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Strength of Brittle Materials under High Strain Rates in
DEM Simulations
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Abstract: In the truss-like Discrete Element Method (DEM), masses are con-
sidered lumped at nodal points and interconnected by means of uni-dimensional
elements with arbitrary constitutive relations. In previous studies of the tensile
fracture behavior of concrete cubic samples, it was verified that numerical predic-
tions of fracture of non-homogeneous materials using DEM models are feasible
and yield results that are consistent with the experimental evidence so far available.
Applications that demand the use of large elements, in which extensive cracking
within the elements of the model may be expected, require the consideration of
the increase with size of the fractured area, in addition to the effective stress-strain
curve for the element. This is a basic requirement in order to achieve mesh objec-
tivity. Note that the degree of damage localization must be known a priori, which is
a still unresolved difficulty of the non-linear fracture analysis of non-homogeneous
large structures. In previous DEM applications, the authors have noticed that sim-
ulations conducted on samples of fragile, inhomogeneous materials subjected to
various loading conditions, tend to fail under increasing loads when the loading
rate increases. The issue raised questions, such as the need to explain the capac-
ity of the method to predict, at least approximately, the increase in load-carrying
capacity of structural systems subjected to impact and blast loadings, the need to as-
sess the correlation with experimental results and to critically examine the validity
of the available experimental evidence. Within this context, this paper presents the
response of cubic concrete samples subjected to tension under controlled boundary
displacements with increasing loading rates, obtained by simulation with the DEM.
Next DEM simulations of modified Hopkinson bar tests are presented with the aim
of extending the range of strain rates examined. Conclusions on model uncertainty
associated to high strain or loading rates, as well as theoretical considerations on
the applicability of available experimental results are finally advanced.
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1 Introduction

Predicting the response up to failure of solids subjected to dynamic loads, in par-
ticular post-peak response, employing methods based on Continuum Mechanics
present disadvantages in comparison with discrete models of the solids under con-
sideration. This is a consequence of material fracture, which introduces disconti-
nuities in the displacement functions that are difficult to handle in a continuum for-
mulation and fostered the rapid development of more efficient methods of analysis.
Among various such methods, the so-called truss-like Discrete Element Method
(DEM) proves quite appealing. The approach was proposed by Riera (1984) to de-
termine the dynamic response of plates and shells under impact loading when fail-
ure occurs primarily by tension, which is generally the case in concrete structures.
The lack of sufficient experimental evidence in this area to confirm DEM predic-
tions, led to the assessment of its performance in structures subjected to quasi-static
loading.

The response of geometrically similar reinforced concrete beams built in four dif-
ferent sizes was determined numerically to quantify size effects in reinforced con-
crete beams (Rios and Riera, 2004). The inhomogeneous character of concrete was
accounted for by assuming that the specific fracture energy is a random field in
3D-space, while the constitutive criteria was based on Hillerborg’s model (1971).
The discrete numerical model was also used to reproduce experimental results due
to van Vliet and van Mier (2000) on the influence of sample size on the tensile
strength of concrete and rock as well as the strength of large rock dowels subjected
to shear (Miguel et al., 2008).

In response determinations of structures with initial cracks or high stress gradients,
which result in fracture localization, well established procedures lead to results that
are mesh independent. However, in elements subjected to approximately uniform
stress fields a hitherto unknown problem arises in the analysis of non-homogeneous
materials: the need to know a priori the degree of fracturing of the element. This
also affects finite element analysis in cases in which there is no clear fracture local-
ization, requiring a careful evaluation of the energy dissipated by fracture or other
mechanisms in the course of the loading process (Miguel et al., 2010). Tentative
criteria to account for the effect in non-linear dynamic fracture analysis of large
structural systems were proposed by Riera et al. (2008).

In addition, under impact, blast and other short duration loadings, it has long been
acknowledged that the strength of engineering materials tends to increase with the
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loading (or strain) rate. In DEM applications, the authors have noticed that sim-
ulations conducted on samples of fragile, inhomogeneous materials subjected to
various loading conditions, tend to fail under increasing loads when the loading
rate increases. This phenomenon was observed for exactly the same simulated
samples, assuming rate-independent material properties, under the same boundary
conditions: only the rate of loading was altered. The issue raised a number of ques-
tions, such as the need to explain the capacity of the DEM to predict, at least ap-
proximately, the increase typically observed in load-carrying capacity of structural
systems subjected to impact and blast loadings, the need to assess the correlation
with experimental results under different loading conditions and, last but not least,
to critically examine the experimental evidence for very high strain rates available
in the technical literature.

With the purpose of clarifying the issues listed above, this paper presents results
obtained by simulation with the Discrete Element Method (DEM) on prismatic
concrete samples subjected to tension, by analyzing the samples under a set of
increasing loading rates. The study leads to predictions of the sample behavior,
including the cracking pattern. The failure stresses are compared with experimen-
tal results. Similar objectives were pursued by Hentz et al. (2004), who employ
a 3D discrete element method to determine the response of concrete samples sub-
jected to dynamic loading. The model, which consists of spheres in contact, was
previously validated through quasi-static simulations. After performing a quasi-
static identification of the model parameters, compressive dynamic tests were first
simulated. The model proved capable of reproducing the influence of the strain
rate on concrete strength, and confirms the inertia-based hypothesis at high strain
rates. However, the dynamic tensile tests simulations led Hentz et al. (2004) to
argue that a local rate effect has to be introduced to reproduce the experimental
rate dependency, which would then be a material-intrinsic effect. Kim and Lim
(2011) also present results on rate dependent fracture in concrete using an irregular
lattice model, similar to the DEM used in the present paper, while Ozbolt et al.
(2011) focus on a 3D finite-element study of crack propagation in concrete com-
pact tension specimen. The rate sensitive microplane model is used as a constitutive
law for concrete. The results of the study show that the fracture of the specimen
strongly depends on the loading rate. For relatively low loading rates there is a
single crack due to the mode-I fracture. However, with the increase of loading
rate, crack branching is observed. Up to certain threshold (critical) loading rate,
the maximum crack velocity increases with increase of the loading rate, while for
higher loading rates the peak velocity of crack propagation becomes independent
of the loading rate.
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2 Experimental evidence

A large body of experimental evidence confirms the contention that the strength of
brittle materials, like concrete, increases with the rate of loading. A brief overview
of available results will be presented in this section, as well as a summary of models
proposed to account for the effect, such as the chemical reaction-rate process the-
ory, stochastic theories and material inertia models. Constitutive models proposed
for concrete, such as rheological, porous media and viscoelastic models are also ad-
dressed. Figure 1 presents experimental evidence on the influence of the strain-rate
on the concrete tensile strengths reported by Malvar and Crawford (1998).

Envelopes of the various experimental observations of the dynamic/static strengths
(η) ratio for concrete in uniaxial tension collected by Malvar and Crawford (1998)
and Cotsovos and Pavlovic’ (2008), jointly with the fit to DEM numerical simu-
lations due to Miguel et al. (2012) are shown in Figure 2. Recent test results for
concrete loaded at high strain rates in tension, obtained with a new experimental
technique based on the Hopkinson bar principle combined with the spalling phe-
nomenon, as well as numerical simulations of those experiments, were presented by
Brara et al. (2001), Brara and Klepaczko (2007) and Weerheijm and Van Doormaal
(2007) and will be discussed in Section 6.

3 The discrete element method (DEM) in fracture problems

The Discrete Element Method employed in this paper is based on the representation
of a solid by means of an arrangement of elements able to carry only axial loads.
The discrete elements representation of the orthotropic continuum was adopted to
solve structural dynamics problems by means of explicit direct numerical integra-
tion of the equations of motion, assuming the mass lumped at the nodes. Each
node has three degrees of freedom, corresponding to the nodal displacements in the
three orthogonal coordinate directions. The equations that relate the properties of
the elements to the elastic constants of an isotropic medium are:

δ =
9ν

4−8ν
, EAn = EL2

0
(9+8δ )

2(9+12δ )
, EAd =

2
√

3
3

An (1)

in which E and ν denote Young’s modulus and Poisson’s ratio, respectively, while
An and Ad represent the areas of normal and diagonal elements.

The resulting equations of motion may be written in the well-known form:

M~̈x+C~̇x+~Fr (t)−~P(t) =~0 (2)

in which~x represents the vector of generalized nodal displacements, M the diago-
nal mass matrix, C the damping matrix, also assumed diagonal, ~Fr (t) the vector of



Strength of Brittle Materials under High Strain Rates in DEM Simulations 117

 
Figure 1: Effect of strain-rate on the tensile strength of concrete (from Malvar and
Crawford, 1998).

internal forces acting on the nodal masses and ~P(t) the vector of external forces.
Obviously, if M and C are diagonal, Equations (2) are not coupled. Then the ex-
plicit central finite differences scheme may be used to integrate Equation (2) in
the time domain. Since the nodal coordinates are updated at every time step, large
displacements can be accounted for in a natural and efficient manner.

In the present paper, the relation between tensile stress and strain in the material
proposed by Hillerborg (1971) was adopted. Another important feature of the ap-
proach is the assumption that G f is a 3D random field with a Weibull probability
distribution. It should be underlined again that fracture localization weakens as
the non-homogeneous nature of the material becomes more pronounced, i.e., as
the coefficients of variation of the variables that describe the material properties
increase.
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Figure 2: Envelopes of experimental observations of the dynamic/static strengths
ratio (η) for concrete in uniaxial tension collected by Malvar and Crawford (1998)
and Cotsovos and Pavlovic’ (2008) in black lines, and in continuous blue line the
DEM prediction (from Miguel et al., 2012).

4 Non-linear constitutive model for material damage

The softening law for quasi fragile materials proposed by Hilleborg (1971) was
adopted to handle fragile fracture by means of the triangular constitutive relation-
ship (ECR) shown in Figure 3, which allows accounting for the irreversible effects
of crack nucleation and propagation. The area under the force vs. strain curve
(the area of the triangle OAB in Figure 3) represents the energy density necessary
to fracture the area of influence of the element. Thus, for a given point P on the
force vs. strain curve, the area of the triangle OPC represents the reversible elastic
energy density stored in the element, while the area of the triangle OAP is propor-
tional to the energy density dissipated by damage. Once the damage energy density
equals the fracture energy, the element fails and loses its load carrying capacity. On
the other hand, in the case of compressive loads the material behavior is assumed
linearly elastic. Thus, failure in compression is induced by indirect tension.

Constitutive parameters and symbols are shown in Figure 3. The element axial
force F depends on the axial strain ε . The area associated to each element is given
by Equations (6) and (7) for longitudinal and diagonal elements, respectively. An
equivalent fracture area A∗i of each element is defined in order to satisfy the con-
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and loses its load carrying capacity. On the other hand, in the case of compressive loads 
the material behavior is assumed linearly elastic. Thus, failure in compression is induced 
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Figure 3: Triangular constitutive law adopted for DEM uni-axial elements. 

 

Constitutive parameters and symbols are shown in Figure 3. The element axial force F 
depends on the axial strain ε. The area associated to each element is given by Equations 
(6) and (7) for longitudinal and diagonal elements, respectively. An equivalent fracture 
area Ai

* of each element is defined in order to satisfy the condition that the energies 
dissipated by fracture of the continuum and by its discrete representation are equivalent. 
With this purpose, fracture of a cubic sample of dimensions L×L×L is considered. The 
energy dissipated by fracture of a continuum cube due to a crack parallel to one of its 
faces is: 

2LGG ff == ΛΓ  (3) 

in which Λ is the actual fractured area, i.e., L2. On the other hand, the energy dissipated 
when a DEM module of dimensions L×L×L fractures in two parts consists of the 
contributions of five longitudinal elements (four coincident with the module edges and an 
internal one) and four diagonal elements. Then, the energy dissipated by the DEM 
module can be written as follows (Kosteski et al., 2010): 

2
2

3

2 Lc 4cc  0.25  4G aaafDEM 





















++=Γ  (4) 

Damage energy, 
Udmg 

Elastic strain 
energy, Uel 

EAi 

F 

ε 
εp 

P 

O 

A 

C 

B 

εr  

Figure 3: Triangular constitutive law adopted for DEM uni-axial elements.

dition that the energies dissipated by fracture of the continuum and by its discrete
representation are equivalent. With this purpose, fracture of a cubic sample of di-
mensions L×L×L is considered. The energy dissipated by fracture of a continuum
cube due to a crack parallel to one of its faces is:

Γ = G f Λ = G f L2 (3)

in which Λ is the actual fractured area, i.e., L2. On the other hand, the energy
dissipated when a DEM module of dimensions L× L× L fractures in two parts
consists of the contributions of five longitudinal elements (four coincident with the
module edges and an internal one) and four diagonal elements. Then, the energy
dissipated by the DEM module can be written as follows (Kosteski et al., 2010):

ΓDEM = G f

(
40.25ca + ca +4ca

(
2√
3

)2
)

L2 (4)

The first term between brackets accounts for the four edge elements, the second
term for the internal longitudinal element, while the third term represents the con-
tribution of the four diagonal elements. The coefficient ca is a scaling parameter
used to establish the equivalence between Γ and ΓDEM. Thus:

G f L2 = G f

(
22
3

ca

)
L2 (5)
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from which it follows that ca = 3/22. Finally, the equivalent transverse fracture area
of the longitudinal elements is:

A∗l =
(

3
22

)
L2 (6)

while for the diagonal elements is:

A∗d =
(

4
22

)
L2 (7)

These values apply as long as there is a single large crack in the element. The
critical failure strain (ε p) is defined as the largest strain attained by the element
before the damage initiation (point A in Figure 3). The relationship between ε p

and the specific fracture energy G f is given in terms of Linear Elastic Fracture
Mechanics as:

εp = R f

√
G f

E
(8)

in which R f is the so-called failure factor, which may accounts for the presence of
an intrinsic defect of size a. R f may be expressed in terms of a as:

R f =
1

Y
√

a
(9)

in which Y is a dimensionless parameter that depends on both the specimen and
crack geometry.

The element loses its load carrying capacity when the limit strain εr is reached
(Point B in Figure 3). This value must satisfy the condition that, upon failure of
the element, the dissipated energy density equals the product of the element fracture
area A∗i times the specific fracture energy G f , divided by the element length. Hence:

εr∫
0

F (ε)dε =
G f A∗i

Li
=

Krε
2
pEAi

2
(10)

in which the sub index i is replaced by l or d depending on whether the element
under consideration is a longitudinal or diagonal. The coefficient Kr is a function
of the material properties and the element length Li:

Kr =

(
G f

ε2
pE

)(
A∗i
Ai

)(
2
Li

)
(11)
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In order to guarantee the stability of the algorithm, the condition Kr ≥ 1 must be
satisfied (Riera and Rocha, 1991). In this sense it is interesting to define the critical
element length:

Lcr = 2

(
G f

ε2
pE

)(
A∗i
Ai

)
(12)

Moreover:(
A∗l
Al

)
=
(

3/22
φ

)
(13)

(
A∗d
Ad

)
=

(√
3/11
δφ

)
(14)

In the special case of an isotropic continuum with ν = 0.25, the value of the co-
efficients above are δ = 1.125 and φ = 0.4, which leads to (A∗l /Al) ≈ (A∗d /Ad) ≈
0.34. Thus, for practical purposes, a single value of the critical length can be used
for longitudinal and diagonal elements. Therefore, the stability condition may be
expressed as:

Kr =
Lcr

Li
≥ 1⇒ Li ≤ Lcr (15)

Finally, the expression for the limit strain is:

εr = Krεp (16)

It is worth noting that although the DEM uses a scalar damage law to describe the
uniaxial behavior of the elements, the global model accounts for anisotropic dam-
age since it possess elements orientated in the different spatial directions. Miguel
et al. (2008, 2010) and Iturrioz et al. (2009) modeled the random properties of
material assuming the toughness G f as a random field with a Type III (Weibull)
extreme value distribution, given by:

F (G f ) = 1− exp
[
−(G f /β )γ

]
(17)

in which β and γ are the scale and shape parameters, respectively. The mean value
(µ) and the standard deviation (s) of G f are given by:

µ = β [Γ(1+1/γ)] (18)
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s = β
[
Γ(1+2/γ)−Γ

2 (1+1/γ)
]1/2

(19)

in which Γ(x) =
∞∫
0

tx−1e−tdt denotes the Gamma function.

In order to simulate pseudo random values of G f the following expression was
used:

G f = β [− ln(1−u)]1/γ (20)

in which u is a random number with uniform probability distribution in the interval
(0,1). Routines for generating samples of u are widely available. In earlier appli-
cations of the DEM, by taking the size of the elements (Lo) equal to the correlation
length of the random field of the material property of interest, say lc, allowed as-
suming that simulated values were uncorrelated, thus simplifying the computational
scheme. This is however an important limitation of the model, initially addressed
by Rios (2002). Later, Miguel (2005) adopted the method proposed by Shinozuka
and Deodatis (1996) to simulate the gaussian 3D random field that represents the
material property of interest. A simpler technique was employed by Puglia et al.
(2010). This method was used herein to simulate the 3D random field that de-
scribes the toughness G f , which is then independent of the discretization adopted
in the DEM.

Thus, in the following analysis a DEM mesh is generated. Then, random values
of the desired property are generated, according to the specified probability distri-
bution function, at nodal points in a 3D grid with lengths (lcx, lcy, lcz) in the three
Cartesian directions. lcx, lcy and lcz represent the correlation lengths of the random
field in the x,y,z directions. The random values at the location of DEM elements are
determined by a linear 3D interpolation from the values at the nodes. Additional
details may be found in Puglia et al. (2010).

Applications of the method in studies involving non-homogeneous brittle materials
subjected to fracture, like concrete and rock, may be found in Riera and Iturrioz
(1998), Dalguer et al. (2003), Miguel et al. (2008), Iturrioz et al. (2009) and
Miguel et al. (2010).

5 Analysis of cubic concrete samples subjected to high strain rates tension

Concrete cubic samples fixed at the lower face and subjected to increasing uni-
formly distributed prescribed displacements on the upper face inducing in the sam-
ple nominal uniform tension were analyzed with different loading rates. The re-
sponse of each test up to failure was determined through numerical simulation.
The samples were analyzed under increasing controlled displacements on the up-
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per face with different (constant) rates, maintaining all other features unaltered,
inducing nominal tensile stresses.

Sample dimensions were 0.15×0.15×0.15m, while the mesh employed in all sim-
ulations included 15×15×15 DEM cubic modules, implying that Lo = 0.010m.
In the ensuing simulations, the specific fracture energy was assumed to be a 3D
random field with µ(G f ) = 90N/m, and CV(G f ) = 0.5, while Young’s modulus E
= 3.5E10N/m2, Poisson’s ratio ν = 0.25 and specific mass ρ = 2400kg/m3 were
considered constant.

Reaction force-displacement curves for various rates in simulated displacement
controlled tests are shown in Figure 4. Note that the dot line, corresponding to
the fastest rate, presents anomalies due to wave propagation effects. A strength in-
crease is observed when the loading rate increases, which is in agreement with the
experimental results presented in Figure 1. Notice that for a specimen length equal
to 0.15m, the applied velocities (8e-2m/s, 3e-2m/s and 5e-4m/s) are equivalent to
the strain rates (0.53/s, 0.20/s and 3.33e-3/s). A typical crack pattern at a central
slice of the sample is shown in Figure 5, in which the boundary conditions are also
indicated.
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Figure 4: Numerical DEM simulations of the tensile force on the lower face vs.
applied displacement for same concrete specimen subjected to three loading rates.

A single function for the ratio η between the dynamic and the static strengths,
based on the assumption that linear relations are valid for low and high strain rates,
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Figure 5: Typical rupture configuration in a DEM simulation (undamaged elements
are shown in light grey, damaged elements in dark gray and failed elements in
black).

but that there is a smooth transition, modeled by the logistic distribution f(x), in
which x = log(ε̇), was fitted to the simulated results (Miguel et al., 2012):

η (x) = (a1 +b1x) f (x)+(a2 +b2x) [1− f (x)] (21)

f (x) = exp [−(x+ xc)/s]/{1+ exp [−(x+ xc)/s]} (22)

Taking the logarithm xc of the transition strain rate ε̇c equal to 0.1 and the coefficient
s equal to 0.1, the following parameters were calculated by means of a regression
analysis: a1 = 1.71, b1 = 0.13, a2 = 2.24 and b2 = 2.25. Equation (21) is plotted
as a blue curve in Figure 2 and is apparently compatible with the experimental
evidence. However, it must be mentioned that physical or numerically simulated
displacement controlled tensile tests are valid only if the ratio between the applied
displacement rate a and the P-wave velocity cp in the material does not exceed the
strain εmin at which damage begins to occur in the material. Thus, consider for
instance a cylindrical bar of area A and length L fixed at the end x = 0 and subjected
at the opposite end x = L to a linearly increasing displacement u = at that induces
uniaxial tension in the x-direction in the bar. If the rate of loading, defined by
coefficient a (m/s), is very small, a quasi-static response may be expected, in which
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case the axial strain at any time t would be given by the simple expression:

ε = at/L (23)

Moreover, in such case the reaction Fx at the fixed support will be given by:

Fx = εE = aEt/L (24)

The strain ε would be constant throughout the length of the bar. However, as the
rate of loading a increases, equations (23) and (24) are no longer applicable, since
when dynamic effects appear, ε and consequently the axial force on the bar become
functions of both x and t, while the support reaction Fx will vary with t, but cannot
be correlated with a generic or average axial strain. It is thus clear that the plots
of the relation between Fx and the average strain εav presented in the technical
literature are truly meaningful for small loading rates but become questionable at
intermediate rates and totally meaningless for very high loading rates. Denoting the
velocity of propagation of pressure waves in the material (P waves) as cp, which is
approximately given by:

cp = (E/ρ)1/2 (25)

in which E denotes Young’s modulus and ρ the specific mass of the material, if
the excitation u = at starts at t = 0, the peak strain within the loaded zone - whose
length is cpt - cannot be smaller than:

εmin = at/cpt = a/cp (26)

Thus, equation (26) provides a lower limit for the maximum axial strain in the
loaded region of the bar. It is then concluded that direct tensile loading of the
sample is not feasible or at least questionable when:

εmin > εp (27)

in which ε p denotes the axial strain at which damage begins to occur in the material.
This explains why the simulations for very high strain rates yielded absurd results
and suggests a limit strain rate for which the simulations may be accepted. Substi-
tuting typical expected values for cp and ε p for concrete in equations (26) and (27)
above, an upper limit of around 1/s results for the strain rate in direct tensile tests.
Due to the heterogeneous nature of concrete, which should result in more complex
features of the wave propagation field than assumed in the preceding analysis, this
limit is regarded as merely indicative of the range of validity of equation (21).
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6 Analysis of modified Hopkinson’s bar tensile tests

In order to examine further the performance of DEM models in predicting tensile
failure under high strain rates, the authors analyzed the tests described by Hentz
et al. (2004) and Brara and Klepaczko (2007). Initially used in compression, the
SHPB technique was later extended to tension. In this scheme there is only one in-
put bar and no output bar, as schematically shown in Figure 6. A projectile impacts
the input bar, giving rise to a compressive wave, which propagates into the speci-
men and reflects as a tensile wave at its free end. If the wavelength of the loading
pulse is longer than the specimen length, the reflected tensile wave is superposed
to its own back tail still propagating.

 

 
Figure 6: Experimental set-up of the split Hopkinson bar (from Brara and
Klepaczko, 2007).

Addition of the two parts of the pulse gives rise to tensile stresses in the speci-
men, leading to complete rupture if its amplitude is sufficiently high. The concrete
properties in the experimental program had the following quasi-static properties:
Young’s modulus E = 35GPa, mass density ρ = 2400kg/m3, compressive strength
fc = 42MPa and tensile strength ft = 4MPa. The samples were 120mm long circu-
lar cylinders with 40mm diameter (Hentz et al., 2004). In the following, simulated
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results for prismatic samples with the same length and 40mm side length square
base will be presented.

The samples were subjected to the impulsive load shown in Figure 7 for a 50kN am-
plitude, which is a very close approximation to the load measured in the tests. The
shapes and durations of the load diagrams for the amplitudes analyzed in this paper,
namely 20, 40 and 80kN were assumed to be the same. Moreover, as previously
discussed, the specific fracture energy is assumed a 3D random field, for which
three samples, denoted samples 1, 2 and 3, were simulated. Each sample was then
subjected to the three impulsive load functions considered in the study. Of course,
in the laboratory the same physical specimen cannot be subjected to different im-
pulsive loadings. This will be an important consideration in the assessment of the
results.
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Figure 7: Force vs. time diagram of impulsive load applied as uniform pressure on
left face of specimen. In the various numerical simulations herein reported only the
50kN amplitude varies.

Figure 8 shows a plot of the mean stress vs. time at the center cross-section (x
= 0.06m) of the specimen (sample 1) for three impulsive load amplitudes (20, 40
and 80kN, which are equivalent to the peak strain rates: 17.8/s, 34.6/s and 64.8/s).
It may be seen that the compressive pulse amplitudes, which occur shortly before
0.05ms, increase more or less linearly with the loading pulse amplitudes, while the
returning tensile wave is limited by the assumed constitutive relation. It should
be underlined that stresses cannot be measured, since only kinematic variables are
susceptible of direct observation.
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Figure 9 shows the corresponding mean axial strain vs. time curves, also for sample
1 and the three load functions. It may be clearly seen that while for load amplitudes
20 and 40kN the sample presents limited damage at the cross-section under consid-
eration, it has already failed for the largest amplitude 80kN.
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Figure 8: Plot of the mean stress vs. time at the center cross-section (x = 0.06m) of
the specimen (sample 1) for three impulsive load amplitudes (20, 40 and 80kN).

One relevant factor, that is mentioned neither in experimental nor in numerical
studies, is brought to light by Figure 10, which presents the strain rate vs. time
curves at the central cross-section (x = 0.06m) of the specimen (sample 1). Since
most reports in the literature indicate values of the tensile strength for given strain
rates, the question about which rate is being referred to seems pertinent. In this
paper the authors will use as reference the peak value of the rate vs. time curve, but
suggest that the criterion should be restrained to cases in which the rate vs. time
curve does not present pronounced spikes.

Stress vs. strain diagrams may be obtained from Figures 8 and 9. Figure 11, for
instance, shows plots of the mean stress vs. mean strain at the central cross-section
(x = 0.06m) of the specimen (sample 1) for three impulsive load amplitudes (20,
40 and 80kN). It may be seen that for the 20kN amplitude in sample 1, there is a
closed hysteresis cycle at (x = 0.06m). Perceptible damage occurs for the 40kN load
amplitude, but the cycle is still closed, while for 80kN the strain tends to increase
indefinitely.

A plot of the axial experimental stress vs. strain curve in specimen tested in a Hop-
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Figure 9: Plot of the mean strain vs. time at the center cross-section (x = 0.06m) of
the specimen (sample 1) for three impulsive load amplitudes (20, 40 and 80kN).
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Figure 10: Plot of the axial strain rate vs. time at the center cross-section (x =
0.06m) of the specimen (sample 1) for three impulsive load amplitudes (20, 40 and
80kN).

kinson bar by Weerheijm and Van Doormaal (2007), showing a striking similarity
with one of the cycles (for 40kN) in Figure 11 is presented in Figure12.

Figure 13 presents the distribution of the axial strain along the centerline of the
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specimen for the three load amplitudes, again for sample 1. It is clear that for a
load amplitude of 20kN, a single large fracture tends to develop at x ∼ 0.40m,
splitting the sample in two parts. For a load of 40kN a second fracture is detected
at x ∼ 0.53m while in the third case the specimen is split in several parts.
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Figure 11: Plot of the mean stress vs. mean strain at the center cross-section (x =
0.06m) of the specimen (sample 1) for three impulsive load amplitudes (20, 40 and
80kN).

Finally, Figure 14 shows the rupture configurations for the three impulsive loads
considered in the study, with amplitudes equal to 20, 40, and 80kN, respectively,
and for the three simulated samples. Undamaged DEM elements were identified
in black, damaged elements in grey and broken (failed) elements in white. Thus,
dark color indicates undamaged or slightly damaged and light grey highly damaged
regions. Fractures can be seen as white bands.

Note that for low amplitude load pulses (20 and 40kN) fractures occur close to x
= 0.40m in samples 1 and 3, which are similar to the configuration obtained by
Hentz et al. (2004) for a 50kN amplitude (see Figure 15). This may be a preferred
location for load amplitudes below 50kN, but it should be acknowledged that the
first fracture may take place at a weak section elsewhere. This is illustrated by the
rupture configurations of sample 2, which presents a large, clearly defined fracture
close to x ∼ 0.80m for all loading cases. It was verified that for an input load
amplitude equal to 80kN, the sample splits in several parts (Figure 14), ranging
from three to six or so, depending on the distribution of the fracture energy. This
result also coincides with experimental observations. However, the average tensile
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Figure 12: Plot of axial experimental stress vs. strain in specimen tested in a Hop-
kinson bar by Weerheijm and Van Doormaal (2007), showing similarity with one
of the cycles in Figure 11.

stress at a sample cross-section at mid-length never exceeds around 5MPa, as may
be seen in the typical mean stress vs. time plot shown in Figure 8, which casts
doubts on the large increase in both the tensile strength and the specific fracture
energy reported for high strain rates by Hentz et al. (2004) and others.

In fact, the increase in the tensile strength as the strain rate increases observed in
engineering experiments seems to be due, for strain rates below 1/s, to the increase
of micro-cracks resulting from the dynamic loading and the ensuing increase in
fracture energy. The authors see no reason to expect a much larger increase of the
strength for higher strain rates and sustain that, until further evidence is available,
the specific fracture energy of concrete should not be significantly increased for the
analysis of structures subjected to impact or explosive loadings.

7 Conclusions

The authors have extensively employed the truss-like Discrete Element Method
(DEM) described in the paper, to predict the response of concrete structures sub-
jected to impulsive and impact loading. In cases in which failure is caused pri-
marily by tensile stresses, as in punching-through of plate or shell structures, the
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Figure 13: Plots of the axial nominal strain at the center (y = z = 0) of the specimen
vs. x-coordinate for impulsive load amplitudes of 20 (above), 40 (center) and 80kN
(below), respectively, showing the locations of transverse fractures in sample 1.
Spikes of the strain plots actually indicate cracks.



Strength of Brittle Materials under High Strain Rates in DEM Simulations 133

Finally, Figure 14 shows the rupture configurations for the three impulsive loads 
considered in the study, with amplitudes equal to 20, 40, and 80kN, respectively, and for 
the three simulated samples. Undamaged DEM elements were identified in black, 
damaged elements in grey and broken (failed) elements in white. Thus, dark color 
indicates undamaged or slightly damaged and light grey highly damaged regions. 
Fractures can be seen as white bands. 

 

Figure 14: DEM predictions of the rupture configurations at t = 1.89×10-4s for impulsive 
loads amplitudes of 20kN (above), 40kN (center line) and 80kN (below), for simulated 

sample 1 (left), sample 2 (center column) and sample 3 (right). 

 

Note that for low amplitude load pulses (20 and 40kN) fractures occur close to x = 0.40m 
in samples 1 and 3, which are similar to the configuration obtained by Hentz et al. (2004) 
for a 50kN amplitude (see Figure 15). This may be a preferred location for load 
amplitudes below 50kN, but it should be acknowledged that the first fracture may take 
place at a weak section elsewhere. This is illustrated by the rupture configurations of 
sample 2, which presents a large, clearly defined fracture close to x ~ 0.80m for all 
loading cases. It was verified that for an input load amplitude equal to 80kN, the sample 
splits in several parts (Figure 14), ranging from three to six or so, depending on the 
distribution of the fracture energy. This result also coincides with experimental 
observations. However, the average tensile stress at a sample cross-section at mid-length 
never exceeds around 5MPa, as may be seen in the typical mean stress vs. time plot 
shown in Figure 8, which casts doubts on the large increase in both the tensile strength 
and the specific fracture energy reported for high strain rates by Hentz et al. (2004) and 
others. 

In fact, the increase in the tensile strength as the strain rate increases observed in 
engineering experiments seems to be due, for strain rates below 1/s, to the increase of 
micro-cracks resulting from the dynamic loading and the ensuing increase in fracture 
energy. The authors see no reason to expect a much larger increase of the strength for 
higher strain rates and sustain that, until further evidence is available, the specific fracture 
energy of concrete should not be significantly increased for the analysis of structures 
subjected to impact or explosive loadings. 

Figure 14: DEM predictions of the rupture configurations at t = 1.89×10−4s for
impulsive loads amplitudes of 20kN (above), 40kN (center line) and 80kN (below),
for simulated sample 1 (left), sample 2 (center column) and sample 3 (right).

 

 
Figure 15: View of Hentz et al. (2004) numerical prediction of the fracture config-
uration for BE16 test with the modified model: Axial speed field in the specimen
at t=3.28×10−3s.

basic constitutive law suggested by Hillerborg used herein in conjunction with con-
sideration of the heterogeneous character of concrete, has shown to be both robust
and reliable, in terms of small prediction errors when compared with experimental
results.

One initially surprising prediction of simulation studies was the detection of strain
rate effects, that is, the computed strength of structural elements was observed to
increase as the loading or strain rates increased, without any change in the consti-
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tutive equations or material parameters. Initial studies were then aimed at deter-
mining the response of cubic samples subjected to controlled displacements, which
confirmed the capacity of the DEM to predict the experimentally observed strength
increase with the strain rate in tensile tests. However, it is shown that this approach,
both in laboratory and in numerical simulation studies of concrete, is limited to
strain rates smaller than about 1/s.

Hence, modified split Hopkinson bar published test results were simulated, em-
ploying the present DEM formulation, which was able to reproduce the observed
failure configurations, but in contradictions with published results in the technical
literature, do not predict large tensile strength or specific fracture energy increases
with the strain rate. In fact, since it is not possible to directly measure the tran-
sient dynamic stresses in the tested samples, the correctness of proposed models
can only be confirmed by comparisons of simulation results with the experimental
damage configurations. As far as the authors are aware of, in none of the avail-
able Hopkinson bar experimental studies it was attempted to determine damage in
the remaining parts of the split samples, which is essential to correctly predict the
response.

Acknowledgement: The authors acknowledge the support of CNPq and CAPES
(Brazil).

References

Brara, A., Camborde, F., Klepaczko, J. R. and C. Mariotti, C., (2001). Exper-
imental and numerical study of concrete at high strain rates in tension, Mechanics
of Materials, 33, 33-45.

Brara, A. and Klepaczko, J. R., (2007). Fracture energy of concrete at high
loading rates in tension, International Journal of Impact Engineering, 34, 424–
435.

Cotsovos, D. M. and Pavlovic’, M. N., (2008). Numerical investigation of con-
crete subjected to high rates of uniaxial tensile loading, International Journal of
Impact Engineering, 35, 319–335.

Dalguer, L. A., Irikura, K., and Riera, J. D., (2003). Simulation of tensile
crack generation by three-dimensional dynamic shear rupture propagation during
an earthquake. J. Geophys. Res., 108(B3), 2144.

Hentz, S., Donzé, F. V. and Daudeville, L., (2004). Discrete element modelling of
concrete submitted to dynamic loading at high strain rates, Computers and Struc-
tures, 82, 2509–2524.

Hillerborg, A., (1971). A model for fracture analysis, Cod. LUTVDG/TVBM



Strength of Brittle Materials under High Strain Rates in DEM Simulations 135

300-51-8.

Iturrioz, I., Miguel, L. F. F., and Riera, J. D., (2009). Dynamic fracture anal-
ysis of concrete or rock plates by means of the Discrete Element Method. Latin
American Journal of Solids and Structures, Vol. 6, pp. 229-245.

Kim, K. and Lim, Y. M., (2011). Simulation of rate dependent fracture of con-
crete using and irregular lattice model, Cement and Concrete Composites, doi:
10.1016/cemconcomp.2011.01-002.

Kosteski, L. E., Riera, J. D. and Iturrioz, I. (2010). Consideration of scale ef-
fects and stress localization in response determination using the DEM, MECOM –
CILAMCE 2010, November 2010, Buenos Aires, Argentina.

Malvar, I. J. and Crawford, J. E., (1998). Dynamic increase factors for concrete,
28th Department of Defense Explosive Safety Seminar, Orlando, Florida, USA.

Miguel, L. F. F. (2005). Critério constitutivo para o deslizamento com atrito ao
longo da falha sísmica, Ph.D. thesis, (in portuguese) 229 pp., PPGEC, Escola de
Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Miguel, L. F. F., Riera, J. D., and Iturrioz, I., (2008). Influence of size on the
constitutive equations of concrete or rock dowels. International Journal for Nu-
merical and Analytical Methods in Geomechanics, Vol. 32, No. 15, pp. 1857-188,
doi: 10.1002/nag.699.

Miguel, L. F. F., Iturrioz, I., and Riera, J. D., (2010). Size Effects and Mesh
Independence in Dynamic Fracture Analysis of Brittle Materials, CMES: Computer
Modeling in Engineering & Sciences, 56, pp. 1-16.

Miguel, L. F. F., Riera, J. D., and Iturrioz, I., (2012). Rate effects in brittle
materials subjected to tension. Proceedings of PACAM XII - 12th Pan-American
Congress of Applied Mechanics, January 02-06, 2012, Port of Spain, Trinidad.

Ozbolt, J., Sharma, A. and Reinhardt, H-W., (2011). Dynamic fracture of con-
crete compact tension specimen, International J. of Solids and Structures, 48, 1534-
1543.

Puglia, V. B., Iturrioz, I, Riera, J. D., Kosteski, L. E., (2010). Random field
generation of the material properties in the truss-like discrete element method,
Mecánica Computacional, Cilamce-Mecom 2010, v. XXIX, pp 6793-6807.

Riera, J. D. (1984). Local effects in impact problems on concrete structures. Pro-
ceedings, Conference on Structural Analysis and Design of Nuclear Power Plants,
Oct. 1984, Porto Alegre, RS, Brasil, Vol. 3, CDU 264.04:621.311.2:621.039.

Riera, J. D. and Rocha, M. M., (1991). A note on the velocity of crack propaga-
tion in tensile rupture, Revista Brasileira de Ciências Mecânicas - RBCM, VII (3),
217-240.



136 Copyright © 2011 Tech Science Press CMES, vol.82, no.2, pp.113-136, 2011

Riera, J. D. and Iturrioz, I., (1998). Discrete elements model for evaluating im-
pact and impulsive response of reinforced concrete plates and shells subjected to
impulsive loading. Nuclear Engineering and Design, 179, 135-144.

Riera, J. D.; Iturrioz, I.; and Miguel, L. F. F., (2008). On Mesh Independence
in Dynamic Fracture Analysis by Means of the Discrete Element Method. ENIEF
2008 - XVII Congreso sobre Métodos Numéricos y sus Aplicaciones, San Luis,
Argentina, 2008. v. XXVII. p. 2085-2097.

Rios, R. D. (2002). Aplicações do método dos elementos discretos em estruturas
de concreto, Ph.D. thesis, PPGEC, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil.

Rios, R. D., and Riera, J. D., (2004). Size effects in the analysis of reinforced
concrete structures. Engineering Structures, Vol 26, Issue 8, 1115-1125.

Shinozuka, M. and Deodatis, G., (1996). Simulation of multi-dimensional gaus-
sian stochastic fields by spectral representation, Applied Mechanics Review, Amer-
ican Society of Mechanical Engineers, 49(1), 29-53.

Van Vliet, M. R. A. and Van Mier, J. G. M., (2000). Size effects of concrete and
sandstone, Heron, Vol 45, No.2, 91-108.

Weerheijm, J. and Van Doormaal, J. C. A. M., (2007). Tensile failure of con-
crete at high loading rates: New test data on strength and fracture energy from
instrumented spalling tests, International Journal of Impact Engineering, 34, 609–
626.


