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A Further Study on Using ẋ = λ [αR+βP]
(P = F−R(F ·R)/‖R‖2) and ẋ = λ [αF+βP∗]

(P∗ = R−F(F ·R)/‖F‖2) in Iteratively Solving the
Nonlinear System of Algebraic Equations F(x) = 0
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Abstract: In this continuation of a series of our earlier papers, we define a hyper-
surface h(x, t) = 0 in terms of the unknown vector x, and a monotonically increas-
ing function Q(t) of a time-like variable t, to solve a system of nonlinear algebraic
equations F(x) = 0. If R is a vector related to ∂h/∂x, we consider the evolu-
tion equation ẋ = λ [αR+βP], where P = F−R(F ·R)/‖R‖2 such that P ·R = 0;
or ẋ = λ [αF + βP∗], where P∗ = R−F(F ·R)/‖F‖2 such that P∗ ·F = 0. From
these evolution equations, we derive Optimal Iterative Algorithms (OIAs) with Op-
timal Descent Vectors (ODVs), abbreviated as ODV(R) and ODV(F), by deriving
optimal values of α and β for fastest convergence. Several numerical examples
illustrate that the present algorithms converge very fast. We also provide a solu-
tion of the nonlinear Duffing oscillator, by using a harmonic balance method and a
post-conditioner, when very high-order harmonics are considered.

Keywords: Nonlinear algebraic equations, Optimal iterative algorithm (OIA),
Optimal descent vector (ODV), Optimal vector driven algorithm (OVDA), Ficti-
tious time integration method (FTIM), Residual-norm based algorithm (RNBA),
Duffing equation, Post-conditioned harmonic balance method (PCHB)

1 Introduction

For solving a system of nonlinear algebraic equations (NAEs):

F(x) = 0, (1)
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where x∈Rn and F∈Rn, Liu and Atluri (2008a) first derived a system of nonlinear
ODEs for x in terms of a time-like variable t:

ẋ =− ν

q(t)
F(x), (2)

where ν is a nonzero constant and q(t) may in general be a monotonically in-
creasing function of t. In their approach of the Fictitious Time Integration Method
(FTIM), the term ν/q(t) plays a major role of a stabilized controller to help one ob-
tain a solution even for a bad initial guess of solution, and speed up the convergence.
Liu and Chang (2009) combined the FTIM with a nonstandard group preserving
scheme [Liu (2001, 2005)] for solving a system of ill-posed linear equations. Ku,
Yeih, Liu and Chi (2009) have employed a time-like function of q(t) = (1 + t)m,
0 < m ≤ 1 in Eq. (2), and a better performance was observed. After the work
by Liu and Atluri (2008a), the FTIM had been applied to solve many engineering
problems [Liu and Atluri (2008b, 2008c, 2009); Liu (2008a, 2008b, 2009a, 2009b,
2009c, 2009d, 2010); Chi, Yeih and Liu (2009); Ku, Yeih, Liu and Chi (2009);
Chang and Liu (2009); Tsai, Liu and Yeih (2010)]. In spite of its success, the
FTIM has only a local convergence, and one needs judiciously to determine the
viscous damping coefficient ν .

Then, to remedy the shortcoming of the vector homotopy method as initiated by
Davidenko (1953), Liu, Yeih, Kuo and Atluri (2009) defined a scalar homotopy
function

h(x, t) =
1
2
[t‖F(x)‖2− (1− t)‖x‖2], (3)

and considered a "normality" relation for the evolution equation for ẋ in terms of t:

ẋ =−
∂h
∂ t

‖ ∂h
∂x‖2

∂h
∂x

, (4)

where

∂h
∂ t

=
1
2
[‖F(x)‖2 +‖x‖2], (5)

∂h
∂x

= tBTF− (1− t)x = tR− (1− t)x. (6)

Here ∂h/∂x is a normal to the hyper-surface h(x, t) = 0, B := ∂F/∂x is the Jaco-
bian matrix, and we denote

R := BTF, (7)
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where the superscript T denotes the transpose. Thus, R is a normal to the hyper-
surface h(x, t) = 0 at t = 1. The scalar homotopy method of Liu, Yeih, Kuo and
Atluri (2009) thus made a crucial step in solving the NAEs by using a manifold-
based method.

Ku, Yeih and Liu (2010) modified Eq. (4) slightly, and defined

ẋ =− ν

(1+ t)m
‖F‖2

‖R‖2 R. (8)

In 2011, Liu and Atluri (2011a) introduced a modified definition for the hyper-
surface:

h(x, t) =
Q(t)

2
‖F(x)‖2−C = 0, (9)

where Q(t) > 0 is a monotonically increasing function of t, and C is a constant. In
Liu and Atluri (2011a), the evolution equation for ẋ was taken to be

ẋ =− Q̇(t)
2Q(t)

‖F‖2

‖R‖2 R, (10)

which is a generalization of Eq. (8). Integrating Eq. (10) as a system of nonlinear
ODEs for x in terms of t, leads to an algorithm for finding the solution x of F(x) = 0.
Liu and Atluri (2011a) have pointed out the limitations of the above Residual-Norm
Based Algorithm (RNBA), which converges very fast at the first many steps and
then slows down to a plateau without further reducing the residual error of ‖F‖.
To further improve the convergence of the solution for x, Liu and Atluri (2011b)
used the same hyper-surface as in Eq. (9), but modified the evolution equation for
ẋ as a "non-normal" relation, involving both F and R:

ẋ = λu = λ [αF+(1−α)R], (11)

where λ is a preset multiplier determined by the "consistency condition", and α

is a parameter. Liu and Atluri (2011b) proposed a way to optimize α in order
to achieve the best convergence. With the optimized value for α , Liu and Atluri
(2011b) derived an Optimal Vector Driven Algorithm (OVDA) according to

ẋ =− Q̇(t)
2Q(t)

‖F‖2

FTv
[αF+(1−α)R], (12)

where

A := BBT,

v = Bu = v1 +αv2 = AF+α(B−A)F,

α =
(v1 ·F)(v1 ·v2)− (v2 ·F)‖v1‖2

(v2 ·F)(v1 ·v2)− (v1 ·F)‖v2‖2 . (13)
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In a continuing effort to accelerate the convergence of an optimal iterative algorithm
(OIA) for finding the solution x, Liu, Dai and Atluri (2011) proposed another "non-
normal" descent evolution equation for ẋ:

ẋ = λ [αR+βp], (14)

where

p =
[

In−
‖R‖2

RTCR
C
]

R, (15)

in which

C = BTB, (16)

such that, clearly, p is orthogonal to R, i.e.,

R ·p = 0, (17)

where a dot between two vectors signifies the inner product. Thus Liu, Dai and
Atluri (2011) derived:

ẋ =− Q̇(t)
2Q(t)

‖F‖2

FT(αBR+βBp)
[αR+βp]. (18)

Liu, Dai and Atluri (2011) derived an OIA with the optimized α and β (= 1−α)
to achieve a faster convergence for the iterative solution for x.

Liu, Dai and Atluri (2011) also explored an alternative descent relation:

ẋ =− Q̇(t)
2Q(t)

‖F‖2

FT(αBF+βBp∗)
[αF+βp∗], (19)

where p∗ is orthogonal to F, i.e. F ·p∗ = 0; and

p∗ =
[

In−
‖F‖2

FTCF
C
]

F. (20)

It was shown in Liu, Dai and Atluri (2011) that the OIAs based on Eqs. (18) and
(19), namely the OIA/ODV[R] and OIA/ODV[F], had the fastest convergence and
best accuracy as compared to any algorithms published in the previous literature by
many other authors, as well the present authors themselves.

It can be seen that neither the vector p defined in Eq. (15) and which is normal to
R, nor the vector p∗ defined in Eq. (20) and which is normal to F, are unique. In
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this paper we consider alternate vectors P and P∗ which are also normal to R and
F, respectively, as follows:

P := F− F ·R
‖R‖2 R, (21)

such that, clearly,

R ·P = 0, (22)

and

P∗ := R− F ·R
‖F‖2 F, (23)

such that, clearly,

F ·P∗ = 0. (24)

Using the relations as in Eqs. (21)-(24), we explore in this paper, the following
evolution equations for ẋ:

ẋ = λ [αR+βP], (25)

and

ẋ = λ [αF+βP∗]. (26)

As before, we seek to optimize α and β , and seek purely iterative algorithms to
solve for x. We show that, with the algorithms proposed in this paper, we have
been able to achieve the fastest convergence, as well as the best accuracy, so far,
for iteratively solving a system of nonlinear algebraic equations (NAEs): F(x) = 0,
without the need for inverting the Jacobian matrix B = ∂F/∂x.

The remaining portions of this paper are arranged as follows. In Section 2, we
give detailed explanations of the related equations, where the concept of a two-
dimensional combination of the residual vector F and the descent vector R with an
orthogonality is introduced. Then, a genuine dynamics on the invariant-manifold is
constructed in Section 3, resulting in an optimal iterative algorithm in terms of two
weighting factors being optimized explicitly. The numerical examples are given in
Section 4 to display some advantages of the present Optimal Iterative Algorithms
(OIAs), as compared to the FTIM, the residual-norm based algorithm [Liu and
Atluri (2011a)], OVDA, OIA/ODV[R], OIA/ODV[F] and the Newton method for
some numerical examples. Finally, some conclusions are drawn in Section 5.
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2 The residual-descent perpendicular vectors P and P∗

Neither the vector p in Eq. (15) which is perpendicular to R, nor the vector p∗ in
Eq. (20) which is perpendicular to F, are unique. In our continuing exploration
of the various choices for the descent vector in the evolution for ẋ, we consider
another vector P, which is also orthogonal to R:

P := F− F ·R
‖R‖2 R. (27)

Clearly, R · P = 0. Clearly, there are infinitely many such vectors P which are
orthogonal to R. We now explore the following evolution equation:

ẋ = λu, (28)

where

u = αR+βP =
[

α−β
F ·R
‖R‖2

]
R+βF. (29)

The above two parameters α and β are to be optimized in Section 3.1. Previously,
Liu and Atluri (2011b) have constructed a powerful optimal vector driven algorithm
(OVDA) to solve NAEs with the driving vector to be a linear combination of F
and R: αF + (1−α)BTF, which is a one-dimensional combination of F and R.
Here we further extend this theory to a two-dimensional combination of F and R
as shown by Eq. (29). The evolution equation (28) is not a simple variant of that
explored in Liu, Dai and Atluri (2011) as shown in Eq. (14). The main differences
between these two evolution equations lie on the difference of the subspace and the
parameters α and β . When the former is evolving in a two-dimensional subspace
spanned by R and F, the latter is evolving in a two-dimensional subspace generated
from only R and its perpendicular vector [In− (‖R‖2/RTCR)C]R.

We also consider, alternatively, an evolution equation

ẋ = λ [αF+βP∗], (30)

where

P∗ = R− F ·R
‖F‖2 F. (31)

Clearly, F ·P∗ = 0.

Taking the time differential of Eq. (9) with respect to t and considering x = x(t),
we can obtain

1
2

Q̇(t)‖F(x)‖2 +Q(t)R · ẋ = 0. (32)
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Inserting Eq. (28) into Eq. (32) and using Eq. (7) we can solve λ , and inserting λ

into Eq. (28) we can derive

ẋ =−q(t)
‖F‖2

FTv
u, (33)

where

q(t) :=
Q̇(t)

2Q(t)
, (34)

v := αv1 +βv2 = Bu = αBR+βBP. (35)

Hence, in our algorithm if Q(t) can be guaranteed to be a monotonically increasing
function of t, from Eq. (9) we have an absolutely convergent property in solving
the nonlinear equations system (1):

‖F(x)‖2 =
C

Q(t)
, (36)

where

C = ‖F(x0)‖2 (37)

is determined by the initial value x0. We do not need to specify the function Q(t)
a priori, but

√
C/Q(t) merely acts as a measure of the residual error of F in time.

When t is increased to a large value, the above equation will enforce the residual
error ‖F(x)‖ to tend to zero, and meanwhile the solution of Eq. (1) is obtained ap-
proximately.

3 An optimal iterative algorithm

Let

s =
Q(t)

Q(t +∆t)
=
‖F(t +∆t)‖2

‖F(t)‖2 (38)

be an important quantity in assessing the convergence of our algorithm for solving
the system (1) of NAEs.

Following the same procedures as those explored by Liu, Dai and Atluri (2011) we
can derive

s = 1− 1− γ2

a0
, (39)
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where 0≤ γ < 1 is a relaxed parameter, and

a0 :=
‖F‖2‖v‖2

(FTv)2 ≥ 1, (40)

by using the Cauchy-Schwarz inequality:

FTv≤ ‖F‖‖v‖.

3.1 Optimizations of α and β

Then by inserting Eq. (40) for a0 into Eq. (39) we can write s to be

s = 1− (1− γ2)(F ·v)2

‖F‖2‖v‖2 , (41)

where v as defined by Eq. (35) includes the parameters α and β . By the minimiza-
tion of

min
α,β

s, (42)

we let ∂ s/∂α = 0 and ∂ s/∂β = 0, and again, following Liu, Dai and Atluri (2011)
we can derive

β = ωα, (43)

where

ω =
[v1,F,v2] ·v1

[v2,F,v1] ·v2
(44)

is expressed in terms of the Jordan algebra derived by Liu (2000a):

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn. (45)

Usually, for u as shown by Eq. (29) we can require the coefficient in front of R to
be equal to 1, if R plays the major role in the search vector for finding the solution
for x, such that, from

α−β
F ·R
‖R‖2 = 1, (46)

and Eq. (43) we can solve

α =
‖R‖2

‖R‖2−ωF ·R
, β =

ω‖R‖2

‖R‖2−ωF ·R
. (47)
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3.2 An optimal iterative algorithm, with the present optimal descent vector

Thus, we can arrive at a purely iterative algorithm by discretizing Eq. (33) with the
forward Euler method and using q(t)∆t = (1− γ)/a0:
(i) Select a suitable value of γ in 0 ≤ γ < 1, and assume an initial value of x0 and
compute F0 = F(x0).
(ii) For k = 0,1,2 . . ., we repeat the following computations:

Rk = BT
k Fk,

Pk = Fk−
Rk ·Fk

‖Rk‖2 Rk,

vk
1 = BkRk,

vk
2 = BkPk,

ωk =
[vk

1,Fk,vk
2] ·vk

1

[vk
2,Fk,vk

1] ·vk
2
,

αk =
‖Rk‖2

‖Rk‖2−ωkFk ·Rk
,

βk =
ωk‖Rk‖2

‖Rk‖2−ωkFk ·Rk
,

uk = αkRk +βkPk,

vk = αkvk
1 +βkvk

2,

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (48)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii).

Sometimes we have another option to choose the driving vector in solving nonlinear
algebraic equations. Here, instead of R we use F as a primary driving vector, and
then use the P∗ as defined by Eq. (31), which is orthogonal to F. Hence, we also
have another option of the optimal iterative algorithm:
(i) Select a suitable value of γ in 0 ≤ γ < 1, and assume an initial value of x0 and
compute F0 = F(x0).
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(ii) For k = 0,1,2 . . ., we repeat the following computations:

Rk = BT
k Fk,

P∗k = Rk−
Rk ·Fk

‖Fk‖2 Fk,

vk
1 = BkFk,

vk
2 = BkP∗k ,

ωk =
[vk

1,Fk,vk
2] ·vk

1

[vk
2,Fk,vk

1] ·vk
2
,

αk =
‖Fk‖2

‖Fk‖2−ωkFk ·Rk
,

βk =
ωk‖Fk‖2

‖Fk‖2−ωkFk ·Rk
,

uk = αkFk +βkP∗k ,
vk = αkvk

1 +βkvk
2,

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (49)

If xk+1 converges according to a given stopping criterion ‖Fk+1‖ < ε , then stop;
otherwise, go to step (ii).

We call the algorithm in Eq. (48) the ODV(R), where R plays the role of a primary
driving vector, and the algorithm in Eq. (49) is called the ODV(F), where F plays
the role of a primary driving vector. Up to here, we have derived two novel algo-
rithms endowed with a Jordan structure in Eq. (44) for computing the coefficient ω .
While the relaxation parameter γ is chosen by the user, depending on the problem,
the parameters α and β are precisely given in Eq. (48) for the algorithm ODV(R),
and in Eq. (49) for the algorithm ODV(F).

4 Numerical examples

In this section we apply the new methods of ODV(F) and ODV(R) to solve some
nonlinear ODEs and PDEs. In order to reveal the superior performance of the
present algorithms, we compare some numerical results with those calculated by
Liu, Dai and Atluri (2011), who proposed two algorithms with the designations
of OIA/ODV[F] and OIA/ODV[R], and also in some cases, we will compare the
present algorithms with the Newton method, the FTIM proposed by Liu and Atluri
(2008a), the residual-norm based algorithm (RNBA) proposed by Liu and Atluri
(2011a), and the optimal vector driven algorithm (OVDA) proposed by Liu and
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Atluri (2011b).
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Figure 1: For example 1, comparing (a) the residual errors, and (b) the convergence 

rates of ODV(F) and ODV(R) with the OIA/ODV[F] in Liu, Dai and Atluri (2011). 

 

 

Figure 1: For example 1, comparing (a) the residual errors, and (b) the convergence
rates of ODV(F) and ODV(R) with the OIA/ODV[F] in Liu, Dai and Atluri (2011).

4.1 Example 1

In this example we apply the present Eqs. (48) and (49), algorithms ODV(R) and
ODV(F), to solve the following nonlinear boundary value problem:

u′′ =
3
2

u2, (50)

u(0) = 4, u(1) = 1. (51)
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The exact solution is

u(x) =
4

(1+ x)2 . (52)

By introducing a finite difference discretization of u at the grid points, we can
obtain

Fi =
1

(∆x)2 (ui+1−2ui +ui−1)−
3
2

u2
i = 0, (53)

u0 = 4, un+1 = 1, (54)

where ∆x = 1/(n+1) is the grid length.

We fix n = 9 and ε = 10−5. The parameter γ used both in ODV(F) and ODV(R) is
0.05. In Fig. 1(a) we compare the residual errors obtained by ODV(F) and ODV(R),
while the convergence rates of ODV(F) and ODV(R) are shown in Fig. 1(b). They
converge with 28 iterations, and the mximum numerical errors are both 4.7×10−3.
Very interestingly, these two algorithms lead to the same results for this exam-
ple. The residual error calculated by Liu, Dai and Atluri (2011) with OIA/ODV[F]
is also shown in Fig. 1 by the dashed line. When both ODV(F) and ODV(R)
converge with 28 iterations, the OIA/ODV[F] converges with 33 iterations. As
shown in Fig. 1(b), the most convergence rates of OIA/ODV[F] are smaller than
that of ODV(F) and ODV(R). The convergence rate is evaluated by 1/

√
sk+1 =

‖Fk‖/‖Fk+1‖ at each iteration k = 0,1,2, . . ..

4.2 Example 2

One famous mesh-less numerical method to solve the nonlinear PDE of elliptic
type is the radial basis function (RBF) method, which expands the trial solution u
by

u(x,y) =
n

∑
k=1

akφk, (55)

where ak are the expansion coefficients to be determined and φk is a set of RBFs,
for example,

φk = (r2
k + c2)N−3/2, N = 1,2, . . . ,

φk = r2N
k lnrk, N = 1,2, . . . ,

φk = exp
(
−

r2
k

a2

)
,

φk = (r2
k + c2)N−3/2 exp

(
−

r2
k

a2

)
, N = 1,2, . . . , (56)
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where the radius function rk is given by rk =
√

(x− xk)2 +(y− yk)2, while (xk,yk), k =
1, . . . ,n are called source points. The constants a and c are shape parameters. In the
below we take the first set of φk with N = 2 as trial functions, which is known as a
multi-quadric RBF [Golberg, Chen and Karur (1996); Cheng, Golberg, Kansa and
Zammito (2003)].

In this example we apply the multi-quadric radial basis function to solve the fol-
lowing nonlinear PDE:

∆u = 4u3(x2 + y2 +a2), (57)

where a = 4 was fixed. The domain is an irregular domain with

ρ(θ) = (sin2θ)2 exp(sinθ)+(cos2θ)2 exp(cosθ). (58)

The exact solution is given by

u(x,y) =
−1

x2 + y2−a2 , (59)

which is singular on the circle with a radius a.

Inserting Eq. (55) into Eq. (57) and placing some field points inside the domain
to satisfy the governing equation and some points on the boundary to satisfy the
boundary condition we can derive n NAEs to determine the n coefficients ak. The
source points (xk,yk), k = 1, . . . ,n are uniformly distributed on a contour given by
R0 +ρ(θk), where θk = 2kπ/n. Under the following parameters R0 = 0.5, c = 0.5,
γ = 0.1, and ε = 10−2, in Fig. 2(a) we show the residual errors obtained by ODV(F)
and ODV(R), of which the ODV(F) is convergent with 294 iterations, and the
ODV(R) is convergent with 336 iterations. It can be seen that the residual-error
curve decays very fast at the first few steps. In Fig. 2(b) we compare the conver-
gence rates of ODV(F) and ODV(R). The numerical solution is quite accurate with
the maximum error being 3.32×10−3 for ODV(F), and 2.82×10−3 for ODV(R).

4.3 Example 3

In this example we apply the ODV(F) and ODV(R) to solve the following boundary
value problem of nonlinear elliptic equation:

∆u(x,y)+ω
2u(x,y)+ ε1u3(x,y) = p(x,y). (60)

While the exact solution is

u(x,y) =
−5
6

(x3 + y3)+3(x2y+ xy2), (61)
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Figure 2: For example 2, comparing (a) the residual errors, and (b) the convergence 
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Figure 2: For example 2, comparing (a) the residual errors, and (b) the convergence
rates of ODV(F) and ODV(R).

the exact p can be obtained by inserting the above u into Eq. (60).

By introducing a finite difference discretization of u at the grid points we can obtain

Fi, j =
1

(∆x)2 (ui+1, j−2ui, j +ui−1, j)+
1

(∆y)2 (ui, j+1−2ui, j +ui, j−1)

+ ω
2ui, j + ε1u3

i, j− pi, j = 0. (62)

The boundary conditions can be obtained from the exact solution in Eq. (61). Here,
(x,y) ∈ [0,1]× [0,1], ∆x = 1/n1, and ∆y = 1/n2.

Under the following parameters n1 = n2 = 13, γ = 0.1, ε = 10−3, ω = 1 and
ε1 = 0.001 we compute the solutions of the above system of NAEs by ODV(F) and
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Figure 3: For example 3, comparing (a) the residual errors of ODV(F), ODV(R),
OIA/ODV[F] and OIA/ODV[R], and (b) the convergence rates of ODV(F) and
ODV(R).

ODV(R). In Fig. 3(a) we show the residual errors, of which the ODV(F) converges
with only 41 iterations, and the ODV(R) requires 43 iterations. The reason for the
fast convergence of ODV(F) and ODV(R) is shown in Fig. 3(b), where the conver-
gence rate of ODV(R) is slightly lower than that of ODV(F). The maximum numer-
ical error is about 5.2× 10−6 for ODV(F) and ODV(R). Very accurate numerical
results were obtained by the present ODV algorithms. The residual errors calcu-
lated by Liu, Dai and Atluri (2011) with OIA/ODV[F] and OIA/ODV[R] are also
shown in Fig. 3. The numbers of iterations for ODV(F), ODV(R), OIA/ODV[F]
and OIA/ODV[R] are, respectively, 41, 43, 59 and 575. Obviously, the ODV(F)
and ODV(R) are faster than OIA/ODV[F], and much faster than OIA/ODV[R].
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Figure 4: For example 4, comparing (a) the residual errors of ODV(F), ODV(R)
and OIA/ODV[F], and (b) the convergence rates of ODV(F) and ODV(R).

4.4 Example 4

We consider a nonlinear heat conduction equation:

ut = α(x)uxx +α
′(x)ux +u2 +h(x, t), (63)

α(x) = (x−3)2, h(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (64)

with a closed-form solution u(x, t) = (x−3)2e−t .

By applying the ODV(F) and ODV(R) to solve the above equation in the domain
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Figure 5: For example 5, with the NAEs from HB solved by ODV(F), ODV(R),
OVDA [Liu and Atluri (2011b)], OIA/ODV[F] and OIA/ODV[R] [Liu, Dai and
Atluri (2011)], comparing (a) the residual errors and (b) the convergence rates.

of 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 we fix ∆x = 1/14, ∆t = 1/20, γ = 0.1 and ε = 10−3.
In Fig. 4(a) we show the residual errors, which are convergent very fast with 69
iterations for ODV(R) with γ = 0.1, and 67 iterations for ODV(F) with γ = 0.11.
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The convergence rates of ODV(F) and ODV(R) are compared in Fig. 4(b). The
numerical results are quite accurate with the maximum error being 3.3×10−3. The
residual error calculated by Liu, Dai and Atluri (2011) with OIA/ODV[F] is also
shown in Fig. 4. The numbers of iterations for ODV(F), ODV(R) and OIA/ODV[F]
are, respectively, 67, 69 and 114. Obviously, the ODV(F) and ODV(R) are faster
than OIA/ODV[F].

4.5 Example 5

In this example, we solve the widely investigated Duffing equation by applying
the Harmonic Balance Method (HB). The non-dimensionalized Duffing equation is
given as follows:

ẍ+2ξ ẋ+ x+ x3 = F sinωt, (65)

where x is a non-dimensionalized displacement, ξ is a damping ratio, F is the
amplitude of external force, and ω is the excitation frequency of external force.
Traditionally, to employ the standard harmonic balance method (HB), the solution
of x is sought in the form of a truncated Fourier series expansion:

x(t) = x0 +
N

∑
n=1

[x2n−1 cos(nωt)+ x2n sin(nωt)], (66)

where N is the number of harmonics used in the truncated Fourier series, and
xn, n = 0,1, . . . ,2N are the unknown coefficients to be determined in the HB method.
We differentiate x(t) with respect to t, leading to

ẋ(t) =
N

∑
n=1

[−nωx2n−1 sin(nωt)+nωx2n cos(nωt)], (67)

ẍ(t) =
N

∑
n=1

[−(nω)2x2n−1 cos(nωt)− (nω)2x2n sin(nωt)]. (68)

The nonlinear term in Eq. (65) can also be expressed in terms of the truncated
Fourier series with N harmonics kept:

x3(t) = r0 +
N

∑
n=1

[r2n−1 cos(nωt)+ r2n sin(nωt)]. (69)

Thus, considering the Fourier series expansion as well as the orthogonality of
trigonometric functions, rn, n = 0,1, . . . ,2N are obtained by the following formu-
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las:

r0 =
1

2π

∫ 2π

0
{x0 +

N

∑
n=1

[x2n−1 cos(nθ)+ x2n sin(nθ)]}3dθ , (70)

r2n−1 =
1
π

∫ 2π

0
{x0 +

N

∑
n=1

[x2n−1 cos(nθ)+ x2n sin(nθ)]}3 cos(nθ)dθ , (71)

r2n =
1
π

∫ 2π

0
{x0 +

N

∑
n=1

[x2n−1 cos(nθ)+ x2n sin(nθ)]}3 sin(nθ)dθ . (72)

Note that because of the orthogonality of trigonometric functions, rn, n = 0,1, . . . ,2N
can be achieved without integration. Next, substituting Eqs. (66)-(69) into Eq. (65),
and collecting the terms associated with each harmonic cos(nθ), sin(nθ), n =
1, . . . ,N, we finally obtain a system of NAEs in a vector form:

(A2 +2ξ A+ I2N+1)Qx +Rx = FH, (73)

where

Qx =


x0
x1
...
x2N

 , Rx =


r0
r1
...
r2N

 , H =



0
0
1
0
...
0


,

A =



0 0 0 · · · 0

0 J1 0 · · · 0

0 0 J2 · · · 0
...

...
... · · ·

...

0 0 0 · · · JN


, Jn = n

[
0 ω

−ω 0

]
. (74)

One should note that rn, n = 0,1, . . . ,2N are analytically expressed in terms of the
coefficients xn, n = 0,1, . . . ,2N, which makes the HB not immediately ready for
application. Later, we will introduce a post-conditioned harmonic balance method
(PCHB). In the present example, we can solve the Duffing equation by employing
the standard HB method with the help of Mathematica. In doing so, one has no
difficulty to handle the symbolic operations to evaluate rn, and a large number
of harmonics can be taken into account. In the current case, we apply the HB
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method with 8 harmonics to the Duffing equation (65), and then arrive at a system
of NAEs in Eq. (73). The NAEs are to be solved by ODV(F), ODV(R) and OVDA
algorithms. To start with, we set ξ = 0.1, ω = 2, F = 1.25 and the initial values of
xn to be zeros. The stop criterion is taken as ε = 10−8.

We compare the residual errors obtained by ODV(F), ODV(R) and OVDA [Liu
and Atluri (2011b)] in Fig. 5(a). It shows that the ODV algorithms converge much
faster than OVDA. Specifically, the iterations to achieve convergence in ODV(F),
ODV(R) and OVDA algorithms are, respectively, 116, 116 and 6871. The conver-
gence ratio between ODV methods and OVDA is an amazing 59.2. Furthermore,
the convergence rates for these methods are also provided in Fig. 5(b), from which
we can see that the rate of convergence of ODV(F) is the same as that of ODV(R),
while the convergence rates of the ODV methods are much superior to OVDA. In
this case, the peak amplitude is A = 0.43355. The numerical results of the coef-
ficients xn, n = 0,1, . . . ,16 are given in Table 1. It shows that all the coefficients
of odd modes are zeros and the absolute values of odd modes decrease with the
increasing mode numbery as expected.

Table 1: The coefficients of xn obtained by solving the NAEs from the Harmonic
Balance Method (HB)

xn value xn value
x0 0 x9 -0.000000567563101
x1 -0.059988154613779 x10 -0.000000609434275
x2 -0.428790543120576 x11 0
x3 0 x12 0
x4 0 x13 0.000000001021059
x5 0.000254872564318 x14 0.000000000587338
x6 0.000525550273254 x15 0
x7 0 x16 0
x8 0

We also applied the numerical methods of OIA/ODV[F] and OIA/ODV[R] [Liu,
Dai and Atluri (2011)] to solve this problem. The residual errors and the conver-
gence rates of these methods are compared with the present ODV(F) and ODV(R)
in Fig. 5. In Table 2 we summarize the numbers of iterations of these methods.

In summary, the HB method can simply, efficiently, and accurately solve problems
with complex nonlinearity with the help of symbolic operation software, i.e. Math-
ematica, and Maple. However, if many harmonics are considered, Eq. (73) will
become ill-conditioned, and the expressions for the nonlinear terms, Eqs. (70)-(72)
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Table 2: By solving the NAEs from HB, comparing the numbers of iterations

Methods Numbers of iterations
OVDA [Liu and Atluri (2011b)] 6871
OIA/ODV[F] [Liu, Dai and Atluri (2011)] 169
OIA/ODV[R] [Liu, Dai and Atluri (2011)] 1705
Present ODV(F) 116
Present ODV(R) 116

become much more complicated. In order to employ the HB method to a complex
system with higher modes, we can apply the postconditioner as first developed by
Liu, Yeih and Atluri (2009) to Eq. (73), which is obtained from a multi-scale Trefftz
boundary-collocation method for solving the Laplace equation:

Q̃x = TRQx, (75)

where TR is a postconditioner given by

θ j =
2 jπ

n
, n = 2N +1, j = 0,1, . . . ,2N, (76)

TR =


1 cosθ0 sinθ0 · · · cos(Nθ0) sin(Nθ0)

1 cosθ1 sinθ1 · · · cos(Nθ1) sin(Nθ1)
...

...
... · · ·

...
...

1 cosθ2N sinθ2N · · · cos(Nθ2N) sin(Nθ2N)

 . (77)

The inverse of TR is

T−1
R =

2
n



1
2

1
2 · · · 1

2
1
2

cosθ0 cosθ1 · · · cosθ2N−1 cosθ2N

sinθ0 sinθ1 · · · sinθ2N−1 sinθ2N

...
...

... · · ·
...

cos(Nθ0) cos(Nθ1) · · · cos(Nθ2N−1) cos(Nθ2N)

sin(Nθ0) sin(Nθ1) · · · sin(Nθ2N−1) sin(Nθ2N)


(78)

Now, in addition the unknown Qx in Eq. (73) we can define similarly

R̃x = TRRx, H̃ = TRH, A = T−1
R DTR, (79)
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and thus rearrange Eq. (73) to:

(A2 +2ξ A+ I2N+1)T−1
R Q̃x +T−1

R R̃x = FT−1
R H̃x,

(T−1
R DTRT−1

R DTR +2ξ T−1
R DTR +T−1

R TR)T−1
R Q̃x +T−1

R R̃x = FT−1
R H̃x,

(T−1
R D2TR +2ξ T−1

R DTR +T−1
R TR)T−1

R Q̃x +T−1
R R̃x = FT−1

R H̃x.

Finally, by dropping out T−1
R we can obtain

(D2 +2ξ D+ I2N+1)Q̃x + R̃x = FH̃. (80)

By using Eqs. (75), (79) and (77) it is interesting that

Q̃x = TRQx =


x(θ0)
x(θ1)
...
x(θ2N)

 , R̃x = TRRx =


x3(θ0)
x3(θ1)
...
x3(θ2N)

 , H̃ = TRH =


sin(θ0)
sin(θ1)
...
sin(θ2N)

 .

(81)

So now, we can solve for the unknown x(θk), k = 0,1, . . . ,2N in Eq. (80), instead
of the unknown xk, k = 0,1, . . . ,2N in Eq. (73). Here, the 2N +1 coefficients xn are
recast into the variables x(θn) which are selected at 2N +1 equally spaced phase an-
gle points over a period of oscillation by a constant Fourier transformation matrix.
In the present HB method, namely the post-conditioned harmonic balance method
(PCHB), the analytical expression for nonlinear term is no longer necessary. Thus,
for a large number of harmonics, the PCHB can be implemented more easily. In
this example, we apply the PCHB with 8 harmonics to the Duffing equation (65)
by solving a system of NAEs in Eq. (80).

We compare the residual errors and convergence rates of ODV(R), ODV(F) and
OVDA [Liu and Atluri (2011b)] in Figs. 6(a) and 6(b). It shows that the ODV(R)
and ODV(F) converge up to roughly one hundred and fifty times faster than OVDA,
and the numbers of iterations of ODV(R) and ODV(F) coincide just as we found
in example 1. Specifically, the iterations of ODV(R), ODV(F) and OVDA are,
respectively, 157, 157 and 23995. The ratio between the convergent speeds of
ODV and OVDA is amazingly 152.8. In this case, the peak amplitude is also found
to be A = 0.43355.

The coefficients of x(θn) obtained by solving the NAEs from PCHB are listed in
Table 3. It can be seen from Table 3 that the first nine values are negative and
the last eight values are positive, which is as expected. Because the 2N + 1 values
represent the displacements at 2N + 1 equally spaced angular phase points over a
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Figure 6: For example 5, with the NAEs from PCHB solved by ODV(F), ODV(R), 

OVDA [Liu and Atluri (2011b)], OIA/ODV[F] and OIA/ODV[R] [Liu, Dai and Atluri 

(2011)], comparing (a) the residual errors and (b) the convergence rates. 

 

Figure 6: For example 5, with the NAEs from PCHB solved by ODV(F), ODV(R),
OVDA [Liu and Atluri (2011b)], OIA/ODV[F] and OIA/ODV[R] [Liu, Dai and
Atluri (2011)], comparing (a) the residual errors and (b) the convergence rates.

period. As in a period of oscillation, the displacements of the first half period and
those of the second half period are expected to be having opposite values.

The coefficients of xn obtained by solving the NAEs from PCHB are listed in Table
4. It should be noted that the values corresponding to odd modes are not exact
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Figure 7: For example 6, solved by ODV(F), comparing (a) the solution paths, and  

(b) the residual errors for slightly different initial conditions. 

 

 

 

 

Figure 7: For example 6, solved by ODV(F), comparing (a) the solution paths, and
(b) the residual errors for slightly different initial conditions.

zeros, which is different from the HB method. However, all these values are very
small and almost close to zero. The reason for this is that in Eq. (66) the trial
function of x(t) is exactly equal to the Fourier series expansion on the right hand
side only when N approaches infinity.

We also applied the numerical methods of OIA/ODV[F] and OIA/ODV[R] [Liu,
Dai and Atluri (2011)] to solve this problem. The residual errors and the conver-
gence rates of these methods are compared with the present ODV(F) and ODV(R)
in Fig. 6. In Table 5 we summarize the numbers of iterations of these methods.



A Further Study in Iteratively Solving Nonlinear System 219

 

-40 0 40 80 120

x

-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

y

1E-11
1E-10

1E-9
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7
1E+8

R
es

id
u
a
l 
er

ro
r

0 40 80

Iterations

(a)

(b)

120

ODV(F) with =0.105

ODV(F) with =0.106

 

 

Figure 8: For example 6, solved by ODV(F), comparing (a) the solution paths, and  

(b) the residual errors for slightly different values of parameter γ. 

 

 

 

Figure 8: For example 6, solved by ODV(F), comparing (a) the solution paths, and
(b) the residual errors for slightly different values of parameter γ .

4.6 Example 6

We revisit the following two-variable nonlinear equation [Hirsch and Smale (1979)]:

F1(x,y) = x3−3xy2 +a1(2x2 + xy)+b1y2 + c1x+a2y = 0, (82)

F2(x,y) = 3x2y− y3−a1(4xy− y2)+b2x2 + c2 = 0, (83)

where a1 = 25, b1 = 1, c1 = 2, a2 = 3, b2 = 4 and c2 = 5.

This equation has been studied by Liu and Atluri (2008a) by using the fictitious
time integration method (FTIM), and then by Liu, Yeih and Atluri (2010) by using
the multiple-solution fictitious time integration method (MSFTIM). Liu and Atluri
(2008a) found three solutions by guessing three different initial values, and Liu,
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Figure 9: For example 6, solved by ODV(F) and the Newton method, comparing (a)  

the solution paths, and (b) the residual errors. 

 

 

Figure 9: For example 6, solved by ODV(F) and the Newton method, comparing
(a) the solution paths, and (b) the residual errors.

Yeih and Atluri (2010) found four solutions. Liu and Atluri (2011b) applied the
optimal vector driven algorithm (OVDA) to solve this problem, and they found the
fifth solution.

Starting from an initial value of (x0,y0)= (10,10) we solve this problem by ODV(F)
for four cases with (a) γ = 0.105, (b) γ = 0.106, (c) γ = 0.02, and (d) γ = 0.05 un-
der a convergence criterion ε = 10−10. The residual errors of (F1,F2) are all smaller
than 10−10. For case (a) we find the second root (x,y) = (0.6277425, 22.2444123)
through 73 iterations. For case (b) we find the fourth root (x,y) = (50.46504, -
37.2634179) through 110 iterations. For case (c) we find the fifth root (x,y) =
(1.6359718, 13.8476653) through 49 iterations. For case (d) we find the first root
(x,y) = (-50.3970755, -0.8042426) through 259 iterations. To find these solutions
the FTIM [Liu and Atluri (2008a)] spent 792 iterations for the first root, 1341 iter-
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Figure 10: For example 7, solved by ODV(F) and the RNBA [Liu and Atluri (2011a)], 

comparing (a) the  residual errors, and (b) the numerical errors. 
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Table 3: The unknown x(θn) obtained by solving the NAEs from a Post-
Conditioned Harmonic Balance Method (PCHB)

x(θn) value x(θn) value
x(θ0) -0.059733847308209 x(θ9) 0.137264260203943
x(θ1) -0.210250668263990 x(θ10) 0.276231988329339
x(θ2) -0.332939493461817 x(θ11) 0.378380328434565
x(θ3) -0.410923683734554 x(θ12) 0.429381360255661
x(θ4) -0.433072441477243 x(θ13) 0.421862418920612
x(θ5) -0.396170461505062 x(θ14) 0.356943737674487
x(θ6) -0.305603234068375 x(θ15) 0.243969709017363
x(θ7) -0.174180100211517 x(θ16) 0.098603616046807
x(θ8) -0.019763488665098

ations for the fourth root, and 1474 iterations for the third root, while the OVDA
[Liu and Atluri (2011b)] spent 68 iterations to find the fifth root. Obviously, the
performance of present ODV(F) is better than these algorithms.

In Fig. 7 we compare the solution paths and residual errors for two cases with the
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Table 4: The coefficients of xn obtained by solving the NAEs from PCHB

xn value xn value
x0 0.000000000011120 x9 -0.000000567584459
x1 -0.059988153310220 x10 -0.000000609447325
x2 -0.428790541309004 x11 0.000000000004109
x3 -0.000000000000186 x12 -0.000000000000276
x4 0.000000000000063 x13 0.000000001015925
x5 0.000254872556411 x14 0.000000000583850
x6 0.000525550267339 x15 -0.000000000000765
x7 0.000000000000008 x16 0.000000000000940
x8 0.000000000000001

Table 5: By solving the NAEs from PCHB, comparing the numbers of iterations

Methods Numbers of iterations
OVDA [Liu and Atluri (2011b)] 23995
OIA/ODV[F] [Liu, Dai and Atluri (2011)] Very large (omitted)
OIA/ODV[R] [Liu, Dai and Atluri (2011)] 12275
Present ODV(F) 157
Present ODV(R) 157

same γ = 0.02 but with a slightly different initial conditions with (a) (x0,y0) =
(10,10) and (b) (x0,y0) = (10,10.1). Case (a) tends to the fifth root, but case (b)
tends to the second root. In Fig. 8 we compare the solution paths and residual errors
for two cases with the same initial condition (x0,y0) = (10,10) but with a slightly
different (a) γ = 0.105 and (b) γ = 0.106. When case (a) tends to the second root,
case (b) tends to the fourth root. The above results show that for this problem the
ODV(F) is sensitive to initial condition and the value of the parameter γ . However,
no matter what cases are considered, the present ODV(F) is always available to
obtain one of the solutions.

In the last case we compare the Newton method with the ODV(F) with γ = 0.02.
Starting from the same initial value of (x0,y0) = (10,10), and under the same con-
vergence criterion 10−10, when the Newton method converges with 506 iterations,
it is amazingly that the ODV(F) only needs 49 iterations to obtain the same fifth
root (x,y) = (1.6359718,13.8476653). We compare in Fig. 9(a) the solution paths
and in Fig. 9(b) the residual errors of the above two methods, from which we can
see that the solution path of the Newton method spends many steps around the zero
point and is much irregular than the solution path generated by the ODV(F). From
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the solution paths as shown in Fig. 9(a), and the residual errors as shown in Fig. 9(b)
we can observe that the mechanism of both the Newton method and the ODV(F) to
search solution has three stages: a mild convergence stage, an orientation adjusting
stage where residual error appearing to be a plateau, and then following a fast con-
vergence stage. It can be seen that the plateau for the Newton method is too long,
which causes a slower convergence than ODV(F). So for this problem the ODV(F)
is ten times faster than the Newton method.

Remark: In solving linear systems, van den Doel and Ascher (2011) have found
that the fastest practical methods of the family of faster gradient descent methods
in general generate the chaotic dynamical systems. Indeed, in an earlier time, Liu
(2011) has developed a relaxed steepest descent method for solving linear systems,
and found that the iterative dynamics can undergo a Hopf bifurcation with an inter-
mittent behavior [Liu (2000b, 2007)] appeared in the residual-error descent curve.
Similarly, Liu and Atluri (2011b) also found the intermittent behavior of the iter-
ative dynamics by using the Optimal Vector Driven Algorithm (OVDA) to solve
nonlinear systems. The above sensitivity to initial condition and parameter value
by using the ODV(F) also hints that the iterative dynamics generated by the present
ODV(F) is chaotic. It is interesting that in order to achieve a faster convergence
the iterative dynamics generated by the algorithm is usually chaotic.

4.7 Example 7

We consider an almost linear Brown’s problem [Brown (1973)]:

Fi = xi +
j=n

∑
j=1

x j− (n+1), i = 1, . . . ,n−1, (84)

Fn =
j=n

∏
j=1

x j−1, (85)

with a closed-form solution xi = 1, i = 1, . . . ,n.

As demonstarted by Han and Han (2010), Brown (1973) solved this problem with
n = 5 by the Newton method, and gave an incorrectly converged solution (-0.579,
-0.579, -0.579, -0.579, 8.90). For n = 10 and 30, Brown (1973) found that the
Newton method diverged quite rapidly. Now, we apply our algorithm to this tough
problem with n = 100. However, Liu and Atluri (2011a) using the residual-norm
based algorithm (RNBA) can also solve this problem without any difficulty.

Under the convergence criterion ε = 10−6 and with the initial guess xi = 0.5 we
solve this problem with n = 100 by using the RNBA, whose residual error and nu-
merical error are shown in Fig. 10 by the solid lines. The accuracy is very good
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with the maximum error being 3×10−4. Under the same conditions we apply the
ODV(F) to solve this problem with γ = 0.1. When the RNBA does not converge
within 1000 iterations, the residual error for the ODV(F) as shown in Fig. 10(a) by
the dashed line can converge with 347 iterations, and its numerical error as shown
in Fig. 10(b) by the dashed line is much smaller than that of RNBA, with the max-
imum error being 2.5×10−5.

5 Conclusions

In the present paper, we have derived two Optimal Iterative Algorithms with Opti-
mal Descent Vectors to accelerate the convergence speed in the numerical solution
of NAEs. These two algorithms were named the ODV(F), when the residual vector
F is a primary driving vector; and the ODV(R) when the descent vector R is a pri-
mary driving vector. The ODV methods have a better computational efficiency and
accuracy than other algorithms, e.g., the FTIM, the RNBA, the Newton method,
the OVDA and the OIA/ODV, in solving the nonlinear algebraic equations. We also
applied the algorithms of ODV(F) and ODV(R) to solve the Duffing equation by us-
ing a harmonic balance method and a post-conditioned harmonic balance method.
The computational efficiency was very good to treat such a highly nonlinear Duff-
ing oscillator, using a large number of harmonics in the Harmonic Balance Method.
Amazingly, the ratio between the convergence speeds of ODV and OVDA is 152.8.
Our earlier and present studies revealed that in order to achieve a faster conver-
gence the iterative dynamics generated by the algorithm is essentially chaotic.
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