
Copyright © 2011 Tech Science Press CMES, vol.82, no.4, pp.253-264, 2011

Creation of Imperfections for Welding Simulations

L. Novotný1 and M. Tsunori2

Abstract: The welding simulation is carried out by an uncoupled thermal and
mechanical analysis or by a coupled thermo–mechanical analysis. For weld–induced
distortion and residual stress simulation, nonlinear mechanical analysis is required.
Nonlinearities are caused by both nonlinear behaviour of the material and geomet-
rical nonlinearity. Usually, the element birth technique is used to incorporate the
filler material in the model. The ideal straight geometry may be altered by im-
perfections to enable buckling behaviour. Real component shapes contain various
imperfections (e.g. geometrical, material). The finite element mesh may contain
geometrical imperfections too. When a simple weld model is used, the mode of
the end–distortion is predictable. The imperfections are created in the same shape
as predicted. The sufficient magnitude of an imperfection is approximately 1/100
of end–distortion. In case that complex weld model shapes are used, it is not easy
to predict the correct imperfection shape. For general purpose as well, the com-
mon procedure for calculation of correct imperfections shapes is required. In these
article a new approach to create imperfections was adopted. The results obtained
in the course of this work allowed to calculate resultant welding distorsion more
accurate.

Keywords: Imperfection, finite element method, welding simulation, thermal
analysis.

1 Problem description, finite element model without imperfection

Next finite element simulations represent real welding experiment. In a trial, two
plates of dimensions 500 mm long, 250 mm wide and 4 mm thickness were single
pass butt welded. Steel plates were welded using gas metal arc welding [Davies,
Wimpory, Béreš, Lightfoot, Dye, Oliver, O’Dowd, Bruce and Nikbin, (2007)]. The
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material chosen for the base plate was a high strength low alloy DH–36 steel. Con-
vection filler material weld wires (1 mm in diameter) were used; which under-
goes solid–state phase transformation at a relatively high temperature, 560 ˚C. The
chemical compositions of the plates and the weld consumables are shown in Ta-
ble 1. During manual welding the plates were rested, unclamped, on wooden pal-
lets. They were held 4 mm apart by series of approximately 25 mm long tack welds
at three locations with intervals of approximately 220 mm. A ceramic backing tile
was used to contain the weld pool.

Table 1: T Chemical composition (wt. %) of steel plate and weld wire

C Si Mn P S Cu Ni Cr Nb
steel plate 0.11 0.18 1.29 0.01 0.004 0.02 0.03 0.03 0.01
weld wire 0.07 0.61 1.42 0.01 0.01 0.14 0.04 0.02 0.02

The welding conditions employed was: weld speed v =2.7 mm s−1, weld current
I =150 A, weld voltage U =18 V, heat input H =1.0 kJ mm−1 [Tsunori, M.; Davies,
C. M.; Dye, D.; Nikbin, K. M. (2008)].

2 Finite element model without imperfection – Model 0

Finite element mesh contains 21200 elements (20 nods 3D volume elements) and
102823 nods.

In the vicinity of the weld, an uniform refined mesh was used as can be seen in
Fig.1(c). Symmetry boundary conditions were defined to the nods on face of sym-
metry.

Moving heat flux was considered on the surface of elements along the weld line

h =
ηIU

A
,

where η =0.75 is thermal efficiency of welding, A is area of torch arc surface,
(I is the weld current, U is the voltage). The Von Misses elastic–plastic material
law with kinematic hardening was used. Temperature depended material properties
were employed in the calculations (Fig. 2).

Heat transfer analysis was performed with fixed time increment. Newmark method
was used in solution. The next mechanical analysis used time depended of tem-
perature field from heat transfer analysis. Newton-Raphson solution technique was
used in calculations.
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Figure 1: a) Schematic illustration of the butt welded plate b) Detail of finite ele-
ment mesh c) Finite element mesh

Temperature field is time depended. Place of maximal value of temperature is mov-
ing with conjunction of moving of prescribed heat flux, as shownin the Fig. 3(a)–
temperature field in time 135.2 s. On the Fig. 3(b) the end–displacement after
welding and cooling is presented (mirrored results).

3 Models with imperfections

The mode and the magnitude of the imperfection is crucial when buckling behavior
of thin structures during welding is studied. For complex shape of welded struc-
ture the next approach was used for imperfection creation. The result mode shape
from linear buckling analysis was used as imperfection. Load for linear buckling
analysis was shrinkage in weld line in linear mechanical analysis. Load for linear
mechanical analysis was simplified temperature field. Simplified temperature field
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Figure 2: Material properties
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Figure 3:  a) Temperature field during welding in simulation  b) End–displacement   

 

Figure 3: a) Temperature field during welding in simulation b) End-displacement

was created by prescribe low temperature value to node in weld line compare with
others nodes.

3.1 Linear buckling analysis in principle

The linear combination of mode shapes from linear buckling analysis can be used
as the imperfection shape for the nonlinear analysis.
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When we include the initial stress stiffness matrix–nonlinear system (in part)

(K+Kσ )d = f.

At the critical (buckling) condition there is bifurcation in load versus displacement
plot. Two infinitesimally close equilibrium states are possible–the unbuckled state
and the buckled state–without any change in applied loads F

(K+λKσ )dd = 0.

The linear buckling analysis refers to generalized eigenvalue problem

(K+λKσ )r = 0.

Trivial solution r = 0 for any value of λ is not interesting. Nontrivial solutions
ri 6= 0 are only if

det(K+λKσ ) = 0. (1)

This is an n–th order of λ , from which we can find n solutions (roots) or eigenvalues
λi. For each λi Eq. 1 have one solution (eigenvector)

(K+λiKσ )ri = 0,

where

λi is the factor by which this level must be increased or decreased in order to pro-
duce buckling (for i–order eigenshape),

ri is normal mode–mode shapes (for i–order eigenvalue),

K is conventional stiffness matrix,

Kσ is stress stiffness matrix (initial stress stiffness matrix, geometric stiffness ma-
trix, differential stiffness matrix, stability coefficient matrix, etc.),

di is vector of nodal d.o.f. (for i–order eigenvalue),

f is vector of applied load.

For computing only the significant eigenvalues and eigenvectors, the shift s can be
used

(K+(λi− s)Kσ )ri = 0.

Mode shapes are orthogonal to each other with respect K and Kσ matrices

rT
i Kr j = 1,

rT
i Kσ r j = λ .



258 Copyright © 2011 Tech Science Press CMES, vol.82, no.4, pp.253-264, 2011

3.2 Calculation of imperfections for welding simulations

3.2.1 Linear steady state thermal analysis

The uniform lower temperature load was prescribed to the nods of elements repre-
sented of welded material. The uniform higher temperature load was prescribed to
the nods of plate material. Magnitude of both the higher temperature and the lower
temperature is irrelevant, because in the linear buckling analysis the eigenvectors
will be normed. The temperature load was prescribed to all nods of the model, but
in addition the linear steady state thermal analysis was required for the creation of
the thermal matrix (thermal load) for the following mechanical calculation (stress
calculation).

3.2.2 Linear mechanical analysis

The thermal load from the linear steady state thermal analysis was used to calculate
the shrinkage in welded part.

Magnitude of shrinkage was irrelevant, too (because in the linear buckling analysis
the eigenvectors were normed). Symmetrical boundary conditions were prescribed
along the welding line. The purpose of this calculation was the creation of the
initial stress stiffness matrix for the following linear buckling analysis.

3.2.3 Linear buckling analysis, models with imperfections

The first twenty eigenvectors and eigenvalues were calculated. To compute the first
nonnegative eigenvectors and the subsequent eigenvalues, shift in the magnitude
s = 13 was used. The first twenty eigenshapes are presented in Fig. 5. The eigen-
shapes are normed, and then the imperfections are created as the multiple of the
subsequent mode shape displacements. Multiple factor can be expressed

ci =
uImp

i

uNorm
i

,

where

ci is multiple factor for i–th mode shape,

uImp
i is maximal value of displacement in i–th mode shape imperfection,

uNorm
i is maximal value of displacement in i–th normed mode.

The final imperfection can be created as a linear combination of several mode
shapes displacements. Nodal coordinates were updated by the imperfections

xIMP = x+ ciri,
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Figure 4: Various modes of eigenshapes

where

xIMP is vector of nodal coordinates with imperfections,

x is vector of nodal coordinates without imperfections,

ri is normed modes–mode shapes (for i–order eigenvalue).

By this approach, the imperfections were added to the nodes coordinates.
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3.3 Models with imperfections

Three different models with imperfections were created and these varied in number
of mode shapes included and in scale of included mode shapes.

Model 1

This model contained only the first mode shape. Maximal mode shape displace-
ment was uImp

1 = 0.5mm (maximal total imperfection was 0.5 mm). Multiple factor
c1 = 3.4409194.

Model2

Maximal mode shapes displacements were 0.5mm (maximal total imperfections
were 0.5 mm) for each of the mode shapes

uImp
1 = uImp

2 = uImp
3 = uImp

4 = uImp
5 = 0.5mm.

Model3

This model contained the first twenty mode shapes. Maximal mode shape displace-
ment of the first mode shape was 0.5 mm

uImp
1 = 0.5mm.

Maximal mode shape displacement for the following mode shapes was described
by the formula

uImp
i =

∣∣∣uImp
1

∣∣∣
λi

.

Subsequent maximal mode shape displacements was

uImp
1 = 0.5, uImp

2 = 0.2483, uImp
3 = 0.1639, uImp

4 = 0.1196, uImp
5 = 0.09199,

uImp
6 = 0.07435, uImp

7 = 0.06184, uImp
8 = 0.0525, uImp

9 = 0.04526,

uImp
10 = 0.03953, uImp

11 = 0.0349, uImp
12 = 0.03112, uImp

13 = 0.02798,

uImp
14 = 0.02536, uImp

15 = 0.02455, uImp
16 = 0.0245, uImp

17 = 0.0231,

uImp
18 = 0.02126, uImp

19 = 0.01977, uImp
20 = 0.01967.
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Figure 5: Behaviour of resultant welding displacement on the maximum initial
imperfection

4 Welding simulations by models with imperfections, calculation results

An equal welding parameter and calculation control as in welding model without
imperfections was used. Only the mesh was different (coordinates of nodes and el-
ements definitions). The maximal values of resultant displacements for each model
are shown in Fig. 5.

Fig. 5 illustrates that the resultant welding displacement decreases with increasing
of initial imperfection (a sum of imperfections of particular mode shapes in the
relevant model).

Fig. 6 shows the dependence of displacements for particular models with imperfec-
tions along the outer edge (parallel with welding line).

The small differences are also in place of maximal value of displacements. The
differences are not only in magnitudes, but also in shapes. Differences between the
results of model without imperfection and the results of model with imperfection
were calculated as

∆uim = uModel With Imp
im − kim ·uModel Without Imp,

∆uim = uModel With Imp
im −

∫
l

uModel With Imp
im dl∫

l
uModel Without Imp dl

·uModel Without Imp,
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Figure 6:  Resulting deformation along the outer edge 

 
Figure 6: Resulting deformation along the outer edge

where im is the number of model with imperfection (im = 1,2,3), uModel With Imp
im are

the results of displacements on im–th model with imperfection, uModel Without Imp are
the results of displacements on model without imperfection, l is the line along the
outer edge (parallel with welding line).

Resultant differences in displacement for each models with imperfection compare
with model without imperfection are shown in Fig. 7. Calculated parameters for
comparing were k1 = 0.97915, k2 = 0.94876, k3 = 0.97082.

There is a zero plastic deformation in the part of body around the outer edge; be-
haviours in Fig. 7 are smooth functions.

5 Conclusion

A new approach to create imperfections for welding simulations was adopted.
These include calculations of imperfections as linear combinations of mode shapes,
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Figure 7: Differences between the results of displacements along the outer edge

mode shapes were calculated in linear buckling analysis. In the weld model with
simple geometry, the imperfections are not necessary. They are useful in models
with more complex shapes. The first non–zero eigenvalue mode shape is the most
significant for imperfections. Imperfection mode shapes of higher order must be
included in the imperfections with a declining multiplier. The consideration of
greater number of imperfection mode shapes in the analysis can make the calcula-
tion more accurate.
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