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2D Mixed Convection Viscous Incompressible Flows with
Velocity-Vorticity Variables

Alfredo Nicolás1 and Blanca Bermúdez2

Abstract: Mixed convection viscous incompressible fluid flows, under a grav-
itational system, in rectangular cavities are reported using the unsteady Boussi-
nessq approximation in velocity-vorticity variables. The results are obtained using
a numerical method based on a fixed point iterative process to solve the nonlinear
elliptic system that results after time discretization; the iterative process leads to
the solution of uncoupled, well-conditioned, symmetric linear elliptic problems for
which efficient solvers exist regardless of the space discretization. Results with dif-
ferent aspect ratios A up to Grashof numbers Gr = 100000 and Reynolds numbers
Re = 1000 for the lid driven cavity problem are reported. The validation of the
results is given through mesh size and time-step independence studies.

Keywords: velocity-vorticity formulation, mixed convection flows, aspect ratio,
Reynolds and Grashof numbers, fixed point iterative process

1 Introduction

Mixed convection viscous incompressible fluid flows, under a gravitational system,
in rectangular cavities using the unsteady Boussinessq approximation in velocity-
vorticity variables are presented. They are obtained with a numerical procedure
based on a fixed point iterative process to solve the nonlinear elliptic system that
results once a convenient second order time discretization is made; the iterative pro-
cess leads to the solution of uncoupled, well-conditioned, symmetric linear elliptic
problems for which efficient solvers exist regardless of the space discretization.
For the lid driven cavity problem, results with different aspect ratios A (A= ratio
of the height to the width) are reported up to Grashof numbers Gr = 100000 and
Reynolds numbers Re = 1000; the lid driven cavity problem causes recirculation
phenomenon because of the nonzero boundary condition of the velocity on the top

1 Depto. Matemáticas, UAM-I; 09340 México D:F:, México. E-mail: anc@xanum.uam.mx
2 F. C.C.,Benemérita Universidad Autónoma de Puebla; Puebla, Pue., México. E-mail:

bbj@solarium.cs.buap.mx



164 Copyright © 2011 Tech Science Press CMES, vol.82, no.3, pp.163-178, 2011

wall which together with buoyancy from the vertical temperature gradient makes
the problem more difficult to deal with. Moreover, since the isothermal case it is
known that the variation of the aspect ratio A makes the flow more unstable, Nicolás
and Bermúdez (2005) and Bruneau and Jouron (1990).

Mixed convection results are scarce Iwatsu, Hyun and Kuwahara (1993), Bermúdez
and Nicolás (1999), and even more with velocity-vorticity variables, Fusegi and
Farouk (1986) and Arafmanesh, Nahafi and Abdi (2008). Moreover, to solve the
system of equations in these variables is more difficult, at least with a numerical
procedure similar to the one applied for solving an analogous non-linear elliptic
system that results after time discretization with the stream function-vorticity for-
mulation, Nicolás and Bermúdez (2005). The mixed convection flows has engi-
neering applications like those for design of interchange of heat, Iwatsu, Hyun and
Kuwahara (1993).

Based on the fact that heat transfer is of interest as well, the results are comple-
mented with the local N(x) and global Nu Nusselt numbers. Moreover, to support
the results are correct mesh size and time-step independence studies are carried out.

2 Mathematical model and numerical method

Let Ω ⊂ RN(N = 2,3) be the region of the flow of an unsteady thermal viscous
incompressible fluid in a gravitational system, and Γ its boundary. This kind of
flows is governed by the non-dimensional system, in Ω× (0,T ), T > 0,

ut − 1
Re ∇2u+∇p+u∇u = f (a)

∇ ·u = 0 (b)
θt − 1

RePr ∇2θ +u ·∇θ = 0, (c)
(1)

known as the Boussinesq approximation in primitive variables, velocity u and pres-
sure p, if f = Gr

Re2 θ e, where θ is the dimensionless temperature of the flow, and e is
the unit vector in the gravity direction g. The dimensionless parameters Re, Gr and
Pr are the Reynolds, Grashof and Prandtl numbers. These parameters are given
by Re = UL/ν , with ν = UL

Re =kinematic viscosity, Pr = κ/µcp; g is the gravita-
tional constant L and U are the length and the velocity of reference. The thermal
coefficients, µ=dynamic viscosity and cp=the specific heat are also involved.

The system must be supplemented with appropriated initial and boundary condi-
tions. For instance u(x,0) = u0 (x) (∇ ·u0 = 0) and θ(x,0) = θ0(x) in Ω; u = g
(
∫

Γ
g ·ndΓ = 0) and Bθ = 0 on Γ, t ≥ 0, where B is a temperature boundary operator

which can involve Dirichlet, Neumann or mixed boundary conditions.

Taking the curl in (1a), one obtains the non-dimensional form of the vorticity ω

transport equation, in Ω× (0,T ), given by
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ω t −
1

Re
∇

2
ω +u ·∇ω = ω ·∇u+ f, (2)

where the new f is the curl of the old one and the vorticity vector ω is given by

ω = ∇×u (3)

Then, (2) says that vorticity is diffused, convected, and stretched, Chorin and Mars-
den (2000). Taking the curl in (3), using the identity ∇×∇×a =−∇2a+∇(∇ ·a)
and (1b), we get the following velocity Poisson equation

∇
2u =−∇×ω (4)

Hence, equations (2), with the corresponding f depending on θ , and (4), both cou-
pled to (1c), give the Boussinesq approximation in velocity-vorticity variables. It
can be easily verified that the vorticity, scalar, ω transport equation, in Ω× (0,T ),
Ω⊂ R2, is given by

ωt −
1

Re
∇

2
ω +u ·∇ω =

Gr
Re2

∂θ

∂x
; (5)

moreover, from the 2D restriction in (3),

ω =
∂u2

∂x
− ∂u1

∂y
(6)

and, from (4), two Poisson equations for the velocity components are obtained


∇2u1 =− ∂ω

∂y (a)

∇2u2 = ∂ω

∂x (b)
(7)

Then, the vector Boussinesq approximation system (2) and (4) coupled to (1c) is
reduced to a scalar system of four equations in 2D: one given by (5) and two for u1
and u2 given by (7), coupled to (1c); (5) and (7) are related through (6) from which
the boundary condition for ω in (5) should be obtained from that of u = (u1,u2).
To approximate the time derivatives that appear in the vorticity and temperature
equations (5) and (1c), the following well known second-order approximation is
applied

ft(x,(n+1)∆t) =
3 f n+1−4 f n + f n−1

2∆t
, (8)

where xε Ω, n ≥ 1, ∆t denotes the time step, and f r ≡ f (x,r∆t), assuming f is
smooth enough.
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Then, from (5), (7), and (1c), a fully implicit time-discretization gives a nonlinear
system of elliptic equations, at each time level (n+1)∆t, which reads



∇2un+1
1 =− ∂ωn+1

∂y

∇2un+1
2 = ∂ωn+1

∂x , un+1|Γ = ubc

αωn+1−ν∇2ωn+1 +un+1 ·∇ωn+1 = Gr
Re2 ( ∂θ

∂x )n+1 + fω , ωn+1 = ωbc

αθ n+1− γ∇2θ n+1 +un+1 ·∇θ n+1 = fθ , Bθ n+1|Γ = 0,

(9)

where α = 3
2∆t , fω = 4ωn−ωn−1

2∆t , fθ = 4θ n−θ n−1

2∆t , γ = 1
PrRe , and UL

Re has been re-
placed by the kinematic viscosity coefficient ν ; ubc and ωbc denote the boundary
condition for u and ω , and B the temperature boundary operator. To initiate (9),
(u1

1,u
1
2,ω

1,θ 1) need to be computed: a first order approximation may be applied
on a subsequence with smaller time step; a system of the form (9) is also obtained.

Once {u1,u2,ω,θ} =
{

un+1
1 ,un+1

2 ,ωn+1,θ n+1
}

is replaced, at time level (n+1)∆t,
a fixed point iterative process may be used to solve system (9), which can be seen
either as an adaptation of the one for mixed convection in stream function-vorticity
variables, Nicolás and Bermúdez (2005), or as an extension to mixed convection of
the one for isothermal flows in velocity-vorticity variables, Nicolás and Bermúdez
(2007).

If we denote

Rω(ω,u)≡ αω−ν∇
2
ω +u ·∇ω− Gr

Re2
∂θ

∂x
− fω in Ω

Rθ (θ ,u)≡ αθ − γ∇
2
θ +u ·∇θ − fθ in Ω ,

system (9) is equivalent, in Ω, to


∇2u1 =− ∂ω

∂y
∇2u2 = ∂ω

∂x , u|Γ = ubc
Rθ (θ ,u) = 0, Bθ |Γ = 0
Rω(ω,u,θ) = 0, ω|Γ = ωbc.

(10)

Then, (10) is solved by the fixed point iterative process:

With ω0 = ωn and θ 0 = θ n given, solve until convergence on θ and ω , in Ω,
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∇2um+1
1 =− ∂ωm

∂y

∇2um+1
2 = ∂ωm

∂x , um+1|Γ = ubc

θ m+1 = θ m−ρθ (αI− γ∇2)−1Rθ (θ m,um+1), Bθ m+1|Γ = 0, ρθ > 0,

ωm+1 = ωm−ρω(αI−ν∇2)−1Rω(ωm,um+1,θ m+1), ωm+1|Γ = ωm
bc,ρω > 0,

(11)

then take (un+1
1 ,un+1

2 ,θ n+1,ωn+1) = (um+1
1 ,um+1

2 ,θ m+1,ωm+1).

Finally, system (11) is equivalent, in Ω, to

∇2um+1
1 =− ∂ωm

∂y

∇2um+1
2 = ∂ωm

∂x , um+1
bc |Γ = ubc

(αI−β∇2)θ m+1 = (αI− γ∇2)θ m−ρθ Rθ (θ m,um+1), ρθ > 0, Bθ m+1|Γ = 0

(αI−ν∇2)ωm+1 = (αI−ν∇2)ωm−ρωRω(ωm,um+1,θ m+1), ρω > 0,
ωm+1|Γ = ωm

bc.

(12)

It turns out that at each iteration four uncoupled, symmetric linear elliptic problems
associated with the operators αI− γ∇2 and αI−ν∇2, and two with ∇2 have to be
solved; it should be noted that the non-symmetric part for θ and ω has been taken
into the right hand side thanks to the iterative process.

It is well known that for the space discretization of elliptic problems either finite
differences or finite elements may be used as far as rectangular domains are con-
cerned; it is also known that in either case efficient solvers exist. For the finite
element case, variational formulations have to be chosen and then restrict them to
finite dimensional spaces, like those in Glowinski (2003) and Gunzburger (1989).
For the specific results in the next section, the second order finite difference ap-
proximation of the Fishpack solver in rectangular domains, Adams, Scharztrauber
and Sweet (1980), is used. Then, such second order approximation in space com-
bined with the second order approximation in (8) for the first derivatives in time,
the approximation with second order central differences at the interior points, and
with (8) on the boundary, for all the first derivatives of ω and θ , appearing in (11),
those for the Neumann type boundary condition for θ appearing in the next section,
including those that appear in the local Nusselt number Nu(x), and the second or-
der trapezoidal rule (in all the interval) to calculate the global Nusselt number Nu,
imply that the whole discrete problem relies on second order discretizations only.
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3 Numerical experiments

The numerical experiments take place in rectangular domains Ω = (0,a)× (0,b),
a,b > 0, in connection with the lid-driven cavity problem; then, the boundary con-
dition of u is given by u = (1,0) at the moving boundary y = b and u = (0,0)
elsewhere. On the other hand, the boundary condition for the temperature (given
implicitly on the operator B in (12)) is given by{

∂θ

∂n = 0 on Γ|x=0,a ;
θ = θ0 ≡ 0 on Γ|y=0 , θ = θ1 ≡ 1 on Γ|y=b,

which means that the top wall, (x,y) = (x,b), is maintained at a higher temperature
than the bottom wall, (x,y) = (x,0), and the lateral walls, (x,y) = (0,y) and (x,y) =
(a,y), are insulated. Then, the fluid motion is caused by buoyancy from the vertical
temperature gradient and by the nonzero velocity on the top wall.

The local Nusselt number Nu measures the heat transfer at each point on the hot
wall into the fluid, where the temperature is specified, and the global Nusselt
number Nu measures the average of the heat transfer on the wall. These non-
dimensional parameters, on the hot wall under study, are defined by

local Nusselt number:

Nu(x) = ∂θ

∂y | |y=b

global Nusselt number:

Nu |y=b = 1
A

∫ a
0 Nu(x) dx,

with A = b
a . It is assumed that the cavity is filled with air, then the Prandtl number

Pr is set to Pr = 0.72; then, from hereafter the flows will be depending on Re, Gr,
and A only. We consider 100 ≤ Gr ≤ 100000, 400 ≤ Re ≤ 1000, and 0 < A ≤ 3.
The flows depart from rest, then the initial condition for u and θ are u(x,0) = 0
and θ(x,0) = 0. The mesh sizes are denoted by hx, hy and the time step by ∆t;
they will be specified for each case under study. The results correspond to flows at
steady state and are reported through the streamlines and the isotherms, and they
are complemented with their heat transfer through Nu(x) and Nu.

To justify the flows that follow are correct, a mesh size and time-step independence
studies are made in terms of the point-wise discrete L∞ relative error on the closure
of the cavity Ω, Nicolás and Bermúdez (2005),

∆t fixed : || fhx1,hy1;∆t− fhx2,hy2;∆t ||∞
|| fhx1,hy1;∆t ||∞ ,

{hx,hy} fixed : || fhx,hy;∆t1− fhx,hy;∆t2||∞
|| fhx,hy;∆t1||∞

.

In connection with this, for Re = 400, Gr = 100, and A = 2 a mesh size inde-
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pendence study was performed considering the uniform meshes, until the bound-
ary: 1) (hx,hy) = ( 1

64 , 2
128), 2) (hx,hy) = ( 1

128 , 2
256), 3), (hx,hy) = ( 1

256 , 2
512), and

(hx,hy) = ( 1
384 , 2

768); using ∆t = 0.001 fixed. On this regard, Table 1 shows the cor-
responding discrepancies for the stream function ψ and the temperature θ . Then,
from this Table the correct flow is obtained with the mesh in 2). Concerning the
time-step independence study, with (hx,hy) = ( 1

128 , 2
256) fixed, a calculation was

made with smaller and bigger time-steps: ∆t = 0.0001 (∆t3), ∆t = 0.01 (∆t1), and
∆t = 0.001 (∆t2). Table 2 shows the discrepancies for ψ and θ . From this Table we
see that ∆t2 = 0.001 is enough to get the right flows. The description of the results
follows.

Table 1: Mesh independence study

Mesh ψ θ

1 vs 2 0.3211 0.1428
1 vs 3 0.3087 0.1286
1 vs 4 0.2999 0.1241
2 vs 3 0.0393 0.0145
2 vs 4 0.0577 0.0192
3 vs 4 0.0177 0.0047

Table 2: Time-step independence study

Time ψ θ

∆t1 vs ∆t2 0.0015 0.00028
∆t1 vs ∆t3 0.0019 0.00047
∆t2 vs ∆t3 0.00041 0.00047

For Re = 400 and Gr = 100, Figures 1, 2, 3, 4, and 5 show successively the flows
with A = 1, 2, 1

2 , 3, and 1
3 : streamlines (left or up) and isotherms (right or down);

the respective meshes are hx = hy = 1
128 ; hx = 1

128 , hy = 2
256 ; hx = 1

256 , hy = 3
768 ; and

hx = 3
384 , hy = 1

128 . In these cases we do not know other results to compare with but
they are reasonable since the deformation of streamlines and isotherms is similar to
the ones expected from A = 1 in Figure 1; moreover, they must be correct from the
mesh size and time-step independence studies.

For Re = 1000 and Gr = 100, Figures 6, 7 and 8 picture successively the flows
with A = 1, A = 2, and A = 1

2 with meshes hx = hy = 1
128 ; hx = 1

128 , hy = 2
256 ; and
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Table 3: ψmax, ψmin and Nu: Re = 400, Gr = 100; h = 1/128
A ψmax ψmin Nu
3 0.010 -0.122 1.185
2 0.010 -0.122 1.215
1 8.011E-04 -0.122 3.654
1/2 0.017 -0.187 5.77
1/3 0.02 -0.199 7.173

Table 4: ψmax, ψmin and Nu: Re = 1000, Gr = 100000; h = 1/128
A ψmax ψmin Nu
3 0.026 -0.126 3.083
2 0.023 -0.124 3.310
1 0.002 -0.12 7.206
1/2 0.07 -0.256 17.490
1/3 0.11 -0.258 22.385

Figure 1: Re = 400, Gr = 100, A = 1; streamlines (left), isotherms (right)

hx = 2
256 , hy = 1

128 . For A = 1, the result agrees very well with that reported in
Iwatsu, Hyun and Kuwahara (1993), Bermúdez and Nicolás (1999), and Nicolás
and Bermúdez (2005).

For Re = 1000 and Gr = 100000, Figures 9, 10 and 11 display successively the
flows with A = 1, A = 2, and A = 1

2 with meshes hx = hy = 1
128 ; hx = 1

128 , hy = 2
256 ;

and hx = 2
256 , hy = 1

128 .

In connection with the heat transfer through Nu(x) in the upper wall (x,y)=(x,1);
depending on A, x varies on 0≤ x≤ 3 for A = 1

3 , 0≤ x≤ 2 for A = 1
2 , and 0≤ x≤ 1

for A = 1, 2, 3. Then, with A = 1
3 , 1

2 , 1, 2, and 3: Figure 12 displays the heat transfer
Nu(x) for Re = 400 and Gr = 100, the graphs for A = 2 and A = 3 are overlapped;
the picture shows that the heat transfer increases as A decreases, we also observe
that the maximum value of Nu(x) occurs near x = 0, while the minimum occurs in
x=1 for A = 1,2,3, in x = 2 for A = 1

2 , and in x = 3 for A = 1
3 . Figure 13, shows
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Figure 2: Re = 400, Gr = 100, A = 2; streamlines (left), isotherms (right)

Figure 3: Re = 400, Gr = 100, A = 1/2; streamlines (up), isotherms (down)
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Figure 4: Re = 400, Gr = 100, A = 3; streamlines (left), isotherms (right)

Figure 5: Re = 400, Gr = 100, A = 1/3; streamlines (up), isotherms (down)
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Figure 6: Re = 1000, Gr = 100, A = 1; streamlines (left), isotherms (right)

Figure 7: Re = 1000, Gr = 100, A = 2; streamlines (left), isotherms (right)

the heat transfer Nu(x) for Re = 1000 and Gr = 100000. The graphs for A = 2
and A = 3 are almost overlapped. The heat transfer also increases, at a higher rate
than the case before, as A decreases. We observe that the maximum value of Nu(x)
occurs near x = 0, while the minimum occurs in x=1 for A = 1, 2, and 3; in x = 2
for A = 1

2 and in x = 3 for A = 1
3 . In this case is notorious the appearance of one

local minimum and maximum for A = 1
2 and 1

3 . Some discussion follows in terms
of Tables 3 and 4.

From Tables 3 and 4 follow that the fluid motion is very weak but it does not de-
crease as A increases for vertical cavities and it increases when A decreases for
horizontal cavities; however, for vertical cavities there are more cells and the num-
ber of cells increases as A increases: the top one moving clockwise, the second
one downwards counterclockwise, and so on. It is observed that the heat transfer,
through Nu(x), in Figures 12 and 13, and Nu, is stronger, and: Nu(x) increases as A
decreases and Nu decreases as A increases for vertical cavities and it increases as A
decreases for horizontal cavities; that Nu increases as A decreases can be strongly
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Figure 8: Re = 1000, Gr = 100, A = 1/2; streamlines (up), isotherms (down)

Figure 9: Re = 1000, Gr = 100000, A = 1; streamlines (left), isotherms (right)
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Figure 10: Re = 1000, Gr = 100000, A = 2; streamlines (left), isotherms (right)
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Figure 11: Re = 1000, Gr = 100000, A = 1/2; streamlines (up), isotherms (down)
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A=1/3

A=1/2A=1A=2,3

Figure 12: Re=400 and Gr=100: local Nusselt numbers for A = 1,2,3, 1
2 , and 1

3

A=1A=2,3

A=1/2

A=1/3

Figure 13: Re=1000, Gr=100000: local Nusselt numbers for A = 1,2,3, 1
2 and 1

3
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associated to the increasing of the interval length of the hot wall where the heat
transfer comes from, something like this happens with Nu(x).
We would like to remark that for Re = 1000 with Gr = 100 and 100000; as it can
be observed in Figures 6, 7, 8, and 9, 10, 11; the flows look very similar. The same
happens with the local Nusselt numbers Nu(x) and also with the corresponding
properties that appear in Table 4. Because of this we do not present the Table for
Re = 1000 and Gr = 100 neither its Nu(x) graph.

4 Conclusions

We have been presented results on mixed convection flows in rectangular cavities
using the unsteady Boussinesq approximation in velocity and vorticity variables.
The results are obtained from the well known un-regularized driven cavity problem
which since the isothermal case gives rise recirculation; moreover, on this regard it
is known that the variation of the aspect ratio A makes the fluid flow more unstable.
The results cover moderate values of the Reynolds number Re and the Grashof
number Gr. The fluid motion is not stronger at all but it has some monotonic growth
as A increases or decreases; however, for vertical cavities there is more motion
activity, there are more cells and the number of cells increases as A increases: the
top one moving clockwise, the second below counterclockwise, and so on. The heat
transfer is stronger and it has also a monotonic growth as A increases or decreases;
actually the heat transfer is stronger for horizontal cavities when A decreases, since
the length of the hot wall increases. Preliminary results for higher values of the
parameters show more activity on the fluid motion and on the heat transfer as well.
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