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Abstract: In this paper, we explore three different ways of developing T-Trefftz
finite elements of quadrilateral as well as polygonal shapes. In all of these three ap-
proaches, in addition to assuming an inter-element compatible displacement field
along the element boundary, an interior displacement field for each element is inde-
pendently assumed as a linear combination of T-Trefftz trial functions. In addition,
a characteristic length is defined for each element to scale the T-Trefftz modes, in
order to avoid solving systems of ill-conditioned equations. The differences be-
tween these three approaches are that, the compatibility between the independently
assumed fields at the boundary and in the interior, are enforced alternatively, us-
ing a two-field boundary variational principle, collocation, and the least squares
method. The corresponding four-node quadrilateral elements with/without drilling
degrees of freedom are developed, for modeling macrostructures of solids. These
three approaches are also used to derive T-Trefftz Voronoi Cell Finite Elements
(VCFEM), for micromechanical analysis of heterogeneous materials. Several two
dimensional macro- & micromechanical problems are solved using these elements.
Computational results demonstrate that the elements derived using the collocation
method are very simple, accurate and computationally efficient. Because the ele-
ments derived by this approach are also not plagued by LBB conditions, which are
almost impossible to be satisfied a priori, we consider this class of elements to be
useful for engineering applications in micromechanical modeling of heterogeneous
materials.
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1 Introduction

Primal finite elements, which involve displacement-type of nodal shape functions,
are widely accepted and applied in computer modeling of physical problems. This
is because of their simplicity, efficiency, stability and established convergence.
However, the disadvantages of these elements are also well-known, such as unsatis-
factory performance in problems which involve constraints (shear/membrane/incom-
pressibility locking), difficulty to satisfy higher-order continuity requirements (es-
pecially for plates and shells), sensitivity to mesh distortion, etc. Carefully formu-
lated hybrid/mixed finite elements based on multi-field assumptions, on the other
hand, can mitigate or even resolve such problems. Thus, since its early develop-
ment in 1960s, numerous formulations of hybrid/mixed finite elements have been
proposed and applied to various physical problems. However, these hybrid/mixed
elements developed along the lines of [Pian (1964)] are also well-known to be pro-
hibitively more computationally-expensive than their (displacement) primal coun-
terparts.

The original version of the hybrid stress elements developed in [Pian (1964)] was
based on the modified principle of minimum complementary energy, using an “a
priori equilibrated” stress field in each element, and an inter-element compatible
displacement field along the element boundary. However, this type of element is
somehow useless when modeling geometrically nonlinear and dynamical problems,
because an “a priori equilibrated” stress field is almost impossible to be found in
these problems. From a more general point of view, [Atluri (1975)] developed
a generalized variational principle by modifying the Hu-Washizu principle to ac-
commodate the finite-discretized domain. By choosing to satisfy some conditions
a priori and the others a posteriori, Atluri’s variational principle can essentially be
reduced to different versions of variational principles for developing various finite
element models, including the hybrid stress element, the hybrid strain element, the
hybrid displacement element, etc. And some of these variational principles were
also extended to develop finite elements with drilling degrees of freedoms in [Iura
and Atluri (1992); Cazzani and Atluri (1993)], and for geometrical as well as ma-
terial nonlinear problems in [Atluri (1980)].

Besides their applications in two-dimensional and three-dimensional solid mechan-
ics, hybrid/mixed finite element methods were also demonstrated to be advanta-
geous in other types of physical problems. For example, [Bratianu and Atluri
(1983); Ying and Atluri (1983)] developed mixed finite elements for modeling
Stokes flows, which eliminate incompressibility locking without resolving to selec-
tive reduced-order integrations. [Ghosh and Mallett (1994); Ghosh, Lee and Moor-
thy (1995)] developed Voronoi cell finite elements (VCFEM) and applied them to
multi-scale analysis of structures composed of heterogeneous materials. [Jirousek
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and Teodorescu (1982); Jirousek and Guex (1986)] developed hybrid Trefftz ele-
ments for two-dimensional solid mechanical problems and plate bending problems.
[Cai, Paik and Atluri (2009 a,b); Cai, Paik and Atluri (2010); Cai, Paik and Atluri
(2010); Zhu, Cai, Paik and Atluri (2010)] developed locking-free hybrid/mixed fi-
nite elements for modeling large rotation deformation of beams/rods/plates/shells
considering von-Karman type of nonlinearity in co-rotational frames.

However, in spite of their widely recognized advantages, there are essentially two
major drawbacks that have been limiting the engineering applications of hybrid/mixed
finite elements. One is the increased computational burden caused by matrix inver-
sion for each and every element, and the need to generate at least two different
element matrices (H and G) through integrations over the element domain, in the
process of developing the element stiffness matrix. The other is the questionable
stability of finite element solutions. Matrix inversion is difficult to avoid as long as
multi-field variational principles are used for element derivation. Regarding stabil-
ity, [Babuska (1973); Brezzi (1974)] analyzed the existence, uniqueness, stability
and convergence of problems with Lagrangian multipliers and established the so-
called LBB conditions. Inability to satisfy the LBB conditions in general would
plague the solvability and stability of hybrid/mixed finite element equations. [Ru-
binstein, Punch and Atluri (1983); Punch and Atluri (1984); Xue, Karlovitz and
Atluri (1985)] used sophisticated group theory to develop guidelines for selecting
independent fields which will satisfy the LBB conditions, under the condition that
the element is undistorted. For an arbitrarily distorted element, to the best of the
authors’ knowledge, there is no rational way of satisfying LBB conditions a priori.

By noticing that previous hybrid/mixed models suffer from LBB conditions be-
cause multi-field variational principles use Lagrangian multipliers to enforce con-
straints, [Dong and Atluri (2011)] presented a simple approach to avoid LBB con-
ditions when developing hybrid/mixed elements. The essential idea was to enforce
the compatibility between independently assumed fields, using collocation or the
least squares method, instead of using Lagrangian multipliers as in multi-field vari-
ational principles. Using this approach, hybrid/mixed four-node quadrilateral ele-
ments with independently assumed displacement and strain fields were developed,
which were shown to be stable, locking-free, invariant, and computationally almost
as efficient as primal finite elements. This approach was also applied to develop
VCFEM, by assuming the element-interior displacement field as a linear combina-
tion of radial basis functions.

In this paper, we develop T-Trefftz four-node quadrilateral elements and T-Trefftz
VCFEMs. For each element, in addition to assuming an inter-element compati-
ble displacement field along the element boundary, an interior displacement field
for each element is also independently assumed as a linear combination of T-Trefftz
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trial functions. Three approaches are used alternatively to enforce the compatibility
between independently assumed fields: a two-field boundary variational principle,
the collocation method, and the least squares method. Elements developed using
the two-field boundary variational principle are obviously plagued by LBB con-
ditions, which are almost impossible to be satisfied a priori. On the other hand,
elements developed using the other two approaches do not suffer from LBB condi-
tions. Several macro- and micromechanical examples are also presented, to show
the advantages and disadvantages of various elements.

The rest of this paper is organized as follows: in section 2, we introduce the
characteristic-length-scaled T-Trefftz trial functions as the assumed interior dis-
placement field; in section 3, we use three approaches to develop T-Trefftz four-
node quadrilateral elements with/without drilling degree of freedoms; in section
4, we use the same three approaches to develop T-Trefftz VCFEMs for microme-
chanical modeling of materials; in section 5, we conduct numerical experiments
and compare the performances of different elements; in section 6, we complete this
paper with some concluding remarks.

2 Interior Displacement Field: T-Trefftz Trial Functions Scaled by a Char-
acteristic Length

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
Cartesian coordinates xi identify material particles in the solid. σi j,εi j,ui are Carte-
sian components of the stress tensor, strain tensor and displacement vector respec-
tively. fi,ui, t i are Cartesian components of the prescribed body force, boundary
displacement and boundary traction vector. Su,St are displacement boundary and
traction boundary of the domain Ω. We use (),ito denote differentiation with respect
to xi. The equations of linear & angular momentum balance, constitutive equations,
compatibility equations, and boundary conditions can be written as:

σi j, j + f i = 0 in Ω (1)

σi j = σ ji in Ω (2)

σi j = Ei jklεkl (or εi j = Ci jklσkl) in Ω for a linear elastic solid (3)

εi j =
1
2

(ui, j +u j,i)≡ u(i, j) in Ω (4)

ui = ūi at Su (5)

n jσi j = t i at St (6)
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Moreover, when the domain Ω is discretized into elements Ωm with element bound-
ary ∂Ωm, each element boundary can be divided into Sum,Stm,ρm, which are inter-
sections of ∂Ωm with Su,St and other element boundaries respectively. Then, in
addition to satisfying (1)(2)(3)(4) in each Ωm, satisfying (5)(6) at Sum,Stm, dis-
placement continuity and traction reciprocity conditions at each ρm should be con-
sidered:

u+
i = u−i at ρm (7)

(n jσi j)
+ +(n jσi j)

− = 0 at ρm (8)

In T-Trefftz elements derived in this study, we assume an interior displacement
field ui for each element, as well as an element boundary displacement field ũi, and
enforce the compatibility between ui and ũi using either a two-field boundary vari-
ational principle, or collocation, or the least squares method, as seen in Fig. 1. ui is
assumed as a linear combination of T-Trefftz modes, which satisfy (1)(2)(3)(4) all
together. For plane stress or plane strain problems where body force are negligible,
these T-Trefftz modes can be generated by two complex potentials φ(z) and χ(z),
see [Muskhelishvil (1954), Timoshenko and Goodier (1970)]:

u1(z) = Re
[
κφ(z)− zφ ′(z)−χ ′(z)

]
/2G

u2(z) = Im
[
κφ(z)− zφ ′(z)−χ ′(z)

]
/2G

(9)

In (9), z = x1 + ix2 with i =
√
−1. Re[] and Im[] denote the real and imaginary part

of a complex variable. G and κ are defined as:

κ =

{
3−4v for plane strain problems
(3− v)/(1+ v) for plane stress problems

G =
E

2(1+ v)

(10)

where E,v are the Young’s modulus and Poisson ratio respectively.

For ease of numerical implementation, a set of polynomial functions φ(z) and χ ′(z)
are of particular interest:

φ(z) =
∞

∑
n=0

(
iα1

n +α
2
n
)
zn

χ
′(z) =

∞

∑
n=0

(
iα3

n +α
4
n
)
zn

(11)
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In (9), 1 2z x ix   with 1i   . Re[] and Im[]denote the real and imaginary part of a 

complex variable. G  and   are defined as: 
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Figure 1: The concept of characteristic length

However, similar to what is frequently encountered in T-Trefftz methods, a system
of ill-conditioned equations is to be solved in order to enforce the compatibility
between ui and ũi. This is because of the exponential growth of the term zn with
respect to the order n. [Liu (2007a, 2007b)] introduced the concept of character-
istic length to scale the T-Trefftz modes for Laplace equations. Since this con-
cept successfully resolved the ill-conditioned nature of Trefftz method for Laplace
equations, it is also applied in this study, in the context of plane stress/strain solid
mechanics.

Consider an arbitrary element as shown in Fig. 1. The coordinates of the nodes are
(xk

1,x
k
2),k = 1,2...,N. A local Cartesian coordinate system with the polygon center

(xc
1,x

c
2) as origin, is denoted as x̂1− x̂2. x̂1, x̂2 are defined as:

x̂1 = (x1− xc
1)/Rc

x̂2 = (x2− xc
2)/Rc

with Rc = max
k

√
(xk

1− xc
1)2 +(xk

2− xc
2)2 k = 1,2...,N

(12)

so that the T-Trefftz modes are scaled as:

u1(ẑ) = Re
[
κφ(ẑ)− zφ ′(ẑ)−χ ′(ẑ)

]
/2G

u2(ẑ) = Im
[
κφ(ẑ)− zφ ′(ẑ)−χ ′(ẑ)

]
/2G

with ẑ = x̂1 + ix̂2

(13)

where φ(ẑ) and χ ′(ẑ) have the same form as φ(z) and χ ′(z) defined in (11).
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By adopting such a characteristic length Rc scaled local T-complete functions, |ẑn|
is confined between 0 and 1 for any point within the element or along element
boundaries. Therefore the resulting systems of equations are well-conditioned, and
can be easily solved without using any further regularization techniques.

For a specific n, taking one of α1
n ,α2

n ,α3
n ,α4

n to be 1, and the others to be 0,
we obtain different T-Trefftz modes which are nth order polynomials, denoted as
T1

n,T2
n,T3

n,T4
n:

2GT1
n =

{
ReZ1

n
ImZ1

n

}
with Z1

n = iκ ẑn + inẑẑn−1

2GT2
n =

{
ReZ2

n
ImZ2

n

}
with Z2

n = κ ẑn−nẑ ¯̂zn−1

2GT3
n =

{
ReZ3

n
ImZ3

n

}
with Z3

n = i ¯̂zn

2GT4
n =

{
ReZ4

n
ImZ4

n

}
with Z4

n =− ¯̂zn

(14)

For convenience of illustration, we still use x1,x2,z in the rest of this paper, instead
of using x̂1, x̂2, ẑ, to denote the T-Trefftz modes, implying that a characteristic length
Rc is already used for each element to scale the T-Trefftz modes.

We should point out that, for n = 0, T1
0,T3

0 both represent the rigid-body transla-
tional mode in the direction x2, while T2

0,T4
0 both represent the rigid-body transla-

tional mode in the direction x1. For n = 1, T1
1 represent the rigid-body rotational

mode in the plane x1−x2. All other modes are independent non-rigid-body modes.
In addition, if one assumes ui to be a linear combination of the first m indepen-
dent T-Trefftz modes, such a displacement field is rotationally invariant if m is
an even number. For example, if one assume ui to be a linear combination of
T 3

0 ,T 4
0 ,T 1

1 ,T 2
1 , ...,T 5

2 ,T 6
2 , such an assumption is rotationally invariant. On the other

hand, if one assume ui to be a linear combination of T 3
0 ,T 4

0 ,T 1
1 ,T 2

1 , ...,T 5
2 , such an

assumption is not rotationally invariant.

It should be noted that, introducing the characteristic length Rcmay not have sig-
nificant advantages for four-node quadrilateral elements. But for higher-order ele-
ments and VCFEMs with large number of nodes, scaling T-Trefftz modes with the
characteristic length Rc is almost necessary, because much higher order T-Trefftz
modes are needed.
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We should point out that, for 0n  , 
1 3
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1
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Figure 2: Four-node quadrilateral element: (a) Cartesian coordinates (b) curvilinear
(non-dimensional) coordinates

3 T-Trefftz Four-Node Quadrilateral Elements with/without Drilling Degrees
of Freedom

3.1 Elements without Drilling Degrees of Freedom

Consider a four-node quadrilateral element as seen in Fig. 2. Some points are
marked for convenience of illustration, including: center point (which is also the
point for a one-point Gauss integration) 0; nodal points 1, 2, 3, 4; edge midpoints 5,
6, 7, 8; 2 by 2 Gaussian integration points 9, 10, 11, 12; 1 by 2 Gaussian integration
points 13, 15; 2 by 1 Gaussian integration points 14, 16.

The element boundary displacement field ũi is assumed as a linear field along each
edge, and can be extrapolated to the whole element domain as:

xi = x(1)
i N(1)(ξ γ)+ x(2)

i N(2)(ξ γ)+ x(3)
i N(3)(ξ γ)+ x(4)

i N(4)(ξ γ) (15)

ũi = ũ(1)
i N(1)(ξ γ)+ ũ(2)

i N(2)(ξ γ)+ ũ(3)
i N(3)(ξ γ)+ ũ(4)

i N(4)(ξ γ) (16)

which is the assumed displacement field of a four-node isoparametric quadrilateral
element, with:

N(1) = (1−ξ
1)(1−ξ

1)/4

N(2) = (1+ξ
1)(1−ξ

1)/4

N(3) = (1+ξ
1)(1+ξ

1)/4

N(4) = (1+ξ
1)(1−ξ

1)/4

(17)
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It is well known that such a displacement field includes five non-rigid-body modes:
two extensional modes, two bending modes, and a shear mode. However, the shear
mode is locked with the two bending modes, therefore (16) cannot represent pure
bending modes. In order to develop T-Trefftz elements which avoid locking, we
independently assume an uncoupled element interior displacement field :{

u1 u2
}T = α6T3

0 +α7T4
0 +α8T1

1

+α1
(
T2

1−2T4
1
)
/4+α2

(
T2

1 +2T4
1
)
/4+α3T3

1

+α4
(
T3

2−T1
2
)
/8+α5

(
T2

2 +T4
2
)
/8

(18)

This leads to a stress field:
σ11
σ22
σ12

=


α1 +α4x2
α2 +α5x1

α3

=

1 0 0 x2 0
0 1 0 0 x1
0 0 1 0 0

ααα (19)

It can be clearly seen from (18)(19) that, α1,α2 represent the two constant exten-
sional modes, α3 represents the constant shear mode, α4,α5 represent the two pure
bending modes, and α6,α7,α8 represent the three rigid-body modes.

Adopting matrix and vector notation, we have:

u = Nααα in Ωm

εεε = Bq in Ωm

σσσ = Dεεε = Sααα in Ωm

t = nσσσ = Rααα at ∂Ωm

ũ = Ñq in Ωm

ε̃εε = B̃q in Ωm

σ̃σσ = Dε̃εε = S̃ααα in Ωm

t̃ = nσ̃σσ = R̃ααα at ∂Ωm

(20)

There are several ways of relating ααα to q, which lead to different T-Trefftz fi-
nite elements. Firstly, one can relate α1 −α5 to the vector q using a two-field
variational principle—the boundary variational principle, see [Atluri and Grannell
(1978)] (α6−α8 should be eliminated from (18) when using this method because
they do not contribute to the strain energy stored in the element). Such a two-field
variational principle states that, given an element interior ui satisfying (1)(2)(3)(4)
a priori, an continuous inter-element ũi satisfying (5), conditions (6)(7)(8) can be
derived from stationarity conditions of the following functional:

π1(ui, ũi) = ∑
m

{∫
Ωm

1
2

tiuidΩ−
∫

∂Ωm

tiũidS +
∫

Stm

t iũidS
}

(21)
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where ti is derived from ui:

ti = n jEi jklu(k,l) (22)

The stationarity conditions of (21) can be seen to be only on element and global
boundaries:

n jEi jklu(k,l) = t i at Stm

u+
i = u−i = ũi at ρm(
n jEi jklu(k,l)

)+ +
(
n jEi jklu(k,l)

)− = 0 at ρm

(23)

Substituting assumed ui, ũi into the boundary variational principle (21), we have:

δπ1(ααα,q) = 0

= δ ∑
m

(
1
2

ααα
T Hααα−qT GT

ααα +qT Q
)

= ∑
m

(
δααα

T Hααα−δqT GT
ααα−δααα

T Gq+δqT Q
)

G =
∫

∂Ωm
RT ÑdS =

∫
Ωm

ST B̃dS

H =
∫

∂Ωm
RT NdS =

∫
Ωm

ST D−1ST dΩ

Q =
∫

Stm
ÑT tdS

(24)

This leads to:

δααα
T Hααα = δααα

T Gq (25)

δqT GT
ααα−δqT Q = 0 (26)

And the finite element equations are:

∑
m

(
δqT Kq−δqT Q

)
= ∑

m

(
δqT GT H−1Gq−δqT Q

)
= 0 (27)

We denote the elements derived this way as Q4-TT-BVP (boundary variational
principle). From a weighted-residual point of view, in Q4-TT-BVP, ααα are related
to q by enforcing the compatibility of ui and ũi in a weak sense using test function
δ t = Rδααα . However, this clearly involves Lagrangian multipliers and therefore
Q4-TT-BVP suffers from LBB conditions, which are almost impossible to be sat-
isfied a priori.
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We also point out that, although derived from different approaches, it can be shown
that the stiffness matrix of Q4-TT-BVP is the same as the hybrid stress element
developed in [Pian 1964], using (19) as the independent stress field assumption. In
this study, we denote the hybrid stress element presented in [Pian (1964)] as Q4-
HS-PCE (the principle of complementary energy). For a long time, Q4-HS-PCE is
considered to be able to satisfy LBB conditions, because the element stiffness ma-
trix of Q4-HS-PCE for a square element is rank-sufficient [Pian and Chen (1983)].
This, however, does not hold for arbitrary distorted element. In section 5, we will
give an example where both Q4-TT-BVP and Q4-HS-PCE generate the same rank-
deficient matrices.

In order to avoid LBB conditions, [Dong and Atluri (2011)] proposed to enforce
the independent assumed fields in a strong sense at several pre-selected collocation
points, and thus relate the independently assumed field to nodal displacements.
For this particular problem, because ũi can be extrapolated to the whole element
domain, there are at least two ways of relating ααα to q using the collocation method.
Firstly, we can enforce the compatibility between ui and ũi at four nodes x(k)

i ,k =
1,2,3,4. This leads to:

ui(x
(k)
i ,ααα) = ũi(x

(k)
i ,q), k = 1,2,3,4 (28)

We denote this as Q4-TT-C1.

We can also enforce the compatibility of the stress fields derived from ui and ũi

respectively, say σi j and σ̃i j, at several preselected collocation points, (α6−α8
should be eliminated in this case). For example, use the 1 by 2 Gaussian integration
points x(13)

i ,x(15)
i as collocation points forσ11, 2 by 1 Gaussian integration points

x(14)
i ,x(16)

i as collocation points for σ22, and x(0)
i the point for one-point Gaussian

integration as the collocation point for σ12, we obtain five equations for solving
α1−α5 (α6−α8 should be eliminated from (18) in this case):

σ11(x
(k)
i ,ααα) = σ̃11(x

(k)
i ,q), k = 13,15

σ22(x
(k)
i ,ααα) = σ̃22(x

(k)
i ,q), k = 14,16

σ12(x
(k)
i ,ααα) = σ̃12(x

(k)
i ,q), k = 0

(29)

We denote this as Q4-TT-C2.

Using either (28) or (29), we can obtain:

ααα = Cq (30)

In this case, ui already satisfy (1)(2)(3)(4), and are related to ũi using collocation
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method which satisfy (5)(7), conditions (6)(8) can be derived from:

π2(ui) = ∑
m

{∫
Ωm

1
2

tiuidΩ−
∫

Stm

t iuidS
}

(31)

which leads to Euler-Lagrange equations:

n jEi jklu(k,l) = t i at Stm(
n jEi jklu(k,l)

)+ +
(
n jEi jklu(k,l)

)− = 0 at ρm
(32)

Substituting ui into (31) , we obtain finite element equations for Q4-TT-C1,2:

∑
m

(
δqT Kq−δqT Q

)
= ∑

m

(
δqT CT HCq−δqT Q

)
= 0 (33)

Finally, when the number of collocation points is increased to a limit of infinity, it
is equivalent to enforcing the compatibility between ui and ũi, or σi j and σ̃i j using
the least squares method, namely minimizing one of the following functionals:

e1(ααα,q) =
∫

∂Ωm

(ui− ũi)(ui− ũi)dS

=
∫

∂Ωm

(
ααα

T NT Nααα−2ααα
T NT Ñq+qT ÑT Ñq

)
dS

= ααα
T U1ααα−2ααα

T V1q+qT W1q

(34)

e2(ααα,q) =
∫

∂Ωm

(σi j− σ̃i j)(σi j− σ̃i j)dS

=
∫

∂Ωm

(
ααα

T ST Sααα−2ααα
T ST S̃q+qT S̃T S̃q

)
dS

= ααα
T U2ααα−2ααα

T V2q+qT W2q

(35)

Parameters α6−α8 should be eliminated when e2 is used because they do not con-
tribute to σi j.

To minimize e1 or e2 for a fixed q, we have:

ααα = Lq (36)

Substituting ui into (31), we obtain finite element equations:

∑
m

(
δqT Kq−δqT Q

)
= ∑

m

(
δqT LT HLq−δqT Q

)
= 0 (37)

We denote elements developed this way as Q4-TT-LS1 and Q4-TT-LS2 (least squares).
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Because Q4-TT-C1,2 and Q4-TT-LS1,2 do not involve Lagrangian multipliers,
these elements do not suffer from LBB conditions. Considering that it is almost
impossible to satisfy LBB conditions a priori for arbitrarily distorted elements, we
consider this as a significant advantage of Q4-TT -C1,2 and Q4-TT-LS1,2 over
Q4-TT-BVP, as well as Q4-HS-PCE.

Moreover, in addition to the integration along the element boundary to find H,
Q4-TT-BVP requires integration of G along the element boundary, and Q4-TT-LS
requires integration of both U1 and V1 (or U2 and V2) along the element boundary.
On the other hand, the only integration involved in the development of stiffness
matrix of Q4-TT-C1,2 is the evaluation of H. Therefore, Q4-TT-C1,2 are expected
to be computationally the most efficient among these elements.

3.2 Elements with Four Drilling Degrees of Freedom

Including drilling DOFs in finite elements has been extensively studied. One major
reason is that, it demonstrates significant advantages to combine a plate bending
element with a membrane element with drilling DOFs to model plates/shells.

There are mainly two approaches of introducing drilling DOFs in membrane ele-
ments. One is to simply relate the displacement field of the element with drilling
DOFs to a higher-order element, and use the principle of minimum potential en-
ergy to derive finite element equations, see [Allman (1984)]. For example, one
can develop a four-node quadrilateral element with drillings DOFs, by relating its
displacement field to that of an eight-node quadrilateral element. In spite of its sim-
plicity, Allman’s type of element has several disadvantages: one has to play special
tricks to eliminate kinematic modes for each element; the rotation field is not true
rotation, etc.

Another approach is developed by [Iura and Atluri (1992)]. In this approach, the
displacement field and the rotation field in each element are both assumed, and the
finite element equations can be developed using a variational principle involving
both the displacement and rotation fields. Using this approach, elements which
display no kinematic modes, and have true rotation field can be developed. The
convergence of the finite element solutions using this approach is also proved in
[Hughes and Brezzi (1989)]. This approach is also extended to develop elements
with drilling DOFs and independently assumed asymmetric stress field in [Caz-
zani and Atluri (1993)]. In this study, we develop T-Trefftz elements with drilling
DOFs using the approach developed by [Iura and Atluri (1992); Cazzani and Atluri
(1993)].

Firstly, we present the displacement-type variational principle derived in [Iura and



82 Copyright © 2011 Tech Science Press CMES, vol.81, no.1, pp.69-118, 2011

Atluri (1992); Cazzani and Atluri (1993)]:

π3(ui,θi) = ∑
m

{∫
Ωm

[
1
2

Ei jklu(i, j)u(k,l)− f̄iui

]
dΩ−

∫
Stm

t̄iuidS
}

+
∫

Ωm

α

2

(
θi j +

1
2

u j,i−
1
2

ui, j

)(
θi j +

1
2

u j,i−
1
2

ui, j

)
dΩ

(38)

α is a user-defined parameter which should be strictly positive. In [Iura and Atluri
(1992); Cazzani and Atluri (1993)], it was shown that solutions are insensitive to
α . In this study, we use α = G.

The stationarity conditions of (38) are:(
Ei jklu(k,l)

)
, j + f̄i = 0 in Ωm

α

2

(
θi j +

1
2

u j,i−
1
2

ui, j

)
= 0 in Ωm

n jEi jklu(k,l) = t i at Stm

u+
i = u−i at ρm(
n jEi jklu(k,l)

)+ +
(
n jEi jklu(k,l)

)− = 0 at ρm

(39)

The second equation in (39) can be considered as the definition of θi j, the rota-
tion in plane xi− x j, which satisfies θi j = −θ ji. For two-dimensional problem,
only one rotation is to be considered, i.e. θ = θ12 = −θ21. Alternatively, this
can also be interpreted as the condition of angular momentum balance, where
si j = α

(
θi j + 1

2 u j,i− 1
2 ui, j

)
can be considered as the anti-symmetric portion of a

priori asymmetric stress tensor t∗i j, such that:

t∗i j = σi j + si j;

σi j = σ ji;

si j =−s ji

(40)

Therefore, this displacement-type variational principle was also naturally extended
by [Iura and Atluri (1992); Cazzani and Atluri (1993)] to accommodate indepen-
dently assumed asymmetric stress field t∗i j (equivalent to assumed σi j and si j), lead-
ing to a Ressiner-type variational principle:

π4(t∗i j,ui,θi) =∑
m

{∫
Ωm

[
σi ju(i, j)−

1
2

Ci jklσi jσkl− f̄iui

]
dΩ−

∫
Stm

t̄iuidS
}

+∑
m

{∫
Ωm

[
si j

(
θi j +

1
2

u j,i−
1
2

ui, j

)
− 1

2α
si jsi j

]
dΩ

} (41)
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which leads to Euler-Lagrange equations:[
Ei jklu(k,l)

]
, j + f̄i = 0 in Ωm

α

2

(
θi j +

1
2

u j,i−
1
2

ui, j

)
= 0 in Ωm

n jEi jklu(k,l) = t i at Stm

u+
i = u−i = ũi at ρm(
n jEi jklu(k,l)

)+ +
(
n jEi jklu(k,l)

)− = 0 at ρm

(42)

Similar to (21), we consider an element interior ui satisfying (1)(2)(3)(4) a priori,
an inter-element compatible ũi satisfying (5), as well as an independently assumed
rotation field θi j, a boundary variational principle involving both displacement and
rotation field can also be derived:

π5(ui, ũi,θi j) =−∑
m

{∫
Ωm

1
2

tiuidΩ−
∫

∂Ωm

tiũidS +
∫

Stm

t iũidS
}

+
∫

Ωm

α

2

(
θi j +

1
2

u j,i−
1
2

ui, j

)(
θi j +

1
2

u j,i−
1
2

ui, j

)
dΩ

(43)

which leads to Euler-Lagrange equations:

α

2

(
θi j +

1
2

u j,i−
1
2

ui, j

)
= 0 in Ωm

n jEi jklu(k,l) = t i at Stm

u+
i = u−i = ũi at ρm(
n jEi jklu(k,l)

)+ +
(
n jEi jklu(k,l)

)− = 0 at ρm

(44)

Because (43) clearly involves Lagrangian multipliers, T-Trefftz elements with drilling
DOFs developed using (43) are plagued by LBB conditions. However, (38) does
not involve any Lagrangian multiplier. Similar to Q4-TT-C1,2 and Q4-TT-LS1,2,
elements without involving LBB conditions can be developed by enforcing the
compatibility of independently assumed displacement fields using collocation or
the least squares method, and substituting the displacement and rotation fields in to
variational principle (38).

Now we develop four-node quadrilateral elements with drilling DOFs using (38) or
(43). From these two variational principles, we can see that θ does not need to be
continuous over Ω, and can be assumed to be independent in each element. If this is
the case, drilling DOFs can be eliminated locally using static condensation. How-
ever, in engineering applications where drilling DOFs are needed (for example,
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when modeling plates/shells), it is usually desirable to preserve the drilling DOFs
at each node. Therefore, in this study, we assume drilling DOFs to be continuous
over Ω:

θ = θ
(1)N(1)(ξ γ)+θ

(2)N(2)(ξ γ)+θ
(3)N(3)(ξ γ)+θ

(4)N(4)(ξ γ) (45)

To make the element with drilling DOFs to present a similar property of an 8-node
quadrilateral element, we assume ũi to be Allman-type of displacement field.

ũi = ũ(1)
i N(1)(ξ γ)+ ũ(2)

i N(2)(ξ γ)+ ũ(3)
i N(3)(ξ γ)+ ũ(4)

i N(4)(ξ γ)

+θ
(1)M(1)

i (ξ γ)+θ
(2)M(2)

i (ξ γ)+θ
(3)M(3)

i (ξ γ)+θ
(4)M(4)

i (ξ γ)
(46)

where shape function for θ (k) are defined by relating them to the shape functions
of the 8-node quadrilateral element:{

M(k)
1

M(k)
2

}
=

1
8

{
−x(k+1)

2 + x(k)
2

x(k+1)
1 − x(k)

1

}
NS(k)− 1

8

{
−x(k)

2 + x(k−1)
2

x(k)
1 − x(k−1)

1

}
NS(k−1) (47)

NS(k) is the nodal shape function of the mid-edge node right after node k in a 8-
node quadrilateral element, and NS(k−1) is the shape function of the mid-edge node
right before node k. For example, NS(1) should be the nodal shape function of node
5 in an 8-node quadrilateral element as in Fig. 2, i.e.:

NS(1) =
[
1−
(
ξ

1)2
](

1−ξ
2)/2

NS(2) =
[
1−
(
ξ

2)2
](

1+ξ
1)/2

NS(3) =
[
1−
(
ξ

1)2
](

1+ξ
2)/2

NS(4) =
[
1−
(
ξ

2)2
](

1−ξ
1)/2

(48)

In vector and matrix notation, we have:

ũ = Ñqq+ Ñθθθθθθ in Ωm

ε̃εε = B̃qq+ B̃θθθθθθ in Ωm

σ̃σσ = Dε̃εε = S̃qq+ S̃θθθθθθ in Ωm

t̃ = ñσ̃σσ = R̃qq+ R̃θθθθθθ at ∂Ωm

θ +
1
2

ũ1,2−
1
2

ũ2,1 = Eqq+Eθθθθθθ in Ωm

(49)
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If we substitute the assumed ũi,θi into the displacement-type variational principle
(38) with drilling DOFs, finite element equations can be obtained:

∑
m

δ

{
q
θθθ

}T ([ kqq+Kqq kqθθθ +Kqθθθ

kT
qθθθ

+KT
qθθθ

kT
qθθθ

+Kθθ

]{
q
θθθ

}
−
{

Qq
Qθ

})
= 0 (50)

where

Kqq =
∫

Ωm

B̃T
q DB̃qdΩ

Kqθθθ =
∫

Ωm

B̃T
q DB̃θθθ dΩ

Kθθθθθθ =
∫

Ωm

B̃T
θθθ DB̃θθθ dΩ

kqq =
α

2

∫
Ωm

ET
q EqdΩ

kqθθθ =
α

2

∫
Ωm

ET
q Eθθθ dΩ

kθθ =
α

2

∫
Ωm

ET
θ Eθθθ dΩ

Qq =
∫

Ωm

ÑT
q t̄dΩ

Qθ =
∫

Ωm

ÑT
θθθ t̄dΩ

(51)

We denote this element as Q4-D4.

To extend this element to accommodate an independently assumed T-Trefftz type
of ui, at least nine non-rigid-body T-Trefftz modes should be selected. However, in
this case, there is no way to assume an uncoupled interior displacement field as in
T-Trefftz elements, without drilling DOFs, derived in section 3.1. In this study, we
assume the interior displacement field as:{

u1 u2
}T = α10T3

0 +α11T4
0 +α12T1

1

+α1T2
1 +α2T3

1 +α3T4
1

+α4T1
2 +α5T2

2 +α6T3
2 +α7T4

2

+α8T1
3 +α9T2

3

(52)

where α1−α9 represents non-rigid-body modes and α10−α12 represents the 3
rigid-body modes.
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Using matrix and vector notation, we have:

u = Nααα in Ωm

εεε = Bq in Ωm

σσσ = Dεεε = Sααα in Ωm

t = nσσσ = Rααα at ∂Ωm

(53)

Again, similar to Q4-TT-BVP, Q4-TT-C1,2, and Q4-TT-LS1,2, finite element equa-
tions can be developed using the following methods:

1. Substitute the assumed ui, ũi,θ into variational principle (43) (α10−α12 should
be eliminated in this case). We denote this element as Q4-D4-TT-BVP. The finite
element equations of Q4-D4-TT-BVP are still in the same form of (50), by only
changing the portion of stiffness matrix that is not related to α:

∑
m

δ

{
q
θθθ

}T ([ kqq+Kqq kqθθθ +Kqθθθ

kT
qθθθ

+KT
qθθθ

kT
qθθθ

+Kθθ

]{
q
θθθ

}
−
{

Qq
Qθ

})
= 0[

Kqq Kqθθθ

KT
qθθθ

Kθθ

]
= GT H−1G

G =
∫

∂Ωm
RT [Ñq Ñθθθ

]
dS =

∫
Ωm

ST [B̃q B̃θθθ

]
dS

H =
∫

∂Ωm
RT NdS =

∫
Ωm

ST D−1ST dΩ

(54)

Q4-D4-TT-BVP are clearly plagued by LBB conditions.

2. Enforce the compatibility of ui & ũi or σi j & σ̃i j by collocation, and substitute
ui,θ to variational principle (38). We denote these two types of element as Q4-D4-
TT-C1,2. Collocation points are selected in such a way:

• For Q4-D4-TT-C1, we collocate ui at four nodal points 1, 2, 3, 4, and mid-
edge points 5, 6, 7, 8.

• For Q4-D4-TT-C2, we collocate σi j at 2 by 2 Gaussian integration points 9,
10 ,11, 12, as well as the centroid 0, (α10−α12 should be eliminated in this
case).

In either way, ααα are related to q, and the finite element equations are:

∑
m

δ

{
q
θθθ

}T ([ kqq+Kqq kqθθθ +Kqθθθ

kT
qθθθ

+KT
qθθθ

kT
qθθθ

+Kθθ

]{
q
θθθ

}
−
{

Qq
Qθ

})
= 0[

Kqq Kqθθθ

KT
qθθθ

Kθθ

]
= [
[
Cq Cθθθ

]
]T H[

[
Cq Cθθθ

]
]

ααα = Cqq+Cθθθθθθ obtained by collocation

(55)
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3. Enforce the compatibility of ui & ũi or σi j & σ̃i j by the least squares method,
minimize the functional in (34) or (35), relate ui to nodal displacement vector q, and
substitute ui,θ to variational principle (38). We denote these two types of elements
as denoted as Q4-D4-TT-LS1,2. α10−α12 should be eliminated when e2 is used.

In either way, ααα are related to q, and the finite element equations are modified as:

∑
m

δ

{
q
θθθ

}T ([ kqq+Kqq kqθθθ +Kqθθθ

kT
qθθθ

+KT
qθθθ

kT
qθθθ

+Kθθ

]{
q
θθθ

}
−
{

Qq
Qθ

})
= 0[

Kqq Kqθθθ

KT
qθθθ

Kθθ

]
=
[
Lq Lθθθ

]T H
[
Lq Lθθθ

]
ααα = Lqq+Lθθθθθθ obtained by the least square method

(56)

3.3 Remarks on Patch Test and Element Invariance

In [Dong and Atluri (2011)], it was pointed out that for hybrid/mixed elements
developed using multi-field variational principles, the patch test can be passed if
the assumed fields include constant strain modes and satisfy LBB conditions. For
elements developed using collocation method or the least squares method, on the
other hand, another condition is required to be satisfied:

∑
m

∫
Ωm

εi j(ξ γk,ααα)dΩ = ∑
m

∫
Ωm

ε̃i j(ξ γk,q)dΩ ∀ ααα = Cq ( or ααα = Lq) (57)

or equivalently:

∑
m

∫
Ωm

σi j(ξ γk,ααα)dΩ = ∑
m

∫
Ωm

σ̃i j(ξ γk,q)dΩ ∀ ααα = Cq ( or ααα = Lq) (58)

Therefore, it can be expected that TT-BVP can always pass the patch test, if the
element stiffness matrix is rank-sufficient. TT-LS2 and TT-C2 would pass the patch
test or give very small errors. However, the errors in the patch test for TT-C1 and
TT-LS1 would be relatively large. Such an expectation is verified by numerical
experiments in section 5.

In addition, since we always use incomplete T-Trefftz modes for these four-node
quadrilateral elements, invariance is not ensured if element stiffness matrices are
developed in the global Cartesian coordinate system x1− x2. However, element
invariance can be ensured by developing stiffness matrices in a local element-fixed
coordinate system and transferring it back to the global Cartesian coordinate sys-
tem. In this study, the following local Cartesian coordinate system x̄1− x̄2 is se-
lected. ē1 is in the same direction of g1, the covariant base vector evaluated at point
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0, and ē2 is obtained by rotating ē1 with respect to e3 counterclockwise 90˚. Ele-
ment stiffness matrices are developed in this local coordinate system x̄1− x̄2, and
transferred back to the global Cartesian coordinate system x1−x2. Developed using
such an approach, all the elements of TT-BVP, TT-C1,2, TT-LS1,2 are all ensured
to be invariant.

4 T-Trefftz Voronoi Cell Finite Elements

[Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)] proposed the idea of
discretizing the solution domain using Dirichlet tessellation, and developing corre-
sponding Voronoi cell finite elements (VCFEM)/polygonal finite elements to solve
problems of micromechanics of materials. However, the underlying theoretical
foundation of the VCFEM proposed by [Ghosh and Mallett (1994); Ghosh, Lee
and Moorthy (1995)] is the modified principle of minimum complementary energy,
based on “a priori equilibrated” stress field σi jinside each element, and an inter-
element compatible displacement field ũi along the element boundary, see (59).

π6(σi j,ui) = ∑
m

{∫
Ωm

1
2

Ci jklσi jσkldΩ−
∫

∂Ωm

tiuidS +
∫

Stm

t iuidS
}

(59)

Stress modes derived from the Airy stress functions were proposed to be used as
the assumed σi j. For example, the first 12 modes are:0 0 1 0 0 x1 x2 0 0 x2

1 2x1x2 x2
2

1 0 0 x1 x2 0 0 x2
1 2x1x2 x2

2 0 0
0 1 0 0 −x1 −x2 0 0 −x2

1 −2x1x2 −y2 0


And the 13-18 modes are: 0 0 x3

1 3x2
1x2 3x1x2

2 x3
2

x3
1 3x2

1x2 3x1x2
2 x3

2 0 0
0 −x3

1 −3x2
1x2 −3x1x2

2 −x3
2 0


A necessary condition of the LBB conditions is to select enough stress modes. A
frequently used scheme for this type of element is that: for n ≤ 5, use the first 7
modes; for n≤ 7, use the first 12 modes; and for 8≤ n≤ 10 use the first 18 modes.

Derived using this two-field variational principle, this type of VCFEM is similar
to the hybrid stress elements developed in [Pian (1964)]. In this study, we denote
this type of elements as VCFEM-HS-PCE. Because VCFEM-HS-PCE requires nu-
merical integrations for evaluating two matrices (one over the domain, one along
the boundary) as well as inverting one, computing the stiffness matrices for each
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element is highly inefficient. In addition, Lagrangian multipliers involved in such
a two-field variational principle make the derived elements suffer from LBB con-
ditions, which are almost impossible to be satisfied a priori.

In this section, we derive T-Trefftz VCFEMs for micromechanical analysis of het-
erogeneous materials. A linear displacement ũi along each edge and an interior
displacement field ui are independently assumed. For an arbitrary polygonal ele-
ment as in Fig. 3 with corresponding nodal displacements u(1)

i ,u(2)
i , ...,u(n)

i , a linear
displacement field along each edge is assumed as:

ũi =
n

∑
k=1

Ñ(k)(x)u(k)
i at ∂Ωm assumed linear along each edge (60)

 
( ) ( )

1

( )      at    assumed linear along each edge
n

k k

i i m

k

u = N u


 x  (60) 

 

Figure 3: A two-dimensional Voronoi cell finite element 

In order to formulate invariant and well-performing elements, an interior displacement 

field is assumed as a linear combination of the first m  T-Trefftz modes derived in 

section 2, which are complete to a certain order p : 

   3 4 1 3 4

1 2 0 1 0 2 1 3+ +T +...+      in 
T

p p m mu u =     T T T T   (61) 

Obviously, 4 2 2m p n   . iu  includes three rigid-body modes 
3 4 1

0 0 1, ,T T T  and 4 1p   

non-rigid-body modes. Such an assumption is rotationally invariant itself, so no element-

fixed coordinate system is needed to be define in contrast to qudrilateral elements derived 

in section 3. 

Adopting matrix and vector notation, we have: 

 

     in  

     in 

     in  

     at 

    in 

m

m

m

m

m

 

 

  

  

 

u Nα

ε Bq

σ Dε Sα

t nσ Rα

u Nq

      (62) 

Similar to the four-node quadrilateral element, there are at least three ways of relating α  

to q : using the two-field boundary variational principle, or collocation, or the least 

squares method. However, because ij  are not defined inside m  unlike the four-node 

quadrilateral element, one cannot enforce the compatibility of ij  and ij  using 

collocation or the least squares method. Therefore, we have the following three 

approaches of developing T-Trefftz VCFEMs. 

Figure 3: A two-dimensional Voronoi cell finite element

In order to formulate invariant and well-performing elements, an interior displace-
ment field is assumed as a linear combination of the first m T-Trefftz modes derived
in section 2, which are complete to a certain order p:

{
u1 u2

}T = T3
0α1 + T4

0α2 + T1
1α3 + ... + T3

p +T4
pαm in Ωm (61)

Obviously, m = 4p + 2 ≥ 2n. ui includes three rigid-body modes T 3
0 ,T 4

0 ,T 1
1 and

4p−1 non-rigid-body modes. Such an assumption is rotationally invariant itself, so
no element-fixed coordinate system is needed to be define in contrast to qudrilateral
elements derived in section 3.
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Adopting matrix and vector notation, we have:

u = Nααα in Ωm

εεε = Bq in Ωm

σσσ = Dεεε = Sααα in Ωm

t = nσσσ = Rααα at ∂Ωm

ũ = Ñq in Ωm

(62)

Similar to the four-node quadrilateral element, there are at least three ways of relat-
ing ααα to q: using the two-field boundary variational principle, or collocation, or the
least squares method. However, because σ̃i j are not defined inside Ωm unlike the
four-node quadrilateral element, one cannot enforce the compatibility of σ̃i j and
σi j using collocation or the least squares method. Therefore, we have the following
three approaches of developing T-Trefftz VCFEMs.

Firstly, we can substitute assumed ui, ũi into the two-field boundary variational prin-
ciple (21). Finite element equations derived in this way are:

∑
m

(
δqT Kq−δqT Q

)
= ∑

m

(
δqT GT H−1Gq−δqT Q

)
= 0 (63)

where

G =
∫

∂Ωm
RT ÑdS

H =
∫

∂Ωm
RT NdS =

∫
Ωm

ST D−1ST dΩ

Q =
∫

Stm
ÑT tdS

(64)

From a weighted-residual point of view, using boundary variational principle (21),
ααα are related to q by enforcing the compatibility of ui and ũi using test function
δ t = Rδααα . Therefore, rigid-body modes T 3

0 ,T 4
0 ,T 1

1 should be eliminated from the
assumed ui.

We denote this type of VCFEM as VCFEM-TT-BVP. VCFEM-TT-BVP is clearly
plagued by LBB conditions.

Secondly, we can enforce the compatibility of ui and ũi at a set of preselected
collocation points x(k)

i ,k = 1,2...M along ∂Ωm, see Fig. 3. We obtain:

ui(x
(k)
i ,ααα) = ũi(x

(k)
i ,q), k = 1,2, ...,M (65)

Relating ααα to q by (65), and substituting ui to variational principle (31), we obtain:

ααα = Cq (66)
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∑
m

(
δqT Kq−δqT Q

)
= ∑

m

(
δqT CT HCq−δqT Q

)
= 0 (67)

We denote this type of element as VCFEM-TT-C.

Finally, when the number of collocation points is increased to a limit of infinity, it
is equivalent to enforce the compatibility between ui and ũiusing the least squares
method, namely minimizing the following functional:

e1(ααα,q) =
∫

∂Ωm

(ui− ũi)(ui− ũi)dS

=
∫

∂Ωm

(
ααα

T NT Nααα−2ααα
T NT Ñq+qT ÑT Ñq

)
dS

= ααα
T U1ααα−2ααα

T V1q+qT W1q

(68)

To minimize e1 for a fixed q, we have:

ααα = Lq (69)

Substituting ui into (31), we obtain finite element equations:

∑
m

(
δqT Kq−δqT Q

)
= ∑

m

(
δqT LT HLq−δqT Q

)
= 0 (70)

We denote this type of element as VCFEM-TT-LS.

Now that the formulations of all three types of VCFEM-TTs have been developed,
we should define m, the number of T-Trefftz modes that should be adopted. Since
we use T-Trefftz modes complete to a certain order, this is equivalent to define p, the
order that the T-Trefftz modes are complete to. In order to ensure rank-sufficiency,
obviously 4p− 1, the number of non-rigid body modes for ui should be equal or
larger than 2n− 3. Therefore, the least-order p to be used are

⌈2n−2
4

⌉
, where de

is the function to round a number up to a integer. This means, we use p = 2 for
n = 4,5, p = 3 for n = 6,7, p = 4 for n = 8,9.

However, it should be noted that 4p− 1 ≥ 2n− 3 is only a necessary condition of
LBB conditions. It cannot ensure that VCFEM-TT-BVP developed using the least-
order T-Trefftz modes are stable. In this study, we also try another larger number
for p, p =

⌈2n+2
4

⌉
. This is to use p = 3 for n = 4,5, p = 4 for n = 6,7, p = 5 for

n = 8,9.

For VCFEM-TT-C, one also needs to select the number of collocation points. In
order to ensure the number of collocation equations to be equal or larger than the
number of T-Trefftz modes, in this study, we collocate at the points for the two-
point Gauss quadrature along each edge. In this way, it is ensured that 2M ≥ m =
4p+2.
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5 Numerical Examples

We compare the performance of different elements by conducting numerical ex-
periments. In section 5.1, 5.2 and 5.3, we present numerical examples for four-
node quadrilateral elements without drilling DOFs, four-node quadrilateral ele-
ments with drilling DOFs, and VCFEMs respectively. All codes are programed
using MATLAB in a 64-bit WINDOWS operating system, and executed on a PC
computer equipped with Intel Q8300 2.5GHZ CPU, and 8G system memory.

5.1 Examples for Four-Node Quadrilateral Elements without Drilling DOFs

In this section, we compare the performances of the following elements:

• Q4: the primal four-node quadrilateral element without drilling DOFs.

• Q4-HE-C: (quad 4-hybrid strain-collocation), the element denoted as HMFEM2-
b in [Dong and Atluri (2011)], with independently assumed strain field εi j

and displacement field ũi, compatibility of εi j and ũ(i, j) enforced by colloca-
tion.

• Q4-TT-BVP: T-Trefftz four-node quadrilateral element, with independently
assumed boundary displacement field ũi and interior T-Trefftz type of dis-
placement field ui, compatibility of ui and ũi enforced by using the two-field
boundary variational principle (21). As mentioned in section 3.1, Q4-TT-
BVP has the same stiffness matrix of Q4-HS-PCE, the hybrid stress element
developed by [Pian (1964)].

• Q4-TT-C1: T-Trefftz four-node quadrilateral element, compatibility of ui and
ũi enforced by by collocation, finite element equations developed using vari-
ational principle (31).

• Q4-TT-C2: T-Trefftz four-node quadrilateral element, compatibility of σi j

and σ̃i j enforced by collocation.

• Q4-TT-LS1: T-Trefftz four-node quadrilateral element, compatibility of ui

and ũi enforced by using the least squares method.

• Q4-TT-LS2: T-Trefftz four-node quadrilateral element, compatibility of σi j

and σ̃i j enforced using the least squares method.

Firstly, we evaluate the eigenvalues of stiffness matrices of a square as well as
a distorted element, shown in Fig. 4. Plane stress case is considered. Material
properties are E = 1,v = 0.25, The coordinates of the square element in the orig-
inal global Cartesian coordinate system are (−1,−1),(1,−1),(1,1),(−1,1). The
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coordinates of the distorted element are (−1,−1),(1,−1),(2,1),(1,1). Then, the
stiffness matrices and their corresponding eigenvalues are computed again, in a
global Cartesian coordinate system obtained by rotating the original global Carte-
sian coordinate system with respect to e3 counterclockwise 45˚. As expected, these
eigenvalues do not change together with the change of global coordinate system,
and they are shown in Tab. 1 and Tab. 2.

From Tab.1 and Tab. 2, we can see that all the elements are rank-sufficient, ex-
cept for Q4-TT-BVP, which are plagued by LBB conditions. We mentioned that
in section 3.1, Q4-TT-BVP has the same stiffness matrix of Q4-HS-PCE, the hy-
brid stress element used in [Pian (1964)] and many more studies afterwards. This
element has been mistakenly thought to be able to satisfy LBB conditions, simply
because the stiffness matrix of a square element is rank-sufficient. However, from
Tab. 2, it is clear that rank-sufficiency is not ensured for an arbitrarily-distorted el-
ement. To the best of the authors’ knowledge, there is no rational way of satisfying
LBB conditions a priori for arbitrarily distorted element. This is why we develop
hybrid/mixed elements without involving LBB conditions, such as Q4-HE-C, Q4-
TT-C1,2, Q4-TT-LS1,2.

The CPU time used to compute the stiffness matrices of the distorted element is
also shown in Tab. 3, normalized to that of the Q4 element. It can be seen that
Q4-HE-C is computationally the most efficient.

 

Figure 4: A square and a distorted element for eigenvalue analysis 

We also conduct the so-called one-element constant-strain patch test. Plane stress case is 

considered. The material parameters are taken as 1.0E   and 0.25v  . Two type of 

elements are used for the testing purpose: one is square, and the other is distorted, as 

shown in Fig. 5. The coordinates of the nodes of the square element is 

( 1,0),(1,0),(1,1),( 1,1)  . The coordinates of the nodes of the distorted element is 

( 1,0),(1,0),(1,1.5),( 1,1)  . Traction boundary conditions are applied to each edge, 

except for that the vertical displacements of node 1 and 2 as well as horizontal 

displacement of node 1 are specified to be corresponding to the exact solution. The exact 

solution is that of the uniform tension problem: 

 
x

y

Pv
u x

E

P
u y

E

 



        (71) 

where 

 
2

for plane stress
          

/ (1 ) / (1 ) for plane strain

E v
E v

E v v v

 
  

  
  (72) 

Figure 4: A square and a distorted element for eigenvalue analysis

We also conduct the so-called one-element constant-strain patch test. Plane stress
case is considered. The material parameters are taken as E = 1.0 and v = 0.25. Two
type of elements are used for the testing purpose: one is square, and the other is
distorted, as shown in Fig. 5. The coordinates of the nodes of the square element is
(−1,0),(1,0),(1,1),(−1,1). The coordinates of the nodes of the distorted element
is (−1,0),(1,0),(1,1.5),(−1,1). Traction boundary conditions are applied to each
edge, except for that the vertical displacements of node 1 and 2 as well as horizontal
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displacement of node 1 are specified to be corresponding to the exact solution. The
exact solution is that of the uniform tension problem:

ux =−Pv̄
E

x

uy =
P
E

y
(71)

where

E =

{
E
E/(1− v2)

v =

{
v for plane stress
v/(1− v) for plane strain

(72)

 

Figure 5: One-element constant-strain patch test 

The error is defined as follows: 

 

exact

exact
Error




q q

q
       (73) 

where q and 
exact

q  are the computed and exact nodal displacement vector of the element. 

And  represents the 2-norm. Experimental results are shown in Tab. 4.  

Element 

Elements 

Q4 Q4-HE-C Q4-TT-
BVP 

Q4-TT-
C1 

Q4-TT-
C2 

Q4-TT-
LS1 

Q4-TT-
LS2 

Square 4.5 

×10-16 

5.5 

×10-16 

7.9 

×10-16 

5.6 

×10-16 

9.8 

×10-16 

4.3 

×10-16 

6.6 

×10-16 

Distorted 5.7 

×10-16 

6.5 

×10-16 

1.1 

×10-15 

3.1 

×10-1 

8.2 

×10-16 

4.3 

×10-2 

2.4 

×10-16 

Table 4: Performances of different elements in the one-element patch test 

From Tab. 4, one can clearly see that, all the elements can pass the patch test when a 

square element is used. But for a distorted element is used, Q4-TT-C1 and Q4-TT-LS1 

cannot pass the patch test. This is consistent with our analysis in section 3.3. 

The performances of different elements are also evaluated, using the problem of a 

cantilever beam under an end shear load or bending moment. As shown in Fig. 5, the 

length and height of the beam is L  and 2c  respectively, and it has a unit thickness. 

When the beam is under end shear load, the following exact solution is given in 

[Timoshenko and Goodier (1970)]: 

Figure 5: One-element constant-strain patch test

The error is defined as follows:

Error =
‖q−qexact‖
‖qexact‖ (73)

where q and qexact are the computed and exact nodal displacement vector of the
element. And ‖‖ represents the 2-norm. Experimental results are shown in Tab. 4.

From Tab. 4, one can clearly see that, all the elements can pass the patch test when
a square element is used. But for a distorted element is used, Q4-TT-C1 and Q4-
TT-LS1 cannot pass the patch test. This is consistent with our analysis in section
3.3.

The performances of different elements are also evaluated, using the problem of
a cantilever beam under an end shear load or bending moment. As shown in Fig.



Development of T-Trefftz Four-Node 97

 

Figure 6: A cantilever beam under an end shear load or bending moment 

 

2 2

2 2 2

[3 (2 ) (2 )( )]
6

[ (3 ) 3 ( ) (4 5 ) ]
6

x

y

Py
u x L x v y c

EI

P
u x L x v L x y v c x

EI

     

     

   (74) 

When the beam is under end bending moment, the following exact solution can also be 

found: 
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where 

 

32

3

c
I 

  

      (76) 

Plane stress case is considered with geometry 10L  , 1c  , material properties 

1.0E   and 0v  . The distortion ratio is defined as 2 /e L , as can be seen in Fig. 7. 

Computed vertical displacement is evaluated at tip point A, and normal stress is evaluated 

at the lower left Gaussian integration point B (2 by 2 rule) of the leftmost element. The 

computed results are compared to the exact solution, and plotted in Fig. 8-9, with an end 

unit shear load. When the beam is subject to end unit bending moment, computational 

results are evaluated at the same points, and plotted in Fig. 10-11. Because Q4-TT-LS1 

performs so badly that the error is almost larger than 50% for every distortion ratio, it is 

not plotted here.  

As can be clearly seen in Fig. 8-11, Q4 is always performing badly because of locking. 

Q4-HE-C, Q4-TT-BVP, Q4-TT-C2 and Q4-TT-LS2 all perform similarly, which is much 

better than the performance of the primal Q4 element. Q4-TT-C1 performs very well in 

this cantilever beam problem. For bending case, Q4-TT-C1 can always give the exact 

solution. 

Figure 6: A cantilever beam under an end shear load or bending moment

5, the length and height of the beam is L and 2c respectively, and it has a unit
thickness. When the beam is under end shear load, the following exact solution is
given in [Timoshenko and Goodier (1970)]:

ux =− Py
6EI

[3x(2L− x)+(2+ v)(y2− c2)]

uy =
P

6EI
[x2(3L− x)+3v(L− x)y2 +(4+5v)c2x]

(74)

When the beam is under end bending moment, the following exact solution can
also be found:

ux =−M
EI

xy

uy =
P

2EI
(x2 + vy2)

(75)

where

I =
2c3

3
(76)

Plane stress case is considered with geometry L = 10, c = 1, material properties
E = 1.0 and v = 0. The distortion ratio is defined as 2e/L, as can be seen in Fig.
7. Computed vertical displacement is evaluated at tip point A, and normal stress is
evaluated at the lower left Gaussian integration point B (2 by 2 rule) of the leftmost
element. The computed results are compared to the exact solution, and plotted in
Fig. 8-9, with an end unit shear load. When the beam is subject to end unit bending
moment, computational results are evaluated at the same points, and plotted in Fig.
10-11. Because Q4-TT-LS1 performs so badly that the error is almost larger than
50% for every distortion ratio, it is not plotted here.

As can be clearly seen in Fig. 8-11, Q4 is always performing badly because of
locking. Q4-HE-C, Q4-TT-BVP, Q4-TT-C2 and Q4-TT-LS2 all perform similarly,
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which is much better than the performance of the primal Q4 element. Q4-TT-C1
performs very well in this cantilever beam problem. For bending case, Q4-TT-C1
can always give the exact solution.

 
Figure 7: Test of element locking and sensitivity to distortion, cantilever beam under an 

end shear load or bending moment 

 

Figure 8: Computed vertical displacement of cantilever beam in Fig. 7 under end shear 

using elements without drilling DOFs 

Figure 7: Test of element locking and sensitivity to distortion, cantilever beam
under an end shear load or bending moment

From the results presented in this section, we conclude that Q4-TT-BVP is not rec-
ommended because it is plagued by LBB conditions. For an arbitrarily distorted
element, Q4-TT-BVP may produce rank-deficient stiffness matrix. Q4-TT-LS1
should not be used because it can neither perform well in the in-plane bending prob-
lem nor pass the patch test. Careful attention should be paid when using Q4-TT-C1.
It performs extraordinarily in the bending problem, but it produces relatively larger
error in the patch test when the element is distorted. Q4-HE-C, Q4-TT-C2, Q4-TT-
LS2 are not plagued by LBB conditions, can pass the one element patch test, and
perform well in the bending problem. Because Q4-TT-LS2 is computationally more
expensive than the other two, Q4-HE-C and Q-TT-C2 should be recommended for
engineering applications.

5.2 Examples for Four-Node Quadrilateral Elements with Four Drilling DOFs

In this section, we compare the performances of the following elements:

• Q4-D4: the four-node quadrilateral element with four drilling DOFs, inde-
pendently assumed displacement field ũi and rotation field θ , developed di-
rectly using variational principle (38).

• Q4-D4-TT-BVP: T-Trefftz four-node quadrilateral element with four drilling
DOFs, with independently assumed interior displacement field ui as a linear
combination of T-Trefftz modes, compatibility of ui and ũi enforced using
variational principle (43).

• Q4-D4-TT-C1: T-Trefftz four-node quadrilateral element with four drilling
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Figure 7: Test of element locking and sensitivity to distortion, cantilever beam under an 

end shear load or bending moment 

 

Figure 8: Computed vertical displacement of cantilever beam in Fig. 7 under end shear 

using elements without drilling DOFs 

Figure 8: Computed vertical displacement of cantilever beam in Fig. 7 under end
shear using elements without drilling DOFs

 

Figure 9: Computed normal stress of cantilever beam in Fig. 7 under end shear using 

elements without drilling DOFs 

 

Figure 10: Computed vertical displacement of cantilever beam in Fig. 7 under end 

bending using elements without drilling DOFs 

Figure 9: Computed normal stress of cantilever beam in Fig. 7 under end shear
using elements without drilling DOFs
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Figure 9: Computed normal stress of cantilever beam in Fig. 7 under end shear using 

elements without drilling DOFs 

 

Figure 10: Computed vertical displacement of cantilever beam in Fig. 7 under end 

bending using elements without drilling DOFs 

Figure 10: Computed vertical displacement of cantilever beam in Fig. 7 under end
bending using elements without drilling DOFs

 

Figure 11: Computed normal stress of cantilever beam in Fig. 7 under end bending using 

elements without drilling DOFs 

From the results presented in this section, we conclude that Q4-TT-BVP is not 

recommended because it is plagued by LBB conditions. For an arbitrarily distorted 

element, Q4-TT-BVP may produce rank-deficient stiffness matrix. Q4-TT-LS1 should 

not be used because it can neither perform well in the in-plane bending problem nor pass 

the patch test. Careful attention should be paid when using Q4-TT-C1. It performs 

extraordinarily in the bending problem, but it produces relatively larger error in the patch 

test when the element is distorted. Q4-HE-C, Q4-TT-C2, Q4-TT-LS2 are not plagued by 

LBB conditions, can pass the one element patch test, and perform well in the bending 

problem. Because Q4-TT-LS2 is computationally more expensive than the other two, Q4-

HE-C and Q-TT-C2 should be recommended for engineering applications. 

5.2 Examples for Four-Node Quadrilateral Elements with Four Drilling DOFs 

In this section, we compare the performances of the following elements: 

Q4-D4: the four-node quadrilateral element with four drilling DOFs, independently 

assumed displacement field iu  and rotation field  , developed directly using variational 

principle (38). 

Q4-D4-TT-BVP: T-Trefftz four-node quadrilateral element with four drilling DOFs, with 

independently assumed interior displacement field iu  as a linear combination of T-

Trefftz modes, compatibility of iu  and iu  enforced using variational principle (43).  

Figure 11: Computed normal stress of cantilever beam in Fig. 7 under end bending
using elements without drilling DOFs
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DOFs, compatibility of ui and ũi enforced by collocation, finite element equa-
tions developed using variational principle (38).

• Q4-D4-TT-C2: T-Trefftz four-node quadrilateral element with four drilling
DOFs, compatibility of σi j and σ̃i j enforced by collocation.

• Q4-D4-TT-LS1: T-Trefftz four-node quadrilateral element with four drilling
DOFs, compatibility of ui and ũi enforced by using the least squares method.

• Q4-D4-TT-LS2: T-Trefftz four-node quadrilateral element with four drilling
DOFs, compatibility of σi j and σ̃i j enforced using the least squares method.

Firstly, we evaluate the eigenvalues of stiffness matrices of a square as well as a
distorted element, using the same elements in Fig. 4. This is, again, conducted in
the original and the rotated global Cartesian coordinate system. These eigenvalues
are invariant, and they are shown in Tab. 5 and Tab. 6. As can be seen, for these two
elements, all approaches give rank-sufficient stiffness matrices. However, similar
to Q4-TT-BVP, this does not mean that LBB conditions are satisfied by Q4-D4-TT-
BVP. And there is no guarantee that Q4-D4-TT-BVP gives rank-sufficient stiffness
matrices for an arbitrarily distorted element.

The CPU time used to compute the stiffness matrices of the distorted element with
drilling DOFs is also shown in Tab. 7, normalized to that of the Q4-D4 element.

We also conduct the so-called one-element patch test using the same problem de-
fined in Fig 5. It should be noted that, because none of the drilling DOFs are fixed,
according to the definition of the force vector, there should be a nodal moment
applied to each node.

The computed results are shown in Tab. 8. Similar results to that of four-node
quadrilateral elements without drilling DOFs are obtained. Among these elements,
Q4-D4, Q4-D4-TT-BVP, Q4-D4-TT-LS2 can always pass the patch test. Q4-D4-
TT-C2 can pass the patch test when an undistorted element is used, and gives very
small error when a distorted element is used. Q4-D4-TT-C1 and Q4-D4-TT-LS1
gives relatively large error.

The performances of different elements are also evaluated, using the problem of a
cantilever beam under an end shear load or bending moment, as shown in Fig. 6.
The computed results are compared to the exact solution, and plotted in Fig. 12-15.
From the computed results, one can see that all the T-Trefftz elements give better
performances than Q4-D4. Among these elements, Q4-D4-TT-LS1 seems give the
best performance. Q4-D4-TT-LS2 gives slightly better performance than that of
Q4-D4-TT-BVP and Q4-D4-TT-C2.
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×10-15 ×10-15 ×10-16 ×10-15 ×10-2 ×10-15 

Distorted 1.3 

×10-15 

1.5 

×10-15 

4.2 

×10-2 

1.4 

×10-2 

4.4 

×10-2 

3.4 

×10-15 

Table 8: Performances of different elements with drilling DOFs in the one-element patch 

test 

The performances of different elements are also evaluated, using the problem of a 

cantilever beam under an end shear load or bending moment, as shown in Fig. 6. The 

computed results are compared to the exact solution, and plotted in Fig. 12-15. From the 

computed results, one can see that all the T-Trefftz elements give better performances 

than Q4-D4. Among these elements, Q4-D4-TT-LS1 seems give the best performance.  

Q4-D4-TT-LS2 gives slightly better performance than that of Q4-D4-TT-BVP and Q4-

D4-TT-C2. 

 

Figure 12: Computed vertical displacement of cantilever beam in Fig. 7 under end shear 

using elements with drilling DOFs 

Figure 12: Computed vertical displacement of cantilever beam in Fig. 7 under end
shear using elements with drilling DOFs

 

Figure 13: Computed normal stress of cantilever beam in Fig. 7 under end shear using 

elements with drilling DOFs 

 

Figure 14: Computed vertical displacement of cantilever beam in Fig. 7 under end 

bending using elements with drilling DOFs 

Figure 13: Computed normal stress of cantilever beam in Fig. 7 under end shear
using elements with drilling DOFs
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Figure 13: Computed normal stress of cantilever beam in Fig. 7 under end shear using 

elements with drilling DOFs 

 

Figure 14: Computed vertical displacement of cantilever beam in Fig. 7 under end 

bending using elements with drilling DOFs 

Figure 14: Computed vertical displacement of cantilever beam in Fig. 7 under end
bending using elements with drilling DOFs

 

Figure 15: Computed normal stress of cantilever beam in Fig. 7 under end bending using 

elements with drilling DOFs 

From the results presented in this section, we conclude that Q4-TT-C2 and Q4-TT-LS2 

should be recommended, because they do not involve LBB conditions, can pass the patch 

test or give very small error, and perform well in the in-plane bending problem. 

5.3 Examples for Voronoi Cell Finite Elements 

In this section, we compare the performances of the following elements: 

VCFEM-HS-PCE: Hybrid-stress type of Voronoi cell element used in [Ghosh and 

Mallett (1994)], with independently assumed boundary displacement field iu  and interior 

stress field 
ij , developed using the modified principle of complementary energy (59). 

VCFEM-TT-BVP: T-Trefftz Voronoi cell finite element, with independently assumed 

boundary displacement field iu  and interior T-Trefftz type of displacement field iu , 

compatibility of iu  and iu  enforced by using the two-field boundary variational principle 

(21).  

VCFEM-TT-C: T-Trefftz Voronoi cell finite element, compatibility of iu  and iu  

enforced by collocation, finite element equations derived using the variational principel 

(31). 

VCFEM-TT-LS: T-Trefftz Voronoi cell finite element, compatibility of iu  and iu  

enforced using the least squares method, finite element equations derived using the 

variational principle (31). 

Figure 15: Computed normal stress of cantilever beam in Fig. 7 under end bending
using elements with drilling DOFs



Development of T-Trefftz Four-Node 107

From the results presented in this section, we conclude that Q4-TT-C2 and Q4-
TT-LS2 should be recommended, because they do not involve LBB conditions, can
pass the patch test or give very small error, and perform well in the in-plane bending
problem.

5.3 Examples for Voronoi Cell Finite Elements

In this section, we compare the performances of the following elements:

• VCFEM-HS-PCE: Hybrid-stress type of Voronoi cell element used in [Ghosh
and Mallett (1994)], with independently assumed boundary displacement
field ũi and interior stress field σi j, developed using the modified principle of
complementary energy (59).

• VCFEM-TT-BVP: T-Trefftz Voronoi cell finite element, with independently
assumed boundary displacement field ũi and interior T-Trefftz type of dis-
placement field ui, compatibility of ui and ũi enforced by using the two-field
boundary variational principle (21).

• VCFEM-TT-C: T-Trefftz Voronoi cell finite element, compatibility of ui and
ũi enforced by collocation, finite element equations derived using the varia-
tional principel (31).

• VCFEM-TT-LS: T-Trefftz Voronoi cell finite element, compatibility of ui and
ũi enforced using the least squares method, finite element equations derived
using the variational principle (31).

As mentioned in section 4, two different values are used for p, which is the order
T-Trefftz modes are compete to. They are p =

⌈2n−2
4

⌉
and p =

⌈2n+2
4

⌉
.

As mentioned in section 4, two different values are used for p , which is the order T-

Trefftz modes are compete to. They are 
2 2

4

n
p

 
  
 

 and
2 2

4

n
p

 
  
 

. 

 

Figure 16: An octagonal element 

Firstly, we illustrate the reason why we use a characteristic length to scale the T-Trefftz 

modes. Plane stress problems with 1E   and 0.25v   are considered. A regular 

octagonal element with radius 1000 is used, see Fig. 16. We compute the condition 

number of the coefficient matrices of the equations used to relate α  to q . Two cases are 

considered: (1) T-Trefftz modes are properly scaled with characteristic length 1000cR  ; 

(2) without scaling, which is equivalent to using  1cR  . For simplicity of illustration, 

only 
2 2

4

n
p

 
  
   

is used. Numerical results are shown in Tab. 9. We can clearly see 

that by scaling the T-complete functions using 1000cR  , the resulting systems of 

equations have significantly smaller condition number. In the following examples, the 

characteristic length as defined in (12) is always used. 

Elements VCFEM-TT-BVP VCFEM-TT-C VCFEM-TT-LS 

Characteristic 
length 

Rc=1000 Rc=1 Rc=1000 Rc=1 Rc=1000 Rc=1 

Condition 
number 

84.3 1.3×1019 9.4 6.3×1012 82.6 4.0×1025 

Table 9: Condition number of coefficient matrices of equations used to relate α  to 

q with/without introducing proper characteristic length, 
2 2

4

n
p

 
  
 

 

Using the same octagonal element shown in Fig. 16, we compute the eigenvalues of 

element stiffness matrices of different VCFEMs. This is conducted in the original and 

Figure 16: An octagonal element
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Firstly, we illustrate the reason why we use a characteristic length to scale the T-
Trefftz modes. Plane stress problems with E = 1 and v = 0.25 are considered.
A regular octagonal element with radius 1000 is used, see Fig. 16. We compute
the condition number of the coefficient matrices of the equations used to relate
ααα to q. Two cases are considered: (1) T-Trefftz modes are properly scaled with
characteristic length Rc = 1000; (2) without scaling, which is equivalent to using
Rc = 1. For simplicity of illustration, only p =

⌈2n−2
4

⌉
is used. Numerical results

are shown in Tab. 9. We can clearly see that by scaling the T-complete functions
using Rc = 1000, the resulting systems of equations have significantly smaller con-
dition number. In the following examples, the characteristic length as defined in
(12) is always used.

Using the same octagonal element shown in Fig. 16, we compute the eigenvalues of
element stiffness matrices of different VCFEMs. This is conducted in the original
and rotated global Cartesian coordinate system. The eigenvalues obviously are
invariant with respect to the global coordinate system. Different numbers of p are
used, and experimental results are recorded in Tab. 10 and 11 respectively.

As can clearly be seen, these elements are stable and invariant for this regular ele-
ment. And as larger numbers of T-Trefftz modes are used, the ratio of the largest
and smallest non-zeros eigenvalue is increased. This indicates increased stability.
However, this does not mean that LBB conditions are satisfied by VCFEM-TT-BVP
for an arbitrary element (and VCFEM-HS-PCE). Similar to Q4-TT-BVP as shown
in section 5.1, for an arbitrarily distorted element, the stiffness matrix of VCFEM-
TT-BVP may be rank-deficient. On this point, VCFEM-TT-C and VCFEM-TT-LS,
which do not involve LBB conditions, demonstrate significant advantages.

We also compare the CPU time required for computing the octagonal element in
Fig. 9, using different types of elements and different values for p. The CPU time
required for each element is normalized to that for VCFEM-HS-PCE, and is listed
in Tab. 12. As can be seen, VCFEM-TT-C is computationally the most efficient.
And as p is increased, the computational burden is only slightly increased. All
the VCFEM-TTs are computationally more efficient than VCFEM-HS-PCE, the
elements developed by [Ghosh and Mallett (1994)].

We also conduct the one-element patch test. A pentagonal element with nodal coor-
dinates (−1,−1),(1,−1),(1,1),(0,2.5),(−1,−1) is considered. A shown in Fig.
17, a uniform traction is applied to the upper edge. The vertical displacement of
node 1 and 2 are fixed to the exact solution. The horizontal displacement of node
1 is also fixed to the exact solution. The exact solution is shown in (71). The nu-
merical result of different elements using different values of p is shown in Tab. 13.
As can be seen, VCFEM-HS and VCFEM-TT-BVP can always pass the patch test.
Although the other two types of VCFEMs cannot exactly reproduce the linear field,
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Table 10: Eigenvalues of stiffness matrices of different VCFEM-TTs when p =⌈2n−2
4

⌉
Eigenvalues Rotation VCFEM-TT-BVP VCFEM-TT-C VCFEM-TT-LS

= 0˚ & 45˚
1 0.9428 0.9428 0.9428
2 0.8121 0.8334 0.8295
3 0.8121 0.8334 0.8295
4 0.6733 0.7649 0.7415
5 0.6733 0.7649 0.7415
6 0.5657 0.5657 0.5657
7 0.5657 0.5657 0.5657
8 0.5170 0.4714 0.5164
9 0.5170 0.4714 0.5164
10 0.3691 0.3788 0.3756
11 0.3691 0.3788 0.3756
12 0.3051 0.3488 0.3351
13 0.3051 0.3488 0.3351
14 0.0000 0.0000 0.0000
15 0.0000 0.0000 0.0000
16 0.0000 0.0000 0.0000

errors for VCFEM-TT-C and VCFEM-TT-LS can be made satisfactorily small by
using a slightly larger number of T-Trefftz modes. As can be seen in Tab. 13, when
p =

⌈2n+2
4

⌉
is used, the numerical errors for both VCFEM-TT-C and VCFEM-TT-

LS are both less than 1%.

We also evaluate the performance of VCFEMs by modeling the cantilever beam
with mesh configuration shown in Fig. 18, and compare their performances to the
exact solution. Geometry propertiesL = 10, c = 1, material properties E = 1500
and v = 0.25 are used. Two loading cases are considered: end shear load P = 300
and end bending momentM = 2000. The mesh configuration includes 10 elements.
Appropriate displacement and traction boundary conditions are applied to the left
side and right side of the beam. Computed tip vertical displacement at point A, and
normal stress at lower left corner are shown in Tab. 14. From this example, we can
see that using either values for p, similar or better performances can be obtained by
VCFEM-TTs than that of VCFEM-HS-PCE.

We also compare different VCFEMs by determining the homogenized elastic mate-
rial properties of functionally graded materials (FGM). Ni3Al/TiC FGM is consid-
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Table 11: Eigenvalues of stiffness matrices of different VCFEM-TTs when p =⌈2n+2
4

⌉
Eigenvalues Rotation VCFEM-TT-BVP VCFEM-TT-C VCFEM-TT-LS

= 0˚ & 45˚
1 0.9428 0.9428 0.9428
2 0.8121 0.8334 0.8295
3 0.8121 0.8334 0.8295
4 0.7305 0.6899 0.7307
5 0.7136 0.6892 0.7128
6 0.5657 0.5657 0.5657
7 0.5657 0.5657 0.5657
8 0.5170 0.4714 0.5164
9 0.5170 0.4714 0.5164
10 0.4140 0.3840 0.4127
11 0.4140 0.3840 0.4127
12 0.3691 0.3788 0.3756
13 0.3691 0.3788 0.3756
14 0.0000 0.0000 0.0000
15 0.0000 0.0000 0.0000
16 0.0000 0.0000 0.0000

uniform traction is applied to the upper edge. The vertical displacement of node 1 and 2 

are fixed to the exact solution. The horizontal displacement of node 1 is also fixed to the 

exact solution. The exact solution is shown in (71). The numerical result of different 

elements using different values of p  is shown in Tab. 13. As can be seen, VCFEM-HS 

and VCFEM-TT-BVP can always pass the patch test. Although the other two types of 

VCFEMs cannot exactly reproduce the linear field, errors for VCFEM-TT-C and 

VCFEM-TT-LS can be made satisfactorily small by using a slightly larger number of T-

Trefftz modes. As can be seen in Tab. 13, when 
2 2

4

n
p

 
  
 

 is used, the numerical 

errors for both VCFEM-TT-C and VCFEM-TT-LS are both less than 1% . 

 

Figure 17: A pentagonal element used for patch test 

Error 
VCFEM-TT-

BVP 
VCFEM-TT-C VCFEM-TT-LS 

VCFEM-
HS-PCE 

p  

2 2
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 3.6×10-16 6.5×10-2 6.2×10-2 

5.1×10-16 
2 2

4

n  
 
 

 4.6×10-16 6.8×10-3 1.9×10-3 

 

Table 13: Performances of different VCFEMs in the constant strain patch test 

We also evaluate the performance of VCFEMs by modeling the cantilever beam with 

mesh configuration shown in Fig. 18, and compare their performances to the exact 

solution. Geometry properties 10L  , 1c  , material properties 1500E   and 

0.25v   are used. Two loading cases are considered: end shear load 300P  and end 

bending moment 2000M  . The mesh configuration includes 10 elements. Appropriate 

Figure 17: A pentagonal element used for patch test

ered where volume fractions of both materials are 50%. A representative volume el-
ement with 300 VCFEMs is used where the distribution of materials in this RVE is
randomly generated see Fig. 19. Young’s modulus and Poisson’s ratio of Ni3Al and
TiC are taken as follows:ENi3Al = 217GPa,vNi3Al = 0.30;ETiC = 440GPa,vTiC =
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displacement and traction boundary conditions are applied to the left side and right side 

of the beam. Computed tip vertical displacement at point A, and normal stress at lower 

left corner are shown in Tab. 14.  From this example, we can see that using either values 

for p , similar or better performances can be obtained by VCFEM-TTs than that of 

VCFEM-HS-PCE. 

 

Figure 18: Mesh configuration used for overall test of performances of different 

VCFEMs 

p  
Element 

Type 

End Shear End Bending 

Av  B  Av  B  

2 2

4

n  
 
 

 

VCFEM-TT-BVP 89.6 3843.4 86.4 2696.5 

VCFEM-TT-C 91.1 4204.4 87.6 2940.4 

VCFEM-TT-LS 92.2 4402.2 87.8 3092.5 

2 2

4

n  
 
 

 

VCFEM-TT-BVP 87.8 3524.5 84.4 2485.5 

VCFEM-TT-C 88.9 3594.1 85.3 2532.4 

VCFEM-TT-LS 89.5 3676.2 85.5 2595.2 

VCFEM-HS-PCE 89.6 3843.7 86.4 2696.8 

Exact 102.6 4500.0 100.3 3000.0 

Table 14: Computed and exact solution of cantilever beam in Fig. 5 under end shear or 

bending moment 

Figure 18: Mesh configuration used for overall test of performances of different
VCFEMs

Table 14: Computed and exact solution of cantilever beam in Fig. 5 under end
shear or bending moment

p Element Type
End Shear End Bending

vA σB vA σB⌈2n−2
4

⌉ VCFEM-TT-BVP 89.6 3843.4 86.4 2696.5
VCFEM-TT-C 91.1 4204.4 87.6 2940.4
VCFEM-TT-LS 92.2 4402.2 87.8 3092.5⌈2n+2

4

⌉ VCFEM-TT-BVP 87.8 3524.5 84.4 2485.5
VCFEM-TT-C 88.9 3594.1 85.3 2532.4
VCFEM-TT-LS 89.5 3676.2 85.5 2595.2

VCFEM-HS-PCE 89.6 3843.7 86.4 2696.8
Exact 102.6 4500.0 100.3 3000.0

0.19. The RVE is loaded with a uniform tension in the vertical direction. The
homogenized elastic modulus is determined by dividing the tensile force with the
extension in the vertical direction. And the homogenized Poisson’s ratio is com-
puted as the ratio of the contraction in the horizontal direction and the extension in
the vertical direction. Numerical results using different elements are listed in Tab.
15. As can be seen, homogenized material properties using different elements are
very close.

From the results presented in this section, we consider that VCFEM-TT-C with
p =

⌈2n+2
4

⌉
is recommended, because it is computationally efficient, it does not

involve LBB conditions, it produces very small error in the path test, and it per-
forms well for the macro-mechanical beam bending problem, and for the problem
of determining material properties from an representative volume element.
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Figure 19: A RVE composed of randomly distributed Ni3Al and TiC, the green colored 

patches represent Ni3Al, the blue colored patches represent TiC 

We also compare different VCFEMs by determining the homogenized elastic material 

properties of functionally graded materials (FGM). Ni3Al/TiC FGM is considered where 

volume fractions of both materials are 50%. A representative volume element with 300 

VCFEMs is used where the distribution of materials in this RVE is randomly generated 

see Fig. 19. Young’s modulus and Poisson’s ratio of Ni3Al and TiC are taken as 

follows:
3 3Ni Al Ni Al217 , 0.30; 440 , 0.19TiC TiCE GPa v E GPa v    . The RVE is 

loaded with a uniform tension in the vertical direction. The homogenized elastic modulus 

is determined by dividing the tensile force with the extension in the vertical direction. 

And the homogenized Poisson’s ratio is computed as the ratio of the contraction in the 

horizontal direction and the extension in the vertical direction. Numerical results using 

different elements are listed in Tab. 15. As can be seen, homogenized material properties 

using different elements are very close. 

p  
Element 

Type 

Young’s Modulus 

(GPa) 
Poisson’s Ratio 

2 2

4

n  
 
 

 

VCFEM-TT-BVP 304.6 0.2526 

VCFEM-TT-C 303.7 0.2517 

VCFEM-TT-LS 302.6 0.2516 

Figure 19: A RVE composed of randomly distributed Ni3Al and TiC, the green
colored patches represent Ni3Al, the blue colored patches represent TiC

Table 15: Computed material properties of the FGM using the RVE in Fig. 19

p Element Type Young’s Modulus (GPa) Poisson’s Ratio⌈2n−2
4

⌉ VCFEM-TT-BVP 304.6 0.2526
VCFEM-TT-C 303.7 0.2517
VCFEM-TT-LS 302.6 0.2516⌈2n+2

4

⌉ VCFEM-TT-BVP 305.3 0.2513
VCFEM-TT-C 304.9 0.2504
VCFEM-TT-LS 304.8 0.2512

VCFEM-HS-PCE 304.5 0.2526

6 Conclusion

Three different approaches of developing T-Trefftz elements are explored, by as-
suming an inter-element compatible displacement field ũi along the element bound-
ary, and an interior displacement field ui as a linear combination of T-Trefftz modes.
Among these three approaches TT-BVP is plagued by LBB conditions, because the
two-field boundary variational principle uses Lagrangian multipliers to enforce the
compatibility between the independently assumed fields. On the other hand, for



Development of T-Trefftz Four-Node 115

TT-C and TT-LS, because compatibility between independently assumed fields is
enforced using either collocation or the least squares method, no LBB conditions
are involved.

The corresponding four-node quadrilateral elements with/without drilling degrees
of freedoms are also developed. Numerical results show that for T-Trefftz four-
node quadrilateral elements without drilling DOFs, Q4-TT-C2, which enforces the
compatibility of stress fields derived from ui and ũi using collocation, should be
recommended. This is because it can pass the one-element patch test, it performs
well in the in-plane bending problem, it is computationally efficient, and it does not
suffer from LBB conditions. For T-Trefftz four-node quadrilateral elements with
four drilling DOFs, Q4-D4-TT-C2 and Q4-D4-TT-LS2 should be recommended.
While both these two elements do not involve LBB conditions, Q4-D4-TT-LS2 are
slightly more accurate than Q4-D4-TT-C2, but computationally more expensive
than Q4-D4-TT-C2.

These three approaches are also used to develop Voronoi cell finite elements. VCFEM-
TT-BVP, VCFEM-TT-C and VCFEM-TT-LS are developed, which are all shown to
have similar performance but be computationally more efficient than the VCFEM-
HS-PCE developed by [Ghosh and Mallett (1994); Ghosh, Lee and Moorthy (1995)].
For T-Trefftz Voronoi cell finite elements, VCFEM-TT-C with p =

⌈2n+2
4

⌉
is rec-

ommended, because it is computationally efficient, it does not involve LBB con-
ditions, it produces a very small error in the path test, and it performs well in the
macro-mechanical beam bending problem, as well as in the problem of determining
material properties from an representative volume element.

We conclude this paper by pointing out that, although the present work is conducted
in the context of two-dimensional linear elastic solid mechanics, extension to three-
dimensional problems and geometrical as well as material nonlinear problems is
quite straight-forward. This will be reserved for future study.
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