio 17% 18.9%
Maximum thickness position 30.2%c 26.7%c
Maximum camber 2.33%c 2.51%c
Maximum camber position 20.10%c 21.3%c
Trailing edge gap 0.73%c 0.67%c

to 18.9%. The optimized airfoil has slightly better characteristics in terms of area
enclosed by the airfoil, which is a measure of the total internal volume available
for fuel storage between the spars. The optimized airfoil maintains almost same
camber of the seed airfoil as 2.51%c while the leading edge curvature is reduced
from 28.94% to 18.42%. The trailing edge angle is increased slightly from 3.19o to
4.62o in order to reduce the constraint imposed on structural stiffness of the airfoil.

Figs. 5-7 present the lift, drag and endurance parameter. It can be clearly seen from
Fig 5-7 and Table 4 that the aerodynamic characteristics of the optimized airfoil
are much better when compared to the baseline airfoil. The Clmax has increased by
13.5% and the maximum endurance parameter has increased by 43.5%.

Table 4: Comparison of performance characteristics of baseline and optimized air-
foil

PARAMETER Baseline airfoil Optimized airfoil
Clmax 1.85 2.1
Cl0 0.55 0.55
Alpha – max in deg 19 17
Alpha 0 in deg -4 -4
Cl-alpha (Linear range) per deg 0.1125 0.1175
Cd0 at alpha = 0 0.005 0.005
Cm0 -0.12 -0.09
Max Endurance Parameter 108 155

5.2 3D Wing Planform Optimization

At the end of the 2D airfoil optimization, the maximum thickness to chord ratio and
the camber are frozen at the values obtained from the optimization process. Once
the airfoil cross section is frozen, the wing planform is optimized as the next step.
During this step, the wing planform parameters aspect ratio, wing loading, taper ra-
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Fig 5: 2D Lift characteristics for baseline and optimized airfoil 

 

Fig 6: 2D Drag characteristics for baseline and optimized airfoil 

Figure 5: 2D Lift characteristics for baseline and optimized airfoil
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Figure 7: Endurance parameter for baseline and optimized airfoil



Multidisciplinary Design Optimization 23

tio, wing twist angle are optimized subject to performance constraints. Apart from
the wing planform parameters, the design variables from the structures discipline
such as the skin thickness at root and tip are also considered.

The lift and drag characteristics of the optimum airfoil obtained using the XFLR5
code is presented in Fig 8 and 9, respectively.

The structural analysis results obtained using finite element analysis are presented
in Figs 10-11. The strength and stiffness constraints are active during the 3D wing
planform optimization. The maximum value of the stress coming on the entire
wing structure is estimated by the finite element analysis and is compared with the
allowable stress value of the material. The maximum deflection coming on the tip
of the wing is estimated during the finite element analysis and is compared with the
maximum allowable deflection value as per the AVP 970 standard.

For the 3D wing design optimization problem, a graph between the two objectives
namely given by the wing weight and endurance parameter is plotted to obtain the
Pareto front shown in Fig 12.

It is a typical Min-Max Pareto front. Five design solutions are possible with opti-
mum solutions lying in the Pareto front. These Pareto points are designated with
PP1 to PP5. The design variables corresponding to the two extreme Pareto points
PP1 and PP5 are described in Table 5, along with the objective function value cor-
responding to that point.

Table 5: Design Variables corresponding to Pareto points PP1 and PP5

Design Variables Pareto Point PP1 Pareto Point PP5
Wing Aspect Ratio 0.82 0.98
Wing Loading 0.99 0.91
Wing Taper Ratio 0.3125 0.45
Wing twist angle 0.4 0.93
Upper skin thickness at root 0.73 0.92
Upper skin thickness at tip 0.37 0.44
Lower skin thickness at root 0.73 0.92
Lower skin thickness at tip 0.37 0.44
Wing Weight 0.067 0.105
Endurance parameter 0.4 0.92

Fig 13 to Fig 20 presents the optimal values of the seven design variables corre-
sponding to each of the five Pareto points given in Fig 12. There is a variation of
about 15 percent in the aspect ratio as shown in Figure 13 between the different
designs. The wing loading in Figure 14 shows a variation of about 9 percent with
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Fig 9: 3D Drag characteristics for optimum airfoil 
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Figure 10: Displacement contour of the optimized 3D wing

Figure 11: Stress contour of the optimized 3D wing
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Fig 12: Pareto front obtained using the multi objective genetic algorithm  

It is a typical Min-Max Pareto front. Five design solutions are possible with optimum 
solutions lying in the Pareto front. These Pareto points are designated with PP1 to PP5. 
The design variables corresponding to the two extreme Pareto points PP1 and PP5 are 
described in Table 5, along with the objective function value corresponding to that point.  

Table 5: Design Variables corresponding to Pareto points PP1 and PP5 

Design Variables Pareto Point PP1 Pareto Point PP5 

Wing Aspect Ratio 0.82 0.98 

Wing Loading  0.99 0.91 

Wing Taper Ratio 0.3125 0.45 

Wing twist angle  0.4 0.93 

Upper skin thickness at root 0.73 0.92 

Upper skin thickness at tip 0.37 0.44 

Figure 12: Pareto front obtained using the multi objective genetic algorithm

two values near the maximum bound. The taper ratio in Figure 15 shows a large
variation of over 64 percent, however, none of the designs show the taper ratio at
the upper bound. The wing twist shows a variation of about 57 percent between
the maximum and minimum values and none of the designs reach the upper limit
which is also a substantial variation. There is also a considerable variation in wing
upper and lower skin thickness at root between the Pareto designs of about 26 per-
cent with one design being very close to the upper limit. Finally, wing upper and
lower skin thickness at tip shows a marginal variation of about 15 percent with no
design reaching the upper limit.

There is a large variation in the design variables between the five Pareto points. The
different planform shapes corresponding to the five Pareto points are shown in Fig
21. These planform shapes offer choice to the designer interested in experimenting
with different plan form shapes and sizing and also for structural design. The iden-
tification of the Pareto front gives considerable insight into the design problem. The
Pareto points for the preliminary design can now be evaluated for use in detailed
structural wing design studies.
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Fig 13: Aspect Ratio for different Pareto points  
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Fig 14: Wing Loading for different Pareto points  
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Fig 15: Taper Ratio for different Pareto points  
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Fig 16: Wing Twist for different Pareto points  
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Fig 15: Taper Ratio for different Pareto points  
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Fig 17: Wing upper skin thickness at root for different Pareto points  
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Fig 18: Wing upper skin thickness at tip for different Pareto points  

Figure 17: Wing upper skin thickness at root for different Pareto points
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Fig 17: Wing upper skin thickness at root for different Pareto points  
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Fig 18: Wing upper skin thickness at tip for different Pareto points  

Figure 18: Wing upper skin thickness at tip for different Pareto points
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Fig 19: Wing lower skin thickness at root for different Pareto points  
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Fig 20: Wing lower skin thickness at tip for different Pareto points 

Figure 19: Wing lower skin thickness at root for different Pareto points
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Fig 19: Wing lower skin thickness at root for different Pareto points  
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Fig 20: Wing lower skin thickness at tip for different Pareto points 
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Figure 21: Planform shapes for different Pareto points

6 Conclusions

An evolutionary optimization algorithm capable of finding the full Pareto front of
multi-objective optimization problems is applied for preliminary UAV wing de-
sign. The preliminary design problem is formulated as a mathematical optimiza-
tion problem. A single objective problem of maximizing the endurance parameter
and a dual objective problem of maximizing endurance parameter and minimizing
wing weight is considered. The formulation and workflow is done in two steps,
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initially a 2D airfoil optimization where the airfoil geometry is optimized to give
a maximum endurance parameter with constraints on geometrical parameters. In
the second step, the 3D wing planform is optimized with objective functions from
aerodynamics and structures. In the second step, the Kriging approximation model,
replaces both the aerodynamic and structural analysis code. The robust evolution-
ary algorithm NSGA-II used to capture the Pareto front is capable of identifying
the trade-off between the conflicting objectives thereby providing alternative use-
ful designs for the designer. It is found that the five Pareto designs obtained offer
various possibilities to the designer in terms of higher-level requirement and may
offer novel and non-traditional solutions to the design problem. The Kriging model
employed reduces the computation time without losing the Pareto points. The opti-
mization results confirm the feasibility of the Kriging based MOGA for UAV wing
design optimization and provide useful starting points for detailed structural design
of the UAV wing.
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