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New Optimization Algorithms for Structural Reliability
Analysis

S.R. Santos1, L.C. Matioli2 and A.T. Beck3

Abstract: Solution of structural reliability problems by the First Order method
require optimization algorithms to find the smallest distance between a limit state
function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-
Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown
to be efficient but not robust, as it fails to converge for a significant number of prob-
lems. On the other hand, recent developments in general (augmented Lagrangian)
optimization techniques have not been tested in aplication to structural reliability
problems. In the present article, three new optimization algorithms for structural
reliability analysis are presented. One algorithm is based on the HLRF, but uses
a new differentiable merit function with Wolfe conditions to select step length in
linear search. It is shown in the article that, under certain assumptions, the pro-
posed algorithm generates a sequence that converges to the local minimizer of the
problem. Two new augmented Lagrangian methods are also presented, which use
quadratic penalties to solve nonlinear problems with equality constraints. Perfor-
mance and robustness of the new algorithms is compared to the classic augmented
Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in
the solution of 25 benchmark problems from the literature. The new proposed
HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as effi-
cient as the iHLRF algorithm. The two augmented Lagrangian methods proposed
herein are shown to be more robust and more efficient than the classical augmented
Lagrangian method.
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1 Introduction

Let X be a random variable vector of system parameters, describing the uncertain-
ties in structural loads, material resistances and member geometry:

X = (X1,X2, . . . ,Xn)
T . (1)

A performance function

h(X) = h(X1,X2, . . . ,Xn) (2)

is written in such a way as to divide the failure and survival domains:

D f = {x|h(x)≤ 0} is the failure domain, (3)

Ds = {x|h(x) > 0} is the safety domain. (4)

The limit state equation is defined by h(X) = 0. Hence, the probability of failure
can be evaluated by:

Pf =
∫

. . .
∫

h(X)<0

fX (x1,x2, . . . ,xn)dx1dx2 . . .dxn, (5)

where fX (x1,x2, . . . ,xn) is the joint probability density function for the vector of
random variables and the integration is performed over the failure domain, h(X) <
0. The evaluation of Eq. (5) is not easy because: 1. it involves a multi-dimensional
integral; 2. the exact form of the joint probability density function is rarely known;
3. the limit state equation h(X) = 0 is not always given in closed form, but as the
solution to some numerical algorithm.

Direct solution of Eq. (5) via Monte Carlo is only feasible when Pf is not too small
and/or the limit state function is given in closed form.

Approximate solutions can be obtained efficiently using the so-called First Order
(FORM) or Second Ordem (SORM) Reliability Methods. Both methods involve a
transformation of the original vector of random variables X to a space of standard
Gaussian variables Y. In this space, the so-called design point is the point over
the limit state closest to the origin, and is also the point over the failure domain
with the maximum likelyhood. The distance (in Y space) from the design point
to the origin is known as reliability index, and denoted by β . Once the design
point has been located, the first order solution accounts for a linearization of the
limit state function at the design point, resulting in the linear estimate of the failure
probability:

Pf = Φ(−β ) (6)
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where Φ(·) is the standard normal cumulative distribution function.

Standard textbooks on structural reliability methods provide the details on the trans-
formation required to map points from X to Y space [Haldar and Mahadevan (2000);
Melchers (2001)]. This transformation involves the Principle of Normal Tail Ap-
proximation, proposed by Ditlevsen (1981), which consists in estimating the pa-
rameters of an equivalent normal distribution for each design variable, at each point
in the design space.

To evaluate β , it is necessary to find the design point, that is, the point y∗ on the
failure surface closest to the origin of the standard Gaussian space. This can be
expressed by the following constrained optimization problem:

minimize f (y)
subject to h(y) = 0

(7)

where, f (y) =
1
2

β 2 =
1
2

yT y is the objective function, with f : Rn→R, h : Rn→R
is the failure surface and f ,h ∈C1.

The solution of problem (7) has motivated development of dedicated algorithms, as
the Hasofer and Lind (1974) and Rackwitz and Fiessler (1978) algorithm (HLRF).
This algorithm has been shown to be very efficient, but does not converge for many
problems [Liu and Kiureghian (1986, 1992)]. In fact, there is no mathematical
proof of convergence for the HLRF algorithm.

Liu and Kiureghian (1992) proposed a modified version of the HLRF algorithm
(denoted M-HLRF), including a merit function to induce convergence. The authors
have shown that, although the M-HLRF algorithm performs better than HLRF, it
does not always generate a globally convergent sequence.

Santosh, Saraf, Ghosh, and Kushwaha (2006) presented an improvement to HLRF
by using the same merit function of Liu and Kiureghian (1992), combined with a
linear search using the Armijo rule. Convergence proofs for the algorithm where
not presented.

Liu and Kiureghian (1986, 1992) compared the performance of different algorithms
in solving the reliability problem (Eq. 7). The Projected Gradient, Augmented La-
grangian and Sequential Quadratic Programming methods were tested by the au-
thors, and compared with the HLRF and M-HLRF algorithms. A lack of robustness
of the HLRF and of the Augmented Lagrangian methods were identified by the au-
thors. Moreover, the Sequential Quadratic Programming and M-HLRF methods
were shown to be more efficient than the other methods for the problems tested by
the authors.

Zhang and Kiureghian (1997) developed an improved HLRF algorithm, called
iHLRF, by introducing a non-differentiable merit function and using the Armijo
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rule to select the step size in linear search. The authors established the conditions
under which the algorithm generates a sequence that converges to the minimizer of
problem (7).

In this article, a new HLRF-based algorithm, denoted nHLRF, is proposed, in-
cluding a differentiable merit function and using the Wolfe conditions to determi-
nate the step length. However, unlike previous studies [Liu and Kiureghian (1986,
1992); Santosh, Saraf, Ghosh, and Kushwaha (2006)], convergence of the proposed
nHLRF algorithm is proved.

The augmented Lagrangian method studied by Liu and Kiureghian (1992) used
a classical quadratic penalty function introduced by Hestenes (1969) and Powell
(1969). However, since the publication of Liu and Kiureghian (1992), many new
developments of augmented Lagrangian methods were obtained, for example by
Ben-Tal and Zibulevsky (1997); Birgin, Castillo, and Martínez (2005); Censor and
Zenios (1992); Chen and Teboulle (1993); Eckstein (1993); Iusem and Teboulle
(1993, 1995); Iusem, Teboulle, and Svaiter (1994); Kiwiel (1997); Martinez (2000);
Matioli and Gonzaga (2008); Rômulo and Gonzaga (2003); Teboulle (1992); Tseng
and Bertsekas (1993). This research lead to new penalty functions and modern
augmented Lagrangian methods. Based on developments by Tseng and Bertsekas
(1993) and Santos and Matioli (2011), two new augmented Lagrangian methods
for problem (7) are proposed herein.

The remaining sections of this article are organized as follows. In Section 2, clas-
sical and improved versions of the HLRF algorithms are presented. The new, pro-
posed nHLRF algorithm is presented in Section 3, were the proof of convergence
is also presented. In Section 4, augmented Lagrangian methods are presented. Nu-
merical problems are presented in Section 5.

2 HLRF algorithm and improvements

The Hasofer and Lind (1974), Rackwitz and Fiessler (1978) algorithm (HLRF) is
obtained with the simple sequence:

yk+1 =
1

‖∇h(yk)‖2

[
∇h
(

yk
)T

yk−h
(

yk
)]

∇h
(

yk
)

(8)

where the vector y ∈ Rn is defined in the standard Gaussian space and h : Rn →
R is the failure surface. The HLRF is a very popular and efficient algorithm for
solution of problem (7). However, there is no garantee of convergence and, in
fact, the algorithm is known to fail in a considerable number of problems [Liu and
Kiureghian (1986, 1992)].
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Liu and Kiureghian (1986, 1992) presented an alternative algorithm, called M-
HLRF, to circumvent convergence problems of the HLRF algorithm. The authors
combined the search direction yielded by HLRF (dk):

dk =
1

‖∇h(yk)‖2

[
∇h
(

yk
)T

yk−h
(

yk
)]

∇h
(

yk
)
−yk (9)

with a linear search in this direction. The linear search is performed until a suffi-
cient decrease in a merit function, m(y), is reached. The following merit function
was considered:

m(y) =
1
2

∣∣∣∣∣y− ∇h(y)T y
‖∇h(y)‖2 ∇h(y)

∣∣∣∣∣
2

+
1
2

c ·h(y)2 . (10)

Although the robustness was improved, Liu and Kiureghian (1986) acknowledged
that convergence of the method cannot be guaranteed, since merit function m(y) can
have minima which are not solutions to the original problem (Eq. 7). Furthermore,
dk may not be a descent direction for the merit function (Eq. 10) in some cases.

An improved algorithm (iHLRF) was presented by Zhang and Kiureghian (1997),
also based on a linear search in the HLRF direction:

yk+1 = yk +α
kdk. (11)

Note that the recursive formula of the HLRF algorithm is obtained when a full step
is used (αk = 1).

The following non-diferentiable merit function is used in the linear search:

m(y) =
1
2

yT y+ c |h(y)| . (12)

The apropriate step αk is found using the popular Armijo rule, as the first value to
satisfy a condition of sufficient decrease in the merit function:

m(yk+1)≤ m(yk)+m1α
k
∇m(yk)T dk (13)

where ∇m(yk) = yk + c · sign(h(yk))∇h(yk) and m1 ∈ (0,1).
Zhang and Kiureghian (1997) showed that, for ∀yk ∈ Rn, the direction dk, given in
Eq. (9) is a descent direction to m(y), given in Eq. (12), as long as the following
condition is satisfied:

c >

∥∥yk
∥∥

‖∇h(yk)‖
. (14)
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In order to satisfy condition (14), Zhang and Kiureghian (1997) established the
following rules for updating ck:

if
∣∣h(yk)

∣∣≥ ∆

ck = η max

{ ∥∥yk
∥∥

‖∇h(yk)‖
,
1
2

∥∥yk +dk
∥∥2

|h(yk)|

}
;

otherwise,

ck = η

∥∥yk
∥∥

‖∇h(yk)‖
.

Values of the parameter ∆ and η suggested by Zhang and Kiureghian (1997) are
10−3

∣∣h(y0)
∣∣ and 2, respectively.

The iHLRF algorithm has been shown to be more efficient and more reliable than
the HLRF and M-HLRF algorithms [Zhang and Kiureghian (1997)]. However, one
important drawback of the algorithm is the fact that the merit function used is non-
differentiable. In order to check if a sufficient reduction in the merit function was
achieved during linear search, it is necessary to evaluate the gradient of the merit
function (Eq. 12), which is not defined in all points of the domain.

3 Proposed nHLRF algorithm and proof of convergence

In this section, a new (nHLRF) algorithm is proposed, using a differentiable merit
function which decreases at each iteration along the linear search in the HLRF
direction (Eq. 9). The following merit function is proposed:

m(y) =
1
2

yT y+
c
2

h(y)2 (15)

where c > 0.

To establish the proof of convergence of the nHLRF algorithm, it is necessary that
the HLRF search direction (given in Eq. 9) be a descent direction for the merit
function (Eq. 15), for all yk ∈ Rn. In the following, an important result of this
paper is presented.

Theorem 3.1. The HLRF search direction, given in Eq. (9), is a descent direction
at any point yk ∈ Rn for the merit function (Eq. 15), provided that:

c >− 1
h(yk)

· (y
k)T

∇h(yk)

‖∇h(yk)‖2 (16)

where h(yk) 6= 0.
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Proof. It must be proven that ∇m(yk)T dk < 0, for all yk ∈ Rn. One has,

∇m(yk) = yk + c ·h(yk)∇h(yk). (17)

Replacing Eq. (9) in Eq. (17), one obtains

∇m(yk)T dk =−

(
ykT yk− (∇h(yk)T yk)2

‖∇h(yk)‖2

)
−

(
c ·h(yk)2 +

h(yk)ykT
∇h(yk)

‖∇h(yk)‖2

)
.

(18)

Using the Schwartz inequality:
∣∣∇h(yk)T yk

∣∣< ∥∥∇h(yk)
∥∥ ·∥∥yk

∥∥, one concludes that

ykT yk− (∇h(yk)T yk)2

‖∇h(yk)‖2 ≥ 0. (19)

Considering condition (Eq. 16) in evaluation of Eq. (18):

c >− 1
h(yk)

· y
kT

∇h(yk)

‖∇h(yk)‖2 , (20)

one is ensured that

c ·h(yk)2 +
h(yk)ykT

∇h(yk)

‖∇h(yk)‖2 > 0. (21)

Hence, combining Eqs. (19) and (21), it follows that ∇m(yk)T dk < 0.

Furthermore, it is observed that ∇m(yk)T dk = 0 only if

h(yk) = 0 and ykT yk− (∇h(yk)T yk)2

‖∇h(yk)‖2 = 0,

which is equivalent to saying that yk ∈ Rn satisfies the KKT conditions, thus being
a stationary point for problem (7).

Theorem 3.1 guarantees that merit function (Eq. 15) decreases in direction dk from
yk for some α > 0. However, a simple reduction of the merit function, (m(yk+1) <
m(yk)), does not guarantee convergence of the algorithm.

In order to guarantee convergence, a first condition to be imposed is the existence
of α satisfying the condition expressed in Eq. (13). However, this may lead to low
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performance, due to very short steps. To avoid small steps, the following Curvature
condition is considered:

∇m(yk +αdk)T dk ≥ m2∇m(yk)T dk, (22)

for some m2 ∈ (m1,1), and m1 given by Eq. (13).

The sufficient decrease (Eq. 13) and curvature (Eq. 22) conditions are known
collectively as Wolfe conditions, where 0 < m1 < m2 < 1.

Theorem (3.2) ensures that for any descent direction, dk, there are points yk +αkdk

satisfying Eqs. (13) and (22).

Theorem 3.2. Let m : Rn → R be continuously differentiable. Suppose that, for
all yk ∈ Rn and dk ∈ Rn, ∇m(yk)T dk < 0 and assume that

{
m(yk +αdk)|α > 0

}
is bounded from below. Then, if 0 < m1 < m2 < 1, there is αu > αl > 0 such that
m(yk +αkdk) satisfies the Wolfe conditions, given in Eqs. (13) and (22).

Proof. See Dennis and Schnabel (1996).

Theorem 3.3 establishes the conditions for the algorithm to converge to a stationary
point of m(yk), that is, ∇m(yk)→ 0.

Theorem 3.3. Let m : Rn→R be continuously differentiable, let y0 ∈Rn be a given
initial point for the sequence

{
yk
}

, defined by (yk +αkdk) where dk ∈ Rn, and the
step length αk > 0 satisfying Eqs. (13) and (22) with 0 < m1 < m2 < 1. Assume
that:
(i) the level set S =

{
y : m(y)≤ m(y0)

}
is bounded;

(ii) in some neighborhood of S, the function m(y) is Lipschitz continuously differ-
entiable, that is, there exists a constant L > 0 such that:

‖∇m(y)−∇m(y)‖ ≤ L‖y− y||

for all y, y ∈ S.
Then,

lim
k→∞

∥∥∇m(yk)
∥∥= 0.

Proof. See Dennis and Schnabel (1996).

From the above one concludes that, given a initial point y0 and the direction dk, if
the hypothesis of theorems 3.1, 3.2 and 3.3 are valid, algorithm nHLRF will gen-
erate a sequence of points which satisfy the Wolfe conditions and which converges
to a stationary point of m(y), which is also solution to the problem in Eq. (7).
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Given the theoretical results that establish convergence of the method, the nHLRF
algorithm is presented next. For this purpose, it is considered that the design vari-
ables are defined in standard normal space and are statistically independent.

Algorithm 3.1.
Data: y0 ∈ Rn, η > 0, α ∈ (0,1], 0 < m1 < m2 < 1
k = 0
WHILE the stopping criterion is not satisfied

COMPUTE the search direction dk following Eq. (9)
DETERMINE ck

IF h(yk) = 0
Choose ck > 0

ELSEIF

ck = η

∣∣∣∣∣ 1
h(yk)

· y
kT

∇h(yk)

‖∇h(yk)‖2

∣∣∣∣∣
WHILE the Wolfe conditions (Eqs. 13 and 22), are not satisfied

IF m(yk +αdk)−m(yk) > m1α∇m(yk)T dk

DO α = 0.5α

ELSEIF ∇m(yk +αdk)dk < m2∇m(yk)T dk

DO α = 2α

END

αk = α

yk+1 = yk +αkdk

END

β =
∥∥yk+1

∥∥
k = k +1

END

In Algorithm 3.1 the conditions to calculate ck are established in order to circum-
vent the numerical problem caused when h(yk) = 0, ensuring that direction dk,
given in Eq. (9), decreases for any yk ∈ Rn. Details about the choice of parameters
are given in Section 6.

4 Augmented Lagrangian Methods

Augmented Lagrangian methods are used to minimize problems with equality and
inequality constrains. These methods were developed to reduce the possibility of
ill-conditioned subproblems generated in the classical approach of penalty meth-
ods. For this purpose, at each iteration, estimates of the Lagrange multiplier for
equality constraints are obtained.
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To understand augmented Lagrangian methods, consider the problem in Eq. (23)
in the format of Eq. (7), but with m equality constraints

minimize f (y)
subject to h(y) = 0

(23)

where f : Rn→ R, h : Rn→ Rm, y ∈ Rn and f ,h ∈C1.

The Lagrangian function associated to Eq. (23) is defined as:

(y,λ ) ∈ Rn×Rm→ `(y,λ ) = f (y)+
m

∑
i=1

λihi(y) (24)

where λi, with i = 1, . . . ,m, is the Lagrange multiplier associated with the ith equal-
ity constraints.

Now consider the following problem:

minimize l (y,λ ) = f (y)+
m

∑
i=1

λihi(y)

subject to h(y) = 0.

(25)

At the feasible set, objective function of problems (23) and (25) coincide, hence
(23) and (25) have the same solution set. Therefore, from the penalty of prob-
lem (25), Hestenes (1969) and Powell (1969) defined the augmented Lagrangian
function as:

(y,λ ,ρ)∈Rn×Rm×R++ 7−→L (y,λ ,ρ) = f (y)+
m

∑
i=1

λihi(y)+
ρ

2

m

∑
i=1

hi(y)2 (26)

where ρ is the penalty parameter and λi, i = 1, . . . ,m, is the estimate of the ith

Lagrange multiplier.

Performance of the augmented Lagrangian method with the classical quadratic
penalty of Hestenes (1969) and Powell (1969) has been analyzed by Liu and Ki-
ureghian (1992) with respect to structural reliability problems.

In the present article, two new augmented Lagrangian methods are presented to ad-
dress structural reliability problems. Both methods can also be applied to general
nonlinear programming problems with equality constraints. Both methods pre-
sented herein use modern quadratic penalties. These methods are extensions of re-
sults presented by Matioli and Gonzaga (2008) and Tseng and Bertsekas (1993) for
nonlinear programming problems with inequality constraints without introducing
slack variables. For the format of problem (7), the augmented Lagrangian func-
tions are defined as:
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(y,λ ,γ) ∈ Rn×Rm×R++→L (y,λ ,γ) = f (y)+λh(y)+
γ

2
h(y)2 (27)

and

(y,λ ,ω) ∈ Rn×Rm×R++→L (y,λ ,ω) = f (y)+λh(y)+
ω

2
h(y)2 (28)

where, λ is the Lagrange multiplier associated with h(y) = 0 and γ and ω are the
penalty parameters. The penalty parameter γ in Eq. (27) is defined as:

γ =
λ 2

r
, with r > 0 (29)

and ω in Eq. (28) is defined as:

ω =
|λ |
r

, with r 6= 0. (30)

Remember that the penalty parameter must be positive.

Note that parameter γ in Eq. (27) and paramater ω in Eq. (28) are both dependent
of the multipliers. This is the diference in relation to the classical penalty (Eq. 26).

In augmented Lagrangian methods, the penalty parameter is one of few that we
have freedom of choice for its update. In Lemma 4.1, it is shown that for a particu-
lar choice of the penalty parameter, the three augmented Lagrangian functions are
equivalent.

Lemma 4.1. If λ 6= 0, for all i = 1, . . . ,m, and the penalty parameters γ in (27) and

ω in (28) are updated as γ =
λ 2

r
(given by Eq. 29) with r =

λ 2

ρ
and ω =

|λ |
r

(given

by Eq. 30) with r =
|λ |
ρ

and ρ > 0 (given by Eq. 26), then the functions (26), (27)

and (28) are the same.

Proof. The proof is immediate. It is shown for one case, the other is identical. In

fact, replacing γ =
λ 2

r
with r =

λ 2

ρ
in (Eq. 27), it follows that (Eq. 26) and (Eq.

27) are the same.

Santos and Matioli (2011) showed that the functions (27) and (28) generated by
augmented Lagrangian methods have a local minimizer, on the same way as using
the classical penalty of Hestenes (1969) and Powell (1969).

The algorithm for the augmented Lagrangian method using the penalty functions
proposed in this paper is presented in the sequence.
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Algorithm 4.1.
Data: y0 ∈ Rn, λ 0 ∈ R, γ0 ∈ R++, w0 ∈ R++, ω0 ∈ R++
k = 0
WHILE the stopping criterion is not satisfied

yk+1 ∈ argmin
{
L (y,λ k,γk) or L (y,λ k,ωk) : y ∈ Rn

}
UPDATE the Lagrange multipliers

λ k+1 = λ k + γkh(yk+1) (for function 27)
OR

λ k+1 = λ k +ωkh(yk+1) (for function 28)
UPDATE the penalty parameter

IF
∥∥h(yk+1)

∥∥≥ δ
∥∥h(yk)

∥∥
DO rk+1 < rk

ELSE

DO rk+1 = rk

END

γk+1 =
λ 2

rk+1 , (for function 27)

OR

ωk+1 =
|λ |

rk+1 , (for function 28)

k = k +1
END

In Algorithm 4.1 the function L refers to augmented Lagrangian functions (27) or
(28). Details of the selection and updating of the parameters are given in Section
6. To compare the efficiency of the proposed methods, the classical method of
Hestenes (1969) and Powell (1969) is also implemented.

Algorithm 4.2.
Data: y0 ∈ Rn, δ ∈ (0,1), λ 0 ∈ R, ρ0 ∈ R++
k = 0
WHILE the stopping criterion is not satisfied

yk+1 ∈ argmin
{

f (y)+λ kh(y)+
ρk

2
h(y)2 : y ∈ Rn

}
λ k+1 = λ k +ρkh(yk+1),
IF
∥∥h(yk+1)

∥∥≥ δ
∥∥h(yk)

∥∥
DO ρk+1 > ρk

ELSE

DO ρk+1 = ρk

END

k = k +1
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END

In the classical Algorithm 4.2, Hestenes (1969) and Powell (1969) updated the
Lagrange multiplier λ forcing it to satisfy the KKT conditions. In iteration k,
parameters λ k, ρk are known, and the algorithm determines yk+1. Therefore, if
λ k+1 = λ k + ρkh(yk+1) then ∇yL (yk+1,λ k+1,ρk) = ∇yL (yk+1,λ k+1) = 0. This
is used herein to justify the choice of λ k+1 in Algorithm 4.1. Only the case of
function (27) will be presented, because the process is analogous for function (28).

In fact, taking the derivative of (27) with respect to y and keeping λ k and γk fixed,
one obtains

∇yL (y,λ k,γk) = ∇ f (y)+
m

∑
i=1

(
λ

k + γ
kh(y)

)
∇h(y). (31)

The gradient evaluated for yk+1 results:

∇yL (yk+1,λ k,γk) = ∇ f (yk+1)+
m

∑
i=1

(
λ

k + γ
kh(yk+1)

)
∇h(yk+1). (32)

Therefore, if λ k+1 = λ k +γh(yk+1), then ∇yL (yk+1,λ k+1,γk)= ∇yL (yk+1,λ k+1)=
0.

In the next section, some classical numerical reliability problems are presented.
These problems are used in the sequence to compare the robustness and efficiency
of the proposed and classical augmented Lagrangian methods, and of the HLRF,
iHLRF and nHLRF algorithms.

5 Numerical problems

This section presents 25 selected problems from the literature, which are used in
the sequence to compare the robustness and performance of the new proposed al-
gorithms. With the exception of problems 22 and 23, all random variables involved
are statistically independent. For each problem, the probability distributions and
moments (mean and standard deviation) of the design variables are presented, as
well as the performance function h(X). For problems 1 to 6, all variables follow
standard normal distributions, hence only the performance functions are presented.

Problem 1 [Borri and Speranzini (1997)]: h(X) = 0.1(X1−X2)2− (X1 +X2)√
2

+2.5.

Problem 2 [Borri and Speranzini (1997)]: h(X) =−0.5(X1−X2)2− (X1 +X2)√
2

+3.

Problem 3 [Grooteman (2008)]: h(X) = 2−X2−0.1X2
1 +0.06X3

1 .
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Problem 4 [Grooteman (2008)]: h(X) = 3−X2 +256X4
1 .

Problem 5 [Wang and Grandhi (1999a)]: h(X) = 1+
(X1 +X2)2

4
−4(X1−X2)2.

Problem 6 [Grooteman (2008)]: h(X) = 2+0.015
9

∑
i=1

X2
i −X10.

Problem 7 [Santosh, Saraf, Ghosh, and Kushwaha (2006)]: The performance func-
tion is h(X) = X3

1 +X3
2 −18, the variables are statistically independent and normally

distributed with parameters µX1 = µX2 = 10 and σX1 = σX2 = 5.

Problem 8 [Santosh, Saraf, Ghosh, and Kushwaha (2006)]: h(X) = X3
1 +X3

2 −18,
the variables are normally distributed with mean values µX1 = 10 and µX2 = 9.9 and
standard deviations σX1 = σX2 = 5.

Problem 9 [Grooteman (2008)]: The relationship between the variables consid-
ered in this problem is given by the function h(X) = 2.5− 0.2357(X1 − X2) +
+0.0046(X1 +X2−20)4, where X1 and X2 are normally distributed with mean val-
ues 10 and standard deviations 3.

Problem 10 [Santosh, Saraf, Ghosh, and Kushwaha (2006)]: The random variables
considered in this problem are normally distributed with mean values µX1 = 10 and
µX2 = 9.9, and standard deviations σX1 = σX2 = 5. The performance function is
h(X) = X3

1 +X3
2 −67.5.

Problem 11 [Grooteman (2008)]: In this problem the performance function is
given by h(X) = X1X2− 146.14, where X1 and X2 are normally distributed with
mean values µX1 = 78064.4 and µX2 = 0.0104 and standard deviations σX1 = 11709.7
and σX2 = 0.00156.

Problem 12 [Wang and Grandhi (1996)]: The performance function considered in

this problem is h(X) = 2.2257− 0.025
√

2
27

(X1 +X2)3 +0.2357(X1−X2), where X1

and X2 are normally distributed, with mean values 10 and standard deviations 3.

Problem 13 [Santosh, Saraf, Ghosh, and Kushwaha (2006)]: The performance
function is h(X) = X1X2−2000X3, where the variables X1 and X2 are normally dis-
tributed with mean values 0.32 and 1400000, and standard deviations 0.032 and
70000, respectively. X3 is a lognormal variable with mean 100 and standard devia-
tion 40.

Problem 14 [Haldar and Mahadevan (2000)]: In this problem X1 and X2 are log-
normal variables with mean values 38 and 54, and standard deviations 3.8 and 2.7,
respectively. The performance function is given by h(X) = X1X2−1140.

Problem 15 [Mahadevan and Pan (2001)]: Linear performance function given by
h(X) = X1 + 2X2 + 3X3 + X4− 5X5− 5X6, where the variables are lognormal with



New Optimization Algorithms for Structural Reliability Analysis 37

mean values µXi = 120, for i = 1, . . . ,4, µX5 = 50 and µX6 = 40, and standard devi-
ations σXi = 12, for i = 1, . . . ,4, σX5 = 15 and σX6 = 12.

Problem 16 [Liu and Kiureghian (1992)]: In this problem the random variables
have the same distributions of the variables of problem 15 and the following per-
formance function is considered

h(X) = X1 +2X2 +2X3 +X4−5X5−5X6 +0.001
6

∑
i=1

sin(100Xi). (33)

Problem 17 [Mahadevan and Pan (2001)]: The performance function is given by

h(X) = −240758.1777+10467.364X1 +11410.63X2 +3505.3015X3−
−246.81X2

1 −285.3275X2
2 −195.46X2

3
(34)

where Xi, i = 1 . . . ,4 are lognormal with mean values µX1 = 21.2, µX2 = 20 and
µX3 = 9.2, and standard deviations σX1 = 0.1, σX2 = 0.2 and σX3 = 0.1.

Problem 18 [Santosh, Saraf, Ghosh, and Kushwaha (2006)]: The performance
function is h(X) = X1X2− 78.12X3, where X1 and X2 are normal variables and X3
follows a Type-I extreme value distribution. For this problem, the mean values of
variables are µX1 = 2× 107, µX2 = 10−4 and µX3 = 4, and the standart deviations
are σX1 = 0.5×107, σX2 = 0.2×10−4 and σX3 = 1.

Problem 19 [Santosh, Saraf, Ghosh, and Kushwaha (2006)]: The performance
function considered in this problem is the same of problem 18, but now X1 and X2
follow the lognormal distribution and X3 follows a Type-I extreme value distribu-
tion, with the same moments as the variables of problem 18.

Problem 20 [Liu and Kiureghian (1992)]: The performance function considered in
this problem is

h(X) = 1,1−0.00115X1X2 +0.00117X2
1 +0.00157X2

2 +
+0.0135X2X3−0.0705X2−0.00534X1−0.0149X1X3−
−0.0611X2X4 +0.0717X1X4−0.226X3 +0.0333X2

3−
−0.558X3X4 +0.998X4−1.339X2

4

(35)

where X1 follows Type-II extreme value distribution with mean µX1 = 10 and stan-
dard deviation σX1 = 5; X2 and X3 are normal random variables with mean values
µX2 = 25 and µX3 = 0.8, and standard deviations σX2 = 5 and σX3 = 0.2; and X4 is
lognormal variable with mean µX4 = 0.0625 and standard deviation σX4 = 0.0625.

Problem 21 [Wang and Grandhi (1999b)]: The performance function considered in
this problem is h(X) = X4

1 +2X4
2 −20, where the variables are normally distributed

with mean values µX1 = µX2 = 10 and standard deviations σX2 = σX2 = 5.
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Problem 22 Haldar and Mahadevan (2000): The performance function and the
probability distributions are the same considered in problem 14, but now X1 and X2
are dependent random variables with correlation equal to 0.3.

Problem 23 [Liu and Kiureghian (1992)]: The reliability of the three-bay, five-
story, linear elastic frame structure in Fig. 1 is examined. Taken from Liu and
Kiureghian (1986), this problem has 21 basic random variables: 3 applied loads, 2
Young’s moduli, 8 moments of inertia, and 8 cross-sectional areas. It is assumed
that the structure fails if the horizontal displacement at node 1 exceeds 0.2 ft. Thus,
the limit state function is expressed as h(X) = 0.2−u1(X). Informations about the
probability distribution and the correlation matrix of variables can be obtained in
Liu and Kiureghian (1986).
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Figure 1: Frame structure of problem 23

Problem 24 [Torii and Lopez (2011)]: This problem refers to the analysis of the
pipeline network represented in Fig. 2. All pipes have a length of 50m, except
pipe 12 that measures 100m. Node 1 has a prescribed head of 15m, while all other
nodes have a demand of 0.005m3/s. Besides, all pipe diameters are equal to 0.11m,
the material relative roughness is ks = 0.046mm and the fluid is water at 15°C. It
is assumed that the boundary conditions and the materials relative roughness are
Gaussian random variables. For the prescribed head at node 1, a standard deviation
equal to 3m is assumed. For the demands at the nodes, standard deviations are equal
to 0.001m3/s. Standard deviation of material relative roughness is 0.0092mm. This
example is described in more details by Torii and Lopez (2011). The limit state
function is given by h(X) = 5− h17(X) ≤ 0, where h17 is the nodal head at node
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17. In this case, the system is assumed to fail when the nodal head at node 17 is
smaller than 5m.

8 16
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Figure 2: Pipe network of problem 24

Problem 25 [Torii and Lopez (2011)]: This problem refers to the analysis of the
water distribution network represented in Fig. 3. In this case, all pipes have a
length of 50m. Node 10 has a prescribed head of 20m, while all other nodes have a
demand of 0.005m3/s. Besides, all pipe diameters are equal to 0.20m, the material
relative roughness is ks = 0.002mm and the fluid is water at 15°C. This problem was
modeled as discussed by Torii and Lopez (2011). It is assumed that the boundary
conditions and the material relative roughness are Gaussian random variables. For
prescribed head at node 10, a standard deviation equal to 1m is assumed. For the
demands at the nodes, standard deviations are equal to 0.00125m3/s. Standard
deviation of material relative roughness is 0.0005mm. The limit state function is
given by h(X) = 12−mingi(X) ≤ 0, where mingi is the minimum nodal head
observed in the network. In this case, the system is assumed to fail when any nodal
head is smaller than 12m.

6 Tested algorithms

For the purpose of comparing robustness and efficiency of the three proposed al-
gorithms to the existing classical augmented Lagrangian and HLRF and iHLRF
algorithms, the six algorithms were implemented in Matlab 7.8 version R2009a.
All problems were solved using and Intel(R) Core(TM)2 Duo CPU T5870 2GHZ
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Figure 3: Pipe network of problem 25 with its nodes numbered

processor with 3GB of RAM memory. Some criteria used in the present implemen-
tation are presented in this section.

The parameters of the nHLRF algorithm are as follows: η = 10, c0 = 100, α0 = 1,
m1 = 0.1 and m2 = 0.9. The same values were used for η , α0 and m1, in the iHLRF
algorithm.

For all runs, the maximum number of iterations was set to 100 and the maximum
computational time was set to one hour. Moreover, the algorithms are stopped
when: ∣∣h(yk)

∣∣< ε and 1−
(

∇h(yk)T yk

‖h(yk)‖‖yk‖

)
< ε

where ε = 10−4.

The initial point for all algorithms and all problems was set as the mean point of the
original variables. However, none of the six algorithms were able to solve problems
5, 24 and 25 when started at the means.

In the case of problem 5, the algorithms HLRF, iHLRF and nHLRF runned into
numerical errors to calculate the descent direction dk, given by Eq. (9), because
∇h(y0) = 0. For augmented Lagrangian methods, the errors occured because func-
tions (26), (27) and (28) became constant at y0, hence the problem could not be
solved.

In the case of problems 24 and 25, a division by zero occured in evaluation of the
gradient of performance function, which is obtained by finite differences. Hence,
the initial points were considered as (in the reduced space): y = (0,1)T , for problem
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5, and y = (0.1, . . . ,0.1)T , for problems 24 and 25.

The three variants of the augmented Lagrangian method considered herein are ref-
erenced as follows, with regards to the penalty functions considered. The aug-
mented Lagrangian method (Eq. 27) using the penalty function proposed by Mati-
oli and Gonzaga (2008) is called herein LAPM (M for Matioli). The method (Eq.
28) resulting from use of the penalty function of Tseng and Bertsekas (1993) is
called LAPB (B for Bertsekas). Finally, the augmented Lagrangian method using
the classical (Eq. 4.2) penalty function of Hestenes (1969) and Powell (1969) is
called LAPC (C for classic) herein.

In augmented Lagrangian methods, the procedure used to update penalty parame-
ters is based on a measure of infeasibility of the problem, since there is no need
to penalize in every iteration. Thus, if the measure of infeasibility defined as∥∥h(xk+1)

∥∥ ≥ δ
∥∥h(xk)

∥∥ with δ ∈ (0,1), is not satisfied, it is because there was no
significant gain in viability and hence the penalty parameter is increased. There-
fore, in Algorithm 4.2 the penalty parameter is updated by ρk+1 = 2ρk. For Algo-
rithm 4.1, the penalty parameters γk+1, given by Eq. (29), and ωk+1, given by Eq.
(30), are updated by: rk+1 = 0.01rk.

This procedure of penalty parameter updating yielded good results for most prob-
lems tested. However, the procedure or alternative options were not thoughtfully
tested. Hence, a future specific study on the alternatives for penalty parameter up-
dating could increase efficiency of the proposed methods significantly.

Other parameters used in Algorithms 4.2 and 4.1 are: λ 0 = 1, r0 = 1, ρ0 = 1 and
δ = 0.1.

It is important to note that several methods can be used to solve the unconstrained
subproblems resulting from the augmented Lagrangian functions (Eqs. 26, 27 and
28). However, the main goal of the following numerical analysis is to verify appli-
cability, robustness and efficiency of augmented Lagrangian methods in the solu-
tion of structural reliability problems, considering the same criteria. Thus, no at-
tention was dedicated to find the most suitable algorithm to solve the unconstrained
subproblems. Hence, an internal Matlab routine, called fminunc and which finds
the minimum of a scalar function of several variables starting at an initial estimate,
was used to minimize the unconstrained problems. If the analytical gradient is pro-
vided by the user, then the routine uses the BFGS Quasi-Newton method with a
mixed quadratic and cubic line search procedure (it was the condition considered
in this article), otherwise, it is used the Conjugate Gradient method. In fminunc
routine, the maximum number of iterations and function evaluations was set to
1000, furthermore, the termination tolerance on the function value and termination
tolerance on yk, were considered as 1e−15. In augmented Lagragian methods, the
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maximum number of outer iterations of the algorithm was set to 100.

7 Numerical results

For each problem, Tab. 1 shows results for the HLRF algorithm in the first line, for
the iHLRF in the second line and for the nHLRF algorithm in the third line. Four
measures are selected for comparison: iter is the number of iterations (direction
search), fun is the total number of performance function evaluations, grad is the
number of performance function gradient evaluations and time is the computational
time spent executing the algorithm. In each case, obtained reliability indexes (β )
are also presented.

Table 1: Comparison of optimization algorithms HLRF, iHLRF
and nHLRF

Problem Method iter fun grad time (seconds) β

1 HLRF 1 2 2 0.1074 2.5000
iHLRF 1 3 2 0.0213 2.5000
nHLRF 1 3 3 0.0353 2.5000

2 HLRF 1 2 2 0.0003 3.0000
iHLRF 1 3 2 0.0054 3.0000
nHLRF 1 3 3 0.0093 3.0000

3 HLRF 1 2 2 0.0002 2.0000
iHLRF 1 3 2 0.0035 2.0000
nHLRF 1 3 3 0.0106 2.0000

4 HLRF 1 2 2 0.0001 3.0000
iHLRF 1 3 2 0.0032 3.0000
nHLRF 1 3 3 0.0071 3.0000

5 HLRF 4 5 5 0.0007 0.3536
iHLRF 4 9 5 0.0045 0.3536
nHLRF 4 9 9 0.0104 0.3536

6 HLRF 1 2 2 0.0001 2.0000
iHLRF 1 3 2 0.0042 2.0000
nHLRF 1 3 3 0.0084 2.0000

7 HLRF 7 8 8 0.0008 2.2401
iHLRF 7 15 8 0.0067 2.2401
nHLRF 7 15 15 0.0169 2.2401

8 HLRF 100 100 100 0.0119 1.1656
iHLRF 32 133 33 0.0366 2.2260

Continued on next page
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Table 1 – continued from previous page
Problem Method iter fun grad time (seconds) β

nHLRF 32 133 133 0.0459 2.2260
9 HLRF 1 2 2 0.0003 2.5000

iHLRF 1 3 2 0.0028 2.5000
nHLRF 1 3 3 0.0093 2.5000

10 HLRF 100 100 100 0.0128 1.1466
iHLRF 47 189 48 0.0554 1.9003
nHLRF 37 138 138 0.0488 1.9003

11 HLRF 5 6 6 0.0007 5.4280
iHLRF 5 11 6 0.0051 5.4280
nHLRF 5 11 11 0.0093 5.4280

12 HLRF 1 2 2 0.0002 2.2257
iHLRF 1 3 2 0.0043 2.2257
nHLRF 1 3 3 0.0143 2.2257

13 HLRF 5 6 6 0.0240 2.1911
iHLRF 5 11 6 0.0064 2.1911
nHLRF 5 11 11 0.0115 2.1911

14 HLRF 3 4 4 0.0494 5.2127
iHLRF 3 7 4 0.0057 5.2127
nHLRF 3 7 7 0.0159 5.2127

15 HLRF 13 14 14 0.0261 3.0483
iHLRF 15 35 16 0.0286 3.0483
nHLRF 15 82 82 0.0194 3.0483

16 HLRF 100 100 100 0.0487 2.3481
iHLRF 100 97175 101 28.560 2.3480
nHLRF 64 2022 2022 0.2063 2.3482

17 HLRF 11 12 12 0.0228 0.8292
iHLRF 34 140 35 0.0403 0.8292
nHLRF 14 34 34 0.0302 0.8292

18 HLRF 9 10 10 0.0102 3.3221
iHLRF 12 30 13 0.0212 3.3221
nHLRF 12 31 31 0.0157 3.3221

19 HLRF 6 7 7 0.0159 4.4282
iHLRF 6 13 7 0.0124 4.4282
nHLRF 6 13 13 0.0171 4.4282

20 HLRF 100 100 100 0.0388 1.1643
iHLRF 10 30 11 0.0120 1.3651

Continued on next page
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Table 1 – continued from previous page
Problem Method iter fun grad time (seconds) β

nHLRF 13 42 42 0.0210 1.3653
21 HLRF 100 100 100 0.0111 0.9863

iHLRF 39 196 40 0.0366 2.3655
nHLRF 56 276 276 0.0737 2.3655

22 HLRF 4 5 5 0.0194 4.5297
iHLRF 4 9 5 0.0595 4.5297
nHLRF 4 9 9 0.0534 4.5297

23 HLRF 3 4 4 0.7738 2.6666
iHLRF 3 7 4 0.4114 2.6666
nHLRF 4 12 12 0.5347 2.6666

24 HLRF not converged
iHLRF not converged
nHLRF not converged

25 HLRF not converged
iHLRF not converged
nHLRF not converged

Following Tab. 1, it is observed that the algorithms HLRF, iHLRF and nHLRF suc-
cessfully solved 72%, 88% and 92% of the problems. Thus, the nHLRF algorithm
solved a greater number of problems, and may therefore be considered more ro-
bust than the HLRF and iHLRF algorithms. Results show that none of the three
algorithms (HLRF, iHLRF and nHLRF) were able to solve problems 24 and 25,
because during the iterative process ∇h(yk) = 0, causing errors in the calculation
of search direction dk. Note also that the HLRF algorithm reached the maximum
number of iterations (k = 100) when solving problems 8, 10, 16, 20 and 21, and
this also occurred with iHLRF for problem 16. Although the algorithms HLRF and
iHLRF have not satisfied the stopping criterion for problem 16, reliability indexes
obtained are very close to the correct solution.

In order to simplify analysis of the results, smaller tables with specific informa-
tion were built. Tab. 2, Tab. 3 and Tab. 4 refer to the number of times that each
algorithm, HLRF, iHLRF and nHLRF, performed better than the others, taking into
account the number of iterations (iter), the number of performance function evalu-
ations (fun), the number of gradient evaluations (grad) and the computational time
(time). The values related to “tie” indicate the amount of problems for which the
numbers coincided. For the construction of Tab. 2, results of 22 problems that were
solved by at least one of the two algorithms, HLRF or iHLRF, were considered. In
this case, problems 16, 24 and 25 were not considered.
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Table 2: Comparison between HLRF and iHLRF algorithms

Method iter fun grad time
HLRF 3 18 3 13
iHLRF 4 4 4 9
tie 15 0 15 0

In the construction of Tab. 3 and Tab. 4, problems 24 and 25 were not consid-
ered, because it was not solved by any of the three algorithms (HLRF, iHLRF and
nHLRF).

Table 3: Comparison between HLRF and nHLRF algorithms

Method iter fun grad time
HLRF 4 18 18 13
nHLRF 5 5 5 10
tie 14 0 0 0

Results presented in Tab. 2 and Tab. 3 show that, when it converges, HLRF is better
than algorithms iHLRF and nHLRF in terms of performance (least number of per-
formance function and gradient evaluations, and least computational time). In fact,
since iHLRF and nHLRF perform a linear search to compute the step length, αk,
these algorithms naturally require more performance function and gradient evalua-
tions. The lower performance, however, is compensated by the better robustness of
iHLRF and nHLRF algorithms.

Algorithms iHLRF and nHLRF are more robust, because they resolved 22 and 23
problems, respectively, whereas the HLRF algorithm only solved 18 of the tested
problems. This result reinforces the observation that the HLRF algorithm is effi-
cient when it converges, but there is no guarantee of convergence. The nHLRF
algorithm presented herein, on the other hand, is garanteed to convergence.

Table 4: Comparison between iHLRF and nHLRF algorithms

Method iter fun grad time
iHLRF 3 5 21 17
nHLRF 3 3 2 6
tie 17 15 0 0

Results presented in Tab. 4 show that the algorithms iHLRF and nHLRF have
equivalent performance related to the number of iterations. However, the iHLRF
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algorithm performs better with respect to fun, grad and time. This happens because
in iHLRF algorithm, αk is obtained by the Armijo rule, whereas in the nHLRF
algorithm, the Wolfe conditions are used. The Wolfe conditions require the deriva-
tive of the function to be minimized, hence the higher number of function h and
gradient ∇h computations. The benefit for the lesser efficiency is the guarantee
of convergence of the nHLRF algorithm. While the iHLRF and HLRF algorithms
reached the maximum number of iterations in solution of problems 16 and 8, 10,
16, 20 and 21, respectively, the nHLRF algorithm was able to solve these problems
within the maximum number of iterations.

Results obtained for the augmented Lagrangian methods are presented in Tab. 5.
For each problem, results for LAPC are shown in the fisrt line, LAPM in the second
line and LAPB in the third line. For the augmented Lagrangian methods, it.ext
represents the number of outer iterations of the algorithm, it.int is the number of
iterations of the internal algorithm, fun is the total number of performance function
evaluations, grad is the number of performance function gradient evaluations and
β is reliability index obtained in each case. It is important to note that the values of
fun and grad are the same, for this reason are listed in a single column.

Table 5: Comparison of optimization algorithms HLRF, iHLRF
and nHLRF

Problem Method it.ext it.int fun/grad time (seconds) β

1 LAPC 5 9 18 0.6023 2.5000
LAPM 2 4 6 0.1686 2.5000
LAPB 2 4 6 0.0698 2.5000

2 LAPC 5 9 18 0.2371 3.0000
LAPM 2 4 6 0.0506 3.0000
LAPB 2 4 6 0.0482 3.0000

3 LAPC 5 8 17 0.1386 2.0000
LAPM 2 3 6 0.0471 2.0000
LAPB 2 3 6 0.0475 2.0000

4 LAPC 5 9 17 0.1094 3.0000
LAPM 2 4 6 0.0473 3.0000
LAPB 2 4 6 0.0504 3.0000

5 LAPC 1 13 15 0.0299 0.3536
LAPM 1 13 15 0.0439 0.3536
LAPB 1 13 15 0.0443 0.3536

6 LAPC 5 8 17 0.0708 2.0000
LAPM 2 3 6 0.0488 2.0000

Continued on next page
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Table 5 – continued from previous page
Problem Method it.ext it.int fun/grad time (seconds) β

LAPB 2 3 6 0.0499 2.0000
7 LAPC 2 20 25 0.0425 2.2401

LAPM 4 29 40 0.0924 2.2401
LAPB 3 22 31 0.0752 2.2401

8 LAPC 2 46 52 0.0535 2.2260
LAPM 4 52 66 0.1070 2.2260
LAPB 3 43 55 0.0939 2.2260

9 LAPC 5 9 18 0.0705 2.5000
LAPM 2 4 6 0.0461 2.5000
LAPB 2 4 6 0.0527 2.5000

10 LAPC 2 37 46 0.0518 1.9003
LAPM 4 45 59 0.1099 1.9003
LAPB 3 44 55 0.0876 1.9003

11 LAPC 1 68 90 0.0626 5.3333
LAPM 1 68 90 0.0820 5.3333
LAPB 1 68 90 0.0950 5.3333

12 LAPC 5 9 18 0.0718 2.2257
LAPM 2 3 6 0.0454 2.2257
LAPB 2 3 6 0.0502 2.2257

13 LAPC 1 64 75 0.1975 2.2046
LAPM 6 132 178 0.2423 2.1911
LAPB 3 137 177 0.1712 2.1911

14 LAPC 4 71 95 0.2296 5.2127
LAPM 4 64 75 0.1724 5.2127
LAPB 4 62 87 0.1402 5.2127

15 LAPC 9 78 362 0.7052 3.0486
LAPM 6 63 274 0.3319 3.0483
LAPB 8 48 344 0.3170 3.0494

16 LAPC 4 72 160 0.2266 2.3484
LAPM 5 69 171 0.2346 2.3486
LAPB 4 88 190 0.2252 2.3483

17 LAPC 2 53 71 0.0787 0.8292
LAPM 2 38 57 0.1766 0.8292
LAPB 3 58 80 0.1261 0.8292

18 LAPC 1 88 107 0.1377 3.3225
LAPM 4 120 159 0.2193 3.3221

Continued on next page
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Table 5 – continued from previous page
Problem Method it.ext it.int fun/grad time (seconds) β

LAPB 3 123 155 0.1774 3.3221
19 LAPC 5 309 407 0.4854 4.4129

LAPM 5 194 241 0.3088 4.4169
LAPB 4 219 272 0.3718 4.4103

20 LAPC 13 146 165 0.4636 1.3656
LAPM 2 18 21 0.1173 1.7198
LAPB 3 57 61 0.1737 1.3704

21 LAPC 2 64 75 0.0654 2.3655
LAPM 4 68 87 0.1833 2.3655
LAPB 3 70 84 0.1362 2.3655

22 LAPC 3 51 67 0.2757 4.5297
LAPM 5 60 84 0.2082 4.5297
LAPB 3 39 55 0.6174 4.5297

23 LAPC 11 88 106 7.8007 2.6670
LAPM 2 14 16 4.9509 2.6670
LAPB 3 63 73 6.7781 2.6676

24 LAPC 34 179 344 163.2402 1.8103
LAPM 3 34 47 24.9473 1.8106
LAPB 5 34 60 30.5753 1.8106

25 LAPC 25 262 626 535.6507 2.2016
LAPM 3 35 83 77.4204 2.2004
LAPB 3 39 85 83.3869 2.2004

Based on the results shown in Tab. 5, one observes that the methods LAPC, LAPM
and LAPB successfully solved 100% of the problems. So, the augmented La-
grangian methods may therefore be considered more robust than HLRF, iHLRF
and nHLRF algorithms which solved a smaller number os problems, as seen in
Tab. 1.

Performance of the methods LAPC, LAPB and LAPM are compared in Tab. 6,
Tab. 7 and Tab. 8. The comparison takes into acount the number of outer iterations
of the algorithm (it.ext), the number of iterations of the inner algorithm (it.int), the
number of performance function evaluations (fun), the number of gradient evalu-
ations of performance function (grad) and the computational time (time). In this
analysis, 25 problems were considered, because they were resolved by each one of
the methods.

Following Tab. 6, it can be observed that the LAPM method showed better per-
formance in solving structural reliability problems than the LAPC method, with
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Table 6: Comparison between LAPC and LAPM algorithms

Method it.ext it.int fun/grad time
LAPC 8 7 8 10
LAPM 12 16 15 15
tie 5 2 2 0

respect to all measures of comparison considered it.ext, it.int, fun, grad and time.
The same occurs with the LAPB method, as can be seen in Tab. 7.

Table 7: Comparison between LAPC and LAPB algorithms

Method it.ext it.int fun/grad time
LAPC 7 7 8 9
LAPB 13 16 15 16
tie 5 2 2 0

Hence, results presented herein show that the proposed LAPM and LAPB aug-
mented Lagrangian methods are not only more robust, but also more efficient
than the “classical” LAPC method. It should be noted that the bad performance
atributed by Liu and Kiureghian (1992) to augmented Lagrangian methods refers
to the classical method: hence, there is significant room for consideration of aug-
mented Lagrangian methods in solution of structural reliability problems.

Table 8: Comparison between LAPM and LAPB algorithms

Method it.ext it.int fun/grad time
LAPM 5 9 9 13
LAPB 9 6 7 12
tie 11 10 9 0

A comparison between LAPM and LAPB methods shows that the LAPB method
performs better than LAPM with respect to the number of outer iterations of the
algorithm (it.ext), see Tab. 8. However, the greatest computational effort of aug-
mented Lagrangian methods is associated with the solution to unconstrained sub-
problems (minimizing the augmented Lagrangian function), as in the external al-
gorithm, only the updating of penalty parameter and of the Lagrange multiplier is
performed. The LAPM method was found to be more efficient than LAPB with
respect to it.int, fun and grad, and for computational time the efficiency is similar.
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In practical problems of structural reliability, there is a concern about the number
of evaluations of performance functions and derivatives, because in most cases, the
performance function is implicit (e.g., the solution to an expensive finite element
model). Thus, Tab. 9, Tab. 10 and Tab. 11 refer to the number of times that each
algorithm performed better, taking into account the total number of calls to limit
state equation (fun) and the calculation of gradient (grad).

Table 9: Comparison between LAPC and HLRF, iHLRF, nHLRF algorithms

Method fun grad Method fun grad Method fun grad
LAPC 6 7 LAPC 7 4 LAPC 7 6
HLRF 19 18 iHLRF 18 21 nHLRF 18 19
tie 0 0 tie 0 0 tie 0 0

Table 10: Comparison between LAPM and HLRF, iHLRF, nHLRF algorithms

Method fun grad Method fun grad Method fun grad
LAPM 6 7 LAPM 7 3 LAPM 7 6
HLRF 19 18 iHLRF 18 22 nHLRF 18 19
tie 0 0 tie 0 0 tie 0 0

Table 11: Comparison between LAPB and HLRF, iHLRF, nHLRF algorithms

Method fun grad Method fun grad Method fun grad
LAPB 6 7 LAPB 7 3 LAPB 6 6
HLRF 19 18 iHLRF 18 22 nHLRF 19 19
tie 0 0 tie 0 0 tie 0 0

Comparing HLRF-based and augmented Lagrangian algorithms, it is noted that
HLRF-based algorithms are more efficient, particulary with respect to number to-
tal of performance function and derivative evaluations, as seen in Tab. 9, Tab. 10,
Tab. 11. This is justified by the generality of augmented Lagrangian methods,
which can be applied to optimization problems with equality and even inequal-
ity constraints, as discussed by Matioli and Gonzaga (2008) and Bertsekas (1997),
while algorithms HLRF, iHLRF and nHLRF were developed specifically for struc-
tural reliability problems.

It is also important to note that augmented Lagrangian methods presented better
results in solution of problems with larger number of variables, as is the case for
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problems 16, 24 and 25. By the way, this fact can be considered an important
advantage of the augmented Lagrangian methods, since most practical problems
involves a large number of random variables. Regarding the number of problems
solved, the algorithms LAPC, LAPM and LAPB were more robust, as they solved
100% of the problems, followed by nHLRF algorithm, which solved 92% of the
problems, and by the algorithms iHLRF and HLRF, that were only able to solve
only 88% and 75% of the problems, respectively.

8 Concluding remarks

In this article, three new optimization algorithms were presented, for application to
structural reliability problems.

The so-called nHLRF (n for new) algorithm uses the HLRF search direction, makes
a linear search in this direction based on the Wolfe conditions, in order to minimize
a new (proposed) differentiable merit function to obtain the step length. It was
shown that, under certain assumptions the algorithm generates a sequence that con-
verges to a local minimizer of the problem. These assumptions are converted in
rules for the updating of nHLRF parameters.

Two new augmented Lagrangian methods, applied to resolution of problems with
equality constraints, where also introduced. These methods are extensions of re-
sults presented by Matioli and Gonzaga (2008) and by Bertsekas (1997) for prob-
lems with inequality constraints. The modern quadratic penalty parameters in-
troduced via these methods are more robust and more efficient than “classical”
penalty parameters considered in the comparative study of Liu and Kiureghian
(1992). Hence, this makes results of Ref. Liu and Kiureghian (1992) out-dated
with respect to the comparative performance of augmented Lagrangian methods in
solution of structural reliability problems. Theoretical studies on the convergence
of the proposed LAPM and LAPB methods are presented by Santos and Matioli
(2011).

Numerical results obtained herein, in aplication to 25 reference problems from the
literature, indicate that the new proposed methods are competitive and promising.
The nHLRF algorithm presented a similar performance to the iHLRF algorithm,
related to the number of iterations and performance function evaluations. However,
the nHLRF solved a larger number of problems, compared do the HLRF and iHLRF
algorithms.

The proposed augmented Lagrangian methods (LAPM and LAPB) were shown to
be more efficient than the augmented Lagrangian method with “classical” penalty
(LAPC), as they solved the larger number of problems, with a smaller number of
iterations, performance function evaluations and computational time. The two pro-
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posed methods (LAPB and LAPM) showed similar performance for the evaluated
criteria.

Comparing the HLRF-based and augmented Lagrangian methods, it was noted that
HLRF-based algorithms are more efficient than the augmented Lagrangian meth-
ods, particularly with respect to the number of performance function evaluations
and gradient evaluations. However, augmented Lagrangian methods have the ad-
vantage of being more general [Santos and Matioli (2011); Matioli and Gonzaga
(2008); Bertsekas (1997)] than HLRF algorithms, which were developed specifi-
cally for structural reliability problems. Moreover, augmented Lagrangian meth-
ods are probably more suitable for problems involving large number of random
variables.

No definitive conclusions with respect to robustness and performance of the pro-
posed methods and algorithms can be made, as the numerical results presented
herein are based on a limited set of structural reliability problems.

As future research, a specific study of different techniques for updating penalty pa-
rametes in the proposed augmented Lagrangian methods is recomended. Also, a
study on more suitable algorithms to solve the unconstrained subproblems gener-
ated in the augmented Lagrangian approach is recomended as, in our opinion, the
efficiency of the proposed augmented Lagrangian methods could be significantly
improved.
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