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Computations of a Compressible Turbulent Flow in a
Rocket Motor-Chamber Configuration with Symmetric

and Asymmetric Injection
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Abstract: In the present paper, the characteristics of compressible turbulent flow
in a porous channels subjected to either symmetric or asymmetric mass injection
are numerically predicted. A numerical computer-program including different tur-
bulence models has been developed by the present authors to investigate the con-
sidered flow. The numerical method is based on the control volume approach to
solve the governing Reynolds-Averaged Navier-Stokes (RANS) equations. Turbu-
lence modeling plays a significant role here, in light of the complex flow generated,
so several popular engineering turbulence models with good track records are eval-
uated, including five different turbulence models. Numerical results with available
experimental data showed that the flow evolves significantly with the distance from
the front wall such that different regimes of flow development can be observed.
The comparison between these computational models with experimental data for
the axial velocity profiles and turbulent stresses is performed. The best numerical
results are obtained from the shear-stress transport k−ω model (SST k−ω) and
v2− f turbulence models as well. Although the v2− f turbulence model generates
fair results compared to the experimental ones, it needs little bit improvement to
be reliable to treat this kind of complex flows. However, because of the high cost
and long computation time required with using either the family of k−ω or v2− f
as well as the Reynolds Stress Model (RSM), the family of k− ε turbulence model
still produces the behavior of turbulent flow in such complex turbulence structure
with lowest cost and fair results.
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1 Introduction

Flows through porous channels with wall injection are encountered in many engi-
neering applications such as transpiration cooling, boundary-layer control, and the
combustion induced flow-field in solid rocket motors (SRM). The internal flow de-
velopment inside the combustion chamber of a solid rocket plays an essential role
in motor design and operation. The mean velocity field and the turbulence charac-
teristics have a strong-direct impact on many physical processes occurring within
the motor such as the internal ballistics and erosive burning, the convective heat
transfer to the thermal protection, the motion of alumina droplets and subsequent
slag deposition at motor aft-end. Flow in the core of a SRM is unusual form of
wall turbulence because the turbulence is created by the release of gas normal to
the wall. Turbulence effects significantly influence the flow processes in proximity
of the combustion surface. A full treatment of this region would include the model-
ing and resolution of complex physical and chemical phenomena which take place
during the solid propellant combustion process. This process occurs in a very thin
layer O(1 mm) scale above the combustion surface. For simplicity, most of the ex-
perimental and numerical simulations mimics the burning surface as a porous wall
through which mass injection occurs at a given total temperature.

The structure of the internal flow in a SRM is very important to the stability and
the operation of the motor. The flow in the chamber can be simulated by a channel
with fluid injection through permeable walls. This type of flow evolves signifi-
cantly with respect to the distance from the head end of the duct. Different flow
regimes can be observed depending on the injection mass flow rate or the injection
Reynolds number at the porous wall. In the first regime the velocity field is devel-
oped according to the laminar theory. The second flow regime is characterized by
the development of turbulence and the transition process of the mean axial veloc-
ity when a critical turbulence threshold is attained; see Ciucci; Iaccarino; Moser;
Najjar; Durbin (1998).

The injection-driven flow in a cylindrical port rocket motor (i.e., with a closed end)
is significantly different from the flow in a pipe with or without porous walls. Mass
addition from the wall in injection-driven flows is usually quite large. As a result,
the velocity profile for an injection-driven flow comes essentially from a balance
between the pressure gradient and inertial forces, in contrast with a pipe flow where
the velocity profile is determined by a balance of viscous stresses and pressure
forces. The experiments performed by Culick (1966) and Dunlap; Willoughby;
Hermsen (1974) showed that the mean flow field is accurately represented by a
cosine transverse distribution for the axial velocity in the forward region of a cylin-
drical port rocket chamber. However, these investigations were performed at large
injection rates, revealed that the transition from laminar to turbulent flow was car-
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ried out over most of the chamber.

Because of the progress in computing power, channel flows with fluid injection
through porous walls have been studied numerically by several authors. Traineau;
Hervat; Kuentzmann (1986) conducted cold flow simulations of a two-dimensional
nozzleless motor, and Dunlap; Blackner; Waugh; Brown; Willoughby (1990) inves-
tigated the internal flow in a cylindrical port rocket chamber. In both cases, injec-
tion rates were considerably high. Beddini (1986) performed numerical studies of
the injection-driven flow in a duct using a parabolic form of the Navier-Stokes equa-
tions together with a full Reynolds stress turbulence model. In that work, turbulent
fluctuations at the surface, described as "pseudo-turbulence", were introduced for
the first time.

Several numerical investigations of flows without fluid injection and with fluid in-
jection at the wall have been performed in the past. Sabnis; Gibeling; McDonalds
(1989) carried out a simulation of the test motor geometry employed by Dunlap;
Blackner; Waugh; Brown; Willoughby (1990) using the k− ε turbulence model of
Jones; Launder (1972) and based on the computation method described in Patankar
(1980). A large over-prediction of the turbulence intensity profiles was obtained.
Sabnis; Gibeling; McDonalds (1989) adopted a modified form of the same turbu-
lence model and compared their results with the data of Traineau; Hervat; Kuentz-
mann (1986); some improvements were achieved, but a considerable discrepancy
in the turbulence data remained.

With much more increase in computer power and advancements in CFD in recent
years, both LES and DNS analyses of turbulent flows with transpiration walls have
been performed. Moin (1982) and Piomelli; Moin; Ferziger (1991) applied LES
to compute the flow in a channel with a uniform injection at the lower wall and an
equal suction at the opposite wall, to simulate the experiment carried by Andersen;
Kays; Moffat (1975) with low injection rates.

Liou; Lien (1995) and Liou; Lien; Hwang (1998) performed a numerical simula-
tion using a two-dimensional large eddy simulations approaches without explicit
subgrid scale modeling. Although their results were in general in good agreement
with the experimental data of Traineau; Hervat; Kuentzmann (1986), turbulence
intensities were somewhat under-predicted in the second half of the channel. The
results of Liou; Lien; Hwang (1998) showed that the large eddy structures play an
important role in the flow. Recently, Apte; Yang (2001) introduced a solution for
the three-dimensional Navier-Stokes equations using a compressible version of a
dynamic Smagorinsky model for simulating this flow. The vortex-stretching and
rolling mechanisms of the flow were well reproduced. They revealed that the large
eddy simulation must be three-dimensional for predicting the Reynolds stresses.
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Generally, the problem of porous-wall channel with mass addition through the
porous wall needs more attention; in one hand, to understand the behavior of such
complex flow and in the other hand to find the suitable turbulence models for such
configuration. In the present paper, RANS simulation using five different turbu-
lence models, including the standard k− ε , SST k−ω , Reynolds stress, extended
k− ε and v2− f turbulence models are performed to understand the nature of the
flow field in a channel with permeable walls.

The aim of the present study is to assess the applicability of different turbulence
models in a numerical code developed by the present authors, to the simulation of
such class of flows; and to improve the understanding of the fluid physics governing
this turbulent flow and to obtain some physical insights on the near-wall turbulent
structures. To this end, the present work has comprised two separate but compli-
mentary activities. In the first activity, numerical simulation is performed to simu-
late a duct with asymmetrical injection and freely discharges to atmosphere; corre-
sponding to available experimental work in literature. The simplest and successful
turbulence model will be chosen for the second more complex activity concerning
a rocket motor chamber with realistic flow conditions, previously measured.

2 Mathematical model

The time-averaged conservation equations can be written for compressible steady
flow as follows:

Time-Averaged Continuity Equation
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Time-Averaged Momentum Equation
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Time-Averaged Energy Equation
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Where, ui denotes the mean velocities and u′i and u′j are the turbulence velocities,
ρ is the density, p is the pressure, λ is the thermal conductivity, Cp is the specific
heat at constant pressure, Prt is the turbulent Prandtl number and µ is the laminar
viscosity. The total energy per unit volume is defined as: ρe = ρCvT + 0.5ρu2

i ,
where Cv is the specific heat at constant volume and T is the temperature.
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Equations 1 and 2 have the same general form as the instantaneous Navier-Stokes
equations, with the velocities and other scalar variables now representing ensemble-
averaged (or time-averaged) values. Additional terms now appear that represent the
effects of turbulence (Reynolds stresses; −ρu′iu

′
j). These stresses must be modeled

in order to close Equations 2 and 3. For compressible flow, equations 1, 2 and 3 can
be interpreted as Favre-averaged conservation equations, with the velocities repre-
senting mass-averaged values. The Reynolds-averaged conservation equations for
steady compressible turbulent flow along with a turbulence model are coupled with
the equation of state, p = ρRT to close the system of equations.

2.1 Turbulence modeling

In industrial CFD applications, RANS modeling remains one of the main approaches
when dealing with turbulent flows. During the last few decades, a great variety of
RANS turbulence models are developed. Modeling approaches in the context of
RANS have shown different degrees of success in various engineering applications,
spanning from mixing-length models, linear and nonlinear eddy viscosity models
to algebraic and differential Reynolds stress models with a hierarchy of increasing
complexity in the modeling formulation and related CFD implementations. For
an appropriate compromise between computational efficiency and accuracy, only a
few of RANS models have been popularized in the aerodynamic CFD applications.

The Reynolds-averaged approach to turbulence modeling requires appropriate mod-
eling of the Reynolds stresses in Equation 2. A common method employs the
Boussinesq hypothesis, see Hinze (1975) to relate the Reynolds stresses to the mean
velocity gradients:

−ρu′iu
′
j = µt(

∂ui

∂x j
+

∂u j

∂xi
)− 2

3
(ρk + µt

∂uk

∂xk
)δi j (4)

where, δi j is the Kronecker’s delta function (δi j=1 if I = j and δi j=0 if I 6= j), k
is the turbulent kinetic energy. The Boussinesq hypothesis is used in the k− ε ,
v2− f and SST k−ω models. The advantage of this approach is the relatively low
computational cost associated with the computation of the turbulent viscosity, µt .
In the case of the k− ε and SST k−ω models, two additional transport equations
(for the turbulence kinetic energy, k, and either the turbulence dissipation rate, ε ,
or the specific dissipation rate, ω) are solved, and µt is computed as a function of
k and ε or ω . The disadvantage of the Boussinesq hypothesis as presented is that it
assumes µt is an isotropic scalar quantity, which is not strictly true.

The alternative approach, embodied in the Reynolds-stress model (RSM), is to
solve transport equations for each of the terms in the Reynolds stress tensor. An ad-
ditional scale-determining equation (normally for ε) is also required. This means
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that five additional transport equations are required in 2D flows and seven addi-
tional transport equations must be solved in 3D flows.

In many cases, models based on the Boussinesq hypothesis perform very well, and
the additional computational expense of the Reynolds stress model is not justified.
However, the RSM is clearly superior for situations in which the anisotropy of
turbulence has a dominant effect on the mean flow. Such cases include highly
swirling flows and stress-driven secondary flows.

The numerical method considered in the present developed code is based on the
finite volume approach. The discretised equations, along with the boundary condi-
tions, are solved using a staggered grid. Using the solver, the conservation of mass
and momentum are solved sequentially and a pressure-correction equation is used
to ensure the conservation of momentum and the conservation of mass (continu-
ity equation). Five different turbulence models, i.e. the standard k− ε model, the
shear-stress transport k−ω model (SST k−ω), the Reynolds stress models (RSM),
are employed. The implementation of the modified version of k− ε by Chen; Kim
(1987) and the modified v2− f (V2F turbulence model of Durbin (1995)) are also
considered. A brief discussion of these turbulence models are presented in the fol-
lowing subsections.

2.1.1 Standard k− ε of Launder and Spalding (SKE)

The standard k− ε model is derived by assuming that the flow is fully turbulent
and the effects of molecular viscosity are negligible (Launder; Spalding (1974)).
For the locations near walls, the standard k− ε model, demands an additional sub-
model to account the effects of molecular viscosity. In this situation, wall functions
based on semi-empirical formulas and functions are usually employed.

2.1.2 Shear stress transport k−ω model (SST k−ω)

The SST k−ω model was developed by Menter (1994), which employs the stan-
dard k−ω model of Wilcox (1998) in the near-wall region and the transformed
k− ε model in the far-wall region. The standard k−ω model is derived based on
the turbulence kinetic energy (k) and the specific dissipation rate (ω), which is de-
fined as the ratio of ε to k (Wilcox (1998)). The definition of the turbulent viscosity
is modified to account for the transport of turbulent shear stress.

2.1.3 Reynolds stress model (RSM)

The RSM does not employ the Boussinesq hypothesis to relate the Reynolds stresses
to the mean velocity gradients. However, the Reynolds stresses are solved in a
transport equation for each of the terms in the Reynolds stress tensor; see Launder;
Reece; Rodi (1975).
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2.1.4 Extended k− ε closure of Chen and Kim

For the closure of the governing equations using the extended k−ε closure of Chen;
Kim (1987) (Chen-Kim), the transport equation of the turbulent kinetic energy can
be written as:
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(ρu jk) =

∂

∂x j

[
(µ +

µt

σk
)
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]
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where Pr and ε represent the production rate and the dissipation rate of the turbulent
kinetic energy, k, respectively, and σk is a modeling constant. The production rate is
related to the mean strain of the velocity field through the Boussinesq assumption.
That is,

Pr = µtS2 (6)
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For the dissipation rate equation, two time scales are included to allow the dissi-
pation rate to respond to the mean strain more effectively than that of the standard
k− ε model.

This is the major improvement of the present k− ε model for complex turbulent
flow problems. The time scales included in the present model are: the production
range time scale, k/Pr, and the dissipation rate time scale, k/ε. The final expression
of the dissipation rate transport equation is given as (Chen; Kim (1987)):
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The last term of the past equation represents the energy transfer rate from large
scale turbulence to small scale turbulence controlled by the production range time
scale and the dissipation rate time scale. The net effect of the present energy trans-
fer function enhances the development of ε when the mean strain is strong, or
large production rate, and the generation of ε is suppressed when the mean strain is
weak, or small production rate. Consequently, as the model constants are carefully
tuned, the present formulation enables the dissipation rate to respond to the mean
flow field more rapidly so as to control the development of the turbulent kinetic
energy more effectively. The model constants are: σk = 0.75; σε = 1.15; C1ε =
1.15; C2ε = 1.9; C3ε = 0.25.
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2.1.5 V2F turbulence model (modified v2− f )

In essence the v2− f model introduced by Durbin (1995) extends the standard k−ε

model to low-Reynolds number flow regions. This is realized by modifying the
eddy viscosity formulation and solving two additional partial differential equations:
an equation describing the transport of the turbulent intensity normal to the stream-
lines v2 and an elliptic relaxation equation for f . The latter models the effect of the
pressure-strain term.

In the present work the modified version of v2− f model of Lien; Kalitzen (2001)
and successfully used recently by Pecnik; Iaccarino (2007) will be considered. The
distinguishing feature of the v2− f model is its use of the velocity scale,v2 instead
of the turbulent kinetic energy, k, for evaluating the eddy viscosity. v2, which can
be thought of as the velocity fluctuation normal to the streamlines, has shown to
provide the right scaling in representing the damping of turbulent transport close to
the wall, a feature that k does not provide. The turbulent viscosity is given by:

µt = ρCµv2T (9)

where T is the turbulent time scale and given by:
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ε
,6
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The standard k− ε equations read
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The v2 transport equation is
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and the elliptic-relaxation equation f can be represented as:
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and the turbulent length scale L is determined from the values of k and ε as follows:
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The constants of the model are given as follows; see Lien; Kalitzen (2001):

Cµ = 0.22, σk = 1, σε = 1.3,

C1ε = 1.4(1+0.05
√

k/v2); C2ε = 1.9,

C1 = 1.4; C2 = 0.3; CL = 0.23; Cη = 70.

(16)

As noticed, all model constants are completely wall-distance independent.

The above system of equations, including the conservation equations and the tur-
bulence model equations, is solved by the numerical method based on the control
volume approach proposed by Patankar (1980). The governing equations are dis-
cretised using hybrid scheme for all variables except the density, which is interpo-
lated using upwind scheme in order to obtain a linear system of algebraic equa-
tions. The system of equations is solved using the TDMA described in Patankar
(1980). An important step of the above numerical procedure is the linearization of
the source terms that vary according to the equations considered. The solution is
carried out using steady state algorithm and the program is considered to reach the
final solution when the maximum normalized residual approaches a value of 10−4.

2.2 Near-wall treatment

In the region near the wall, the gradient of quantities is considerably high and
requires fine grids close to the wall to capture the change of quantities. This
causes the calculation to become more expensive meaning time-consuming, requir-
ing greater memory and faster processing on the computer, as well as expensive in
terms of complexity of equations. A wall function, which is a collection of semi-
empirical formulas and functions, provides a cheaper calculation by substituting
the fine grids with a set of equations linking the solution’s variables at the near-
wall cells and the corresponding quantities on the wall. For the present simulation,
the standard wall function proposed by Launder; Spalding (1974) becomes reli-
able and simple. The k− ε models (standard as well as extended model of Chen;
Kim (1987)) and the Reynolds stress model employ the wall function model. For
the SST k−ω models, when the low-Reynolds number effects are activated, the
near-wall grids have to be very fine to obtain the better results for the near wall
modeling.

For v2 − f turbulence model, the wall boundary conditions for ε and f are de-
veloped from the near-wall asymptotic behavior of the k and v2 equations forcing
k ∼ (yp)2 and v2 ∼ (yp)4, respectively, where yp is measured from the wall. The
boundary conditions at the wall have been specified as:

kw = 0; v2
w = 0; εp =

2µkp

ρ(yp)2 ; fw = 0. (17)
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The indices w and p denote, respectively, the wall and the first point next to the
wall.

(a) The physical model for channel with porous wall at lower side from which an asymmetrical 
injection is imposed

(b) The physical model for channel ended with a divergent part (Nozzleless Rocket Motor Chamber) 
with symmetrical injection. (Upper half of the computational domain is only considered, because of 

the flow symmetry) 
 

Figure 1: Computational domain.

2.3 Boundary conditions

2.3.1 Channel with asymmetric injection

Different boundary conditions are imposed on the computational domain shown in
Fig. 1 (a). The value of the mass flux through the porous wall (mass flux=2.619Kg/m2s)
as measured by Avalon; Casalis; Griffond (1998) for investigating the characteris-
tics of injection driven flows in a two-dimensional channel of height H = 10.3mm
and length L = 581mm is considered. At the porous wall the pressure is extracted
from the interior pressure solution using the condition ∂ p/∂y = 0 and the exper-
imentally registered temperature of 303K is used. Appropriate values of k,ε,ω
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and v2 have been prescribed at the porous wall together with streamwise velocity
u = 0. At the exit section the pressure is 1.374 bar in accordance with operating
of the experimental setup. The injection Reynolds number: Res = ρsvsH/µs, is
approximately 1600. No-slip boundary conditions have been assigned on all adi-
abatic solid walls and extrapolation boundary condition has been employed at the
outflow except the pressure which has given a constant prescribed value as previ-
ously discussed. It must be noted that a value of f must be specified at the injection
boundary. The calculation considered in the present work has been performed im-
posing f = 1 on the porous wall.

Because of sensitivity of results to the grid resolution, a grid dependence study
has been conducted. Three grids levels have been used with 150×150,200×200
and 250× 250 grid points in the axial and vertical direction, respectively. It has
been found that no noticeable modifications in the mean velocity as well as the
turbulent stresses with introducing the finest grid, so all computations have been
carried out using the mid grid of 200×200 grid points, which produces a near-wall
dimensionless distance of y+ value of order 0.8 along the grid line closest to the
wall. The grid is then smoothly expanded to the core using a suitable expansion
factor.

2.3.2 Channel with symmetric injection (nozzleless rocket motor chamber)

A schematic representation of the nozzleless rocket motor considered in this activ-
ity is shown in Fig. 1 (b). This is a 2-D planar, porous walled duct closed at one end
and with a divergent section with impermeable walls at the other end. The cylindri-
cal port chamber has a length of L=48 cm, a height of H=2 cm; the diverging part
has a length of 3.2 cm and a semi-angle equal to 15 degrees; the expansion area
ratio is 1.86. Air at a temperature of 260 K and a pressure of 8 bar was used in the
experiments of Traineau; Hervat; Kuentzmann (1986). Large injection flow rates
were attained in these tests: the injection mass flux was equal to 13(kg/sec)/m2,
while the injection Reynolds number was 7840; these represent typical values for
solid rocket motors; the mean flow Reynolds number based on throat conditions
was approximately, 1.5× 106. Experimental data available at five axial stations
along the cylindrical duct including: static pressure measurements, mean velocity
profiles, turbulence intensity, and Reynolds stress profiles. The considered stations
read x/h = 12; 24; 30; 40 and 46, respectively, where h = H/2 = 1cm.
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3 Results and discussions

3.1 Channel with asymmetric injection

The mean velocity and the Reynolds-stress profiles are compared with that mea-
sured at eight sections of the channel located at x =31; 120; 220; 350; 400; 450;
500 and 570mm. This is corresponding to dimensionless distances x/H =3; 11.65;
21.36; 33.98; 38.83; 43.69; 48.54 and 55.34, respectively. Figure 2 shows the
mean streamwise velocity profiles normalized by the local mean streamwise veloc-
ity Um, where Um = 1

H

∫ H
0 udy. The numerical results of the different turbulence

models used are compared with the experimental data of Avalon; Casalis; Grif-
fond (1998) in global coordinatesy/H. As noticed, the velocity increases rapidly in
the boundary layer generated on the solid wall compared with that on the porous
wall. The failing of all turbulence models to predict the velocity at the first loca-
tion x = 31mm may be due to the presence of a laminar flow in this zone. Chaouat
(2002) found numerically that the transition from laminar to turbulent flow is lo-
cated at x ≈ 410mmon the permeable wall and x ≈ 200mm on the impermeable
wall. The turbulence models used predict qualitatively the velocity profiles at all
other locations.

However, it is noticed that SSTk−ω , RSM and v2− f turbulence models reproduce
the best agreement with the experimental data compared with the other used turbu-
lence models. The standard k−ε turbulence model and its extended form of Chen;
Kim (1987) represent only the core flow and clear deviations are observed near the
two wall in spite of the absence of adverse pressure gradient in the present simu-
lation case, i.e., the failure of the turbulence models used near wall is not caused
by the near-wall treatment, but can be produced by the isotropic assumptions in the
turbulence model itself. The certain response of the SSTk−ω turbulence model,
which is a mixture of the standard k−ε and k−ω , to remedy this failure is a notice-
able result. However, larger deviations have been previously obtained using RSM
model by Chaouat (2002).

The computed axial pressure distributions along the solid wall with different tur-
bulence models are reported in Fig. 3, where P is the static pressure, while Po is
the stagnation pressure. Similar results are obtained from RSM, SSTk−ω and
V2F turbulence models, while stronger pressure gradient near the channel exit is
predicted by the standard and the extended Chen-Kim k− ε turbulence models.

A more definitive way to determine the axial location of the mean flow transi-
tion from laminar to turbulent flow consists in examining the local variation of the
wall skin-friction coefficient defined as: C f = 2(uτ/Um)2, where uτ is the local
computed wall shear velocity. Figure 4 shows the development of the local wall
skin-friction coefficient computed for the solid wall. As can be seen, the rapid in-
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Figure 2: Mean velocity profiles at different locations (Symbols: Experimental data
(symbols) of Avalon; Casalis; Griffond (1998)).

crease in the profile of the skin friction coefficient reveals the location of transition,
which can be only observed from the numerical prediction of the V2F turbulence
model, while there is no explicit clear transition predicted by the other used turbu-
lence models. The laminar code solution developed by the present authors is also
included in the figure to show the behavior of the turbulence models in the regions
of low Reynolds numbers. However, the most successful model approaching to the
results of the V2F is the SSTk−ω turbulence model. Over-prediction is clearly
observed from the results of the other turbulence models used due to the higher
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Figure 3: Predicted axial pressure distribution on the solid wall using different
turbulence model.
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Figure 4: Predicted axial variation of the skin-friction coefficient on the solid wall
using different turbulence models.
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Figure 5: Streamwise root-mean-square (RMS) turbulence intensity at different
locations.

pressure gradient predicted with using those turbulence models.

Figure 5 describes the streamwise root-mean-square (RMS) turbulence intensity
u′ normalized by the local bulk streamwise velocity Um at four locations reading:
x =220; 350; 450 and 570 mm, respectively. It is apparent that there are always
peaks in the profiles near the porous wall surface. That is clearly visible in the
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experimental and numerical data. The known near-wall stress peaks at the other
solid wall due to the boundary layer development and the strong near-wall velocity
gradient couldn’t be experimentally captured, while they are numerically observed
in all turbulence models used. Except the first location, that is at near of the tran-
sition from laminar to turbulent flow, all turbulence models present qualitatively
good agreement with the experimental data.

The higher levels observed in the near-wall turbulence intensity are probably due
to the pseudo-turbulence of the injected flow. However, all computations predict
somewhat higher values of turbulence intensity compared with the experimental
data. The SSTk−ω and v2− f turbulence models still reproduce the best predic-
tions compared with the other turbulence models used.

Figure 6 shows the normal root-mean-square (RMS) turbulence intensity v′ normal-
ized by the local bulk streamwise velocity Um at the same previously mentioned
four locations. It is clear that the normal component is well reproduced by the
Reynolds-stress model, although minor discrepancies with the experimental data
are observed for the first location where there is a predicted transition from laminar
to turbulent flow. However, the predicted normal stress component with near-wall
peaks near the solid wall doesn’t agree well with the experimental data also as
discussed previously in the streamwise component. This disagreement could be
attributed to the measurements itself that are not accurate in the vicinity of the solid
wall because the hot-wire probe used to measure the turbulence intensity compo-
nents is introduced through this wall, see Avalon; Casalis; Griffond (1998) and
Chaouat (2002). Generally, the intensity of the turbulence velocity fluctuations in
the streamwise direction is higher than that in the direction normal to the wall.

Chaouat (2002) repeated the computation of the turbulent velocity fluctuations at
different cross sections of the channel using the standard k−ε turbulence model in-
corporating damping functions. The numerical results obtained by Chaouat (2002)
overpredict strongly the experimental results of Avalon; Casalis; Griffond (1998).
These overpredictions may be due to the very fine near-wall grid used by Chaouat
(2002).

The turbulent shear stress component u′v′/U2
m is presented at the given locations is

seen in Fig. 7. Good results are obtained from SST k−ω and v2− f turbulence
models.

Figure 8 presents contours plot of turbulent kinetic energy. A large amount of
turbulence is concentrated near the porous wall/channel exit above it; this clearly
shows that the level of turbulence is higher when entrainment of the injected fluid
is happening.

The contours of the computed Mach number in the computational domain are
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Figure 6: Vertical root-mean-square (RMS) turbulence intensity at different loca-
tions.

shown in Figure 9. It is clearly visible that the maximum Mach number reached in
the present study is 0.32, with the highest values approaching to the solid wall/exit
of the channel. This was clearly noticed in the velocity profiles discussed previ-
ously with higher momentum near the solid wall, because of the strong displace-
ment thickness development near the porous wall which leads to a high convective
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Figure 7: Turbulent shear stress at different locations.

mass transfer to the solid wall. The Mach number contours shows that injection of
fluid through the porous wall has the effect of reducing the flow Mach number near
the porous wall.
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Figure 8: Turbulence kinetic energy contours plot (m2/s2).

 
Figure 9: Computed Mach number contours plot

3.2 Nozzleless rocket motor chamber

Computations of the flow in this nozzleless duct were previously performed us-
ing full compressible Navier-Stokes equations together with the v2− f and low-
Reynolds k− ε turbulence models, see Ciucci; Iaccarino; Moser; Najjar; Durbin
(1998) in a computer code CFL3D. In our simulation, the code is developed by
the present authors with implemented different turbulence models. For the present
simulation case, only the v2− f turbulence model is used, because of its simplicity
and the good results obtained.

The computed pressure distributions along the motor centerline are compared with
the experimental values in Fig. 10. As noticed, a strong pressure gradient is present
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Figure 10: Comparison between predicted axial pressure distribution with experi-
mental data (symbols) of Traineau; Hervat; Kuentzmann (1986).

in the channel, and compressibility effects become relevant in the second half of the
channel.

The axial u-velocity distributions along the centerline (y/h = 1) and near the wall
at y/h = 0.1 are experimentally and numerically represented in Fig. 11. The results
show good predictable turbulence model.

A comparison of the velocity profiles with the experimental data of Traineau; Her-
vat; Kuentzmann (1986) is reported in Fig. 12. In the two initial stations, predicted
profiles lie below the experimental values: at x/h= 19 the computed velocity profile
approximates very well Culick’s inviscid distribution while at x/h=28.5 the profiles
start to transition toward a "fuller" profile; a full transition has occurred nearly at
x/h= 30 and a turbulent velocity profile is attained more downstream. The v2− f
turbulence model predicts slightly lower values than those measured by Traineau;
Hervat; Kuentzmann (1986). Generally, good predictions are obtained from the
used turbulence model, representing the velocity and the pressure.

However, this is not sufficient to verify a turbulence model. The turbulence energy
representation approaches to the decision of turbulence model quality. Figure 13
shows the profiles of the turbulence intensity (

√
k) at the mentioned axial locations.

As observed the numerical results give the similar trends of the experimental data.
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Figure 11: Comparison between predicted axial velocity distribution with experi-
mental data of Traineau; Hervat; Kuentzmann (1986) at two vertical levels.

However, larger discrepancies with the experimental data are observed in the turbu-
lent kinetic energy profiles computed in Ciucci; Iaccarino; Moser; Najjar; Durbin
(1998), while the present numerical results show good comparisons. The higher
experimental levels observed in the initial part of the channel are probably due
to the "pseudo turbulence" of the injected flow; as reported by Traineau; Hervat;
Kuentzmann (1986) transition to turbulence occurs between x/h= 20 and x/h= 30,
and the flow becomes fully turbulent beyond this location. The computations pre-
dict a somewhat faster transition with higher kvalues within most of the channel:
an overprediction slightly less than 100% is observed in the middle of the channel;
this overprediction tends to decrease at locations more downstream.

The turbulence model used predicts somewhat higher peak values and closer to the
wall than the experimental data. The differences between computed and measured
values may be due both to the turbulence of the injected fluid and to transition
effects.

4 Conclusions

Computations are performed to investigate the nature of a compressible flow in a
2D channel with symmetric and asymmetric injection through a porous wall. The
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Figure 12: Comparison between predicted axial velocity distributions with experi-
mental data of Traineau; Hervat; Kuentzmann (1986) at different axial locations.
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Figure 13: Comparison between predicted turbulence intensity (
√

k) distributions
with experimental data of Traineau; Hervat; Kuentzmann (1986) at different axial
locations.
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simulations are performed using different turbulence models. A comprehensive
comparison between these models and the available experimental results is per-
formed. In general, the numerical calculation results represented by the calculated
mean axial velocity show fairly good agreement with experimental data. Two of
these models, SSTk−ω and v2− f turbulence models show the smallest deviation
with the experimental results followed by the RSM model, while the SKE model
shows the largest deviation with the experimental one. Because of the presence
of impermeable and permeable walls, the development of turbulence has occurred
at two different locations in the channel. Both SSTk−ω and v2− f turbulence
models largely over-predicted the measured values of the Reynolds stresses. The
correct capture of transition from laminar to turbulent flow in the duct explains
most success of the v2− f turbulence model in simulation of such configuration
with side-wall injection and the discrepancy observed as well as the difference in
the predictions of the other turbulence models. The present flow prediction reveal
that the turbulence is developed more rapidly near the impermeable wall compared
with the little bit variation near the porous wall.

The activities conducted in this work indicated that the results achieved are very
encouraging, which should foster a more extensive research in this field. More ex-
tensive investigation of the applicability of the v2− f turbulence model to this kind
of flow is needed before any definite conclusion may be drawn. However, a future
work is planed to apply the nonlinear turbulence models previously tested in much
more complex flow by El-Askary; Balabel (2007) and Balabel; El-Askary (2011).
Also, the divergent part at the end of the duct will be replaced by a convergent-
divergent nozzle with the presence of different injection mass flux to control the
presence or absence of generated shock wave.
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