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Abstract: The application of a particle method to incompressible viscous fluid
flow problem and its physics-based computer graphics are presented. The method
is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic
weighting function to stabilize the spurious oscillatory solutions for the pressure
fields which are governed by Poisson equation. The physics-based computer graph-
ics consist of the POV-Ray (Persistence of Vision Raytracer) rendering using march-
ing cubes algorithm as polygonization. The standard MPS scheme is widely uti-
lized as a particle strategy for the free surface flow, the problem of moving bound-
ary, multi-physics/multi-scale ones, and so forth. Numerical results demonstrate
the workability and the validity of the present approach through dam-breaking flow
problem.
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1 Introduction

From a practical point of view, the numerical simulations of moving boundary,
multi-physics and multi-scale problems are indispensable in the wide fields of
science and engineering. It is not easy to simulate such problems by using the
grid/element-based schemes, namely finite difference method and finite element
method. There are various gridless/meshless-based methodologies, such as SPH
(Smoothed Particle Hydrodynamics) method [Lucy (1977);Gingold and Monaghan
(1977)], MPS (Moving Particle Semi-implicit) method [Koshizuka and Oka (1996)],
EFG (Element Free Galerkin) method [Belytschko, Lu and Gu (1994)], MLPG
(Meshless Local Petrov-Galerkin) method [Atluri and Zhu (1998)], and MP (Mesh-
free Particle) one [Li and Liu (2002)], to simulate effectively such complex prob-
lems.
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The SPH methods for solving compressible fluid flows with gravity have been
firstly developed in the field of astrophysics [Lucy (1977);Gingold and Monaghan
(1977)], and applied successfully to a wide variety of complicated physical prob-
lems, including free surface incompressible flows [Monaghan (1994);Sakai, Yang
and Jung (2004)] involving breaking dam, wave propagation, and so forth, ther-
mal conduction with heat flux across discontinuities in material properties [Cleary
and Monaghan (1999)], impact fracture in solids [Swegle, Hicks and Attaway
(1995);Hoover (2006)], and the behaviors of arctic sea ice in oceanography [Lind-
say and Stern (2004)]. The MPS method [Koshizuka and Oka (1996)] as an in-
compressible fluid flow solver has been widely applied to the problem of breaking
wave with large deformation [Koshizuka, Nobe and Oka (1998)], the fluid-structure
interaction problem [Chikazawa, Koshizuka and Oka (2001)], and the micro multi-
phase flow one [Harada, Suzuki, Koshizuka, Arakawa and Shoji (2006)]. However,
the standard/original MPS method leads to the unphysical numerical oscillation of
pressure fields which are described by the discretized Poisson equation. To im-
prove some shortcomings of the standard MPS method, Khayyer and Gotoh have
proposed the modified MPS method for the prediction of wave impact pressure on
a coastal structure to ensure more exact momentum conservation [Khayyer and Go-
toh (2009)]. The improvement of stability in the original MPS method [Koshizuka
and Oka (1996)] has been more recently achieved by adding some source terms into
Poisson pressure equation [Kondo and Koshizuka (2011)]. Belytschko et al. [Be-
lytschko, Lu and Gu (1994)] have proposed significantly the element-free Galerkin
method which was based upon the moving least-squares interpolants [Lancaster and
Salkauskas (1981)] and Galerkin weak formulation. They applied the EFG method
to two-dimensional problems of elasticity and heat conduction and obtained excel-
lent results. Atluri and Zhu [Atluri and Zhu (1998)] have developed the MLPG
approach based on the local symmetric weak form and the moving least squares
for solving accurately potential problems, and the approach was extended to deal
with the problems for convection-diffusion equation [Lin and Atluri (2000)] and
incompressible Navier-Stokes equations [Lin and Atluri (2001)] in fluid dynamics.
Some reviews of meshfree and particle methods have been excellently presented by
Li and Liu [Li and Liu (2002)].

The purpose of this paper is to present application of the MPS method using log-
arithmic weighting function to incompressible viscous fluid flow problem, namely
flow in dam-break problem [Martin and Moyce (1952); Hirt and Nichols (1981);
Ramaswamy and Kawahara (1987)], which is one of the well-known typical ones
in the framework of incompressible fluid flow. To overcome such spurious oscilla-
tions in the standard MPS method, we propose to utilize the logarithmic weighting
function and also take into consideration the reduction of ad hoc influence radius
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for solving an auxiliary Poisson equation for the pressure field. As a reason for the
consideration, the numerical treatment of the incompressibility constraint is one
of more difficult aspects of incompressible Navier-Stokes equations, and the pres-
sure field is determined such that the continuity equation is satisfied on the average
in each grid/element. In the finite element framework, the approach is successful
only if the pressure field is interpolated with functions at least one order lower than
those the velocity vector field [Brooks and Hughes (1982)]. As the physics-based
computer graphics, the polygonization of numerical data is constructed by using
the well-known marching cubes technique [Lorensen and Cline (1987)] as the most
popular isosurfacing extraction algorithm, and also the rendering is illustrated in
using the generated polygons and POV-Ray [POV-Ray (1989)]. The workability
and validity of the present approach are demonstrated through the dam-breaking
flow problem, and compared with experimental data and other numerical ones.

Throughout this paper, the summation convention on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect
to the spatial variable.

2 Statement of the problem

Let Ω be a bounded domain in Euclidean space with a piecewise smooth boundary
Γ. The unit outward normal vector to Γ is denoted by nnn. Also, ℑ denotes a closed
time interval.

The motion of an incompressible viscous fluid flow is governed by the following
Navier-Stokes equations :

Dui

Dt
=− 1

ρ
p,i +νui, j j + fi in ℑ×Ω (1)

Dρ

Dt
= 0 in ℑ×Ω (2)

where ui is the velocity vector component, ρ is the density, p is the pressure, fi is
the external force, ν is the kinematic viscosity, and D/Dt denotes the Lagrangian
differentiation.

In addition to Eq. 1 and Eq. 2, we prescribe the initial condition ui(xxx,0) = u0
i , where

u0
i denotes the given initial velocity, and the Dirichlet and Neumann boundary con-

ditions.

3 Standard MPS formulation

Let us briefly describe the MPS as one of the particle methods [Koshizuka and Oka
(1996)]. The particle interaction models as illustrated in Fig. 1(a) are prepared with
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respect to differential operators, namely, gradient, divergence and Laplacian. The
incompressible viscous fluid flow is calculated by a semi-implicit algorithm, such
as SMAC (Simplified MAC) scheme [Amsden and Harlow (1970)].

The particle number density n at particle i with the neighboring particles j is defined
as

ni = ∑
j 6=i

w(|rrr j− rrri|) (3)

in which the weighting function w(r) is

w(r) =

{re

r
−1 (r < re)

0 (r ≥ re)
(4)

where re is the radius of the interaction area as shown in Fig. 1(a).

The model of the gradient vectors at particle i between particles i and j are weighted
with the kernel function and averaged as follows :

< ∇∇∇φ >i=
d
n0 ∑

j 6=i
[

φ j−φi

|rrr j− rrri|2
(rrr j− rrri)w(|rrr j− rrri|)] (5)

where d is the number of spatial dimensions, φi and φ j denote the scalar quantities
at coordinates rrri and rrr j, respectively, and n0 is the constant value of the particle
number density.

The Laplacian model at particle i is also given by

< ∇∇∇
2
φ >i=

2d
n0λ

∑
j 6=i

(φ j−φi)w(|rrr j− rrri|) (6)

where λ is an ad hoc coefficient.

4 Logarithmic-type weighting function

For the standard MPS formulation mentioned above, the weighting function of
Eq. 4 is a key factor in the particle-based framework. If the distance r between
the coordinates rrri and rrr j is close, then there is a possibility that the computation
fails suddenly with unphysical numerical oscillations. Therefore, in order to stabi-
lize such spurious oscillations generated by the standard MPS strategy, we adopt
the following logarithmic-type weighting function as shown in Fig. 1(b), and also
consider the reduction of ad hoc influence radius, re, for solving the pressure fields
(see Fig. 2). The logarithmic-type weighting function is generally similar to the
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(a) Particle interaction models (b) Profiles of weighting functions

Figure 1: Particle interaction models and weighting functions

profile of the weighting function proposed by Kondo and Koshizuka to stabilize
the pressure calculations [Kondo and Koshizuka (2011)](see Fig. 1(b)).

w(r) =

{
log(

re

r
) (r < re)

0 (r ≥ re)
(7)

(a) Velocity field (b) Pressure field

Figure 2: Basic idea for taking the influence radius re

5 Physics-based computer graphics

It is also important to visualize realistically the obtained numerical scalar data sets.
The marching cubes algorithm proposed by Lorensen and Cline [Lorensen and



62 Copyright © 2012 Tech Science Press CMES, vol.83, no.1, pp.57-72, 2012

Cline (1987)] is the most popular isosurface extraction in the computer-graphics
framework, namely scientific visualization. The algorithm has been widely applied
to various fields, including biochemistry [Heiden, Goetze and Brickmann (1993)],
computational fluid dynamics[Müller, Charypar and Gross (2003)], biomechan-
ics and/or biomedicine[Yim, Vasbinder, Ho and Choyke (2003);Peiró, Formaggia,
Gazzola, Radaelli and Rigamonti (2007)], and so forth. Fig. 3 shows the 15 unique
intersection topologies by contracting the patterns of reflective and rotational sym-
metries as illustrated in Fig. 4. A survey of the literature involving the marching
cubes algorithm has been presented in detail by Newman and Yi [Newman and Yi
(2006)]. The generated polygon data are rendered rapidly by using POV-Ray which
is the well-known ray-tracing software [POV-Ray (1989)].

Figure 3: Fifteen basic intersection patterns

6 Numerical example

In this section we present numerical results obtained from applications of the above-
mentioned numerical method to dam-breaking incompressible flow problem in-
volving free surface and gravity. The dam-breaking flow problem has been used
widely to verify the applicability and validity of the numerical methods [Hirt and
Nichols (1981); Ramaswamy and Kawahara (1987); Koshizuka and Oka (1996);
Khayyer and Gotoh (2009); Kondo and Koshizuka (2011)]. The initial velocities
are assumed to be zero everywhere in the interior domain.
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Figure 4: Examples of reflective and rotational symmetries

(a) Geometry (b) Initial state of particles

Figure 5: Geometrical configuration and initial state of particles

Fig. 5 shows the geometry and the initial state of particles for flow in the dam-
breaking problem. In this two-dimensional simulation, we set 1,458 particles in
the initial configuration, and the CFL condition umax∆t/lmin ≤ C, where C is the
Courant number (= 0.025). The kernel sizes for the particle number density and
the gradient/Laplacian models are re = 4.0l0 and r̄e = 2.0l0 for velocity and pres-
sure calculations, respectively, in which l0 is the distance between two neighboring
particles in the initial state. In this case, we set l0 = 0.012m.

Fig. 6 shows the instantaneous particle/pressure behaviors without the influence
radius reduction for different weighting functions. The standard MPS method leads
to irregular pressure distributions at early times, while the present distributions are
slightly improved as well as the results of Fig. 6(c). Fig. 7 shows the time histories
of the pressure at particles 1 and 2 as shown in Fig. 5(b). We see also from Fig. 7
that the pressure-peak values at particle 1 in Fig. 7(b) and (c) are smoother than
the standard MPS calculations of Fig. 7(a). The instantaneous particle/pressure
behaviors with the influence radius reduction for different weighting functions are
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(a) Standard MPS method with Eq. 4

(b) Present; logarithmic-type weighting function of Eq. 7

(c) Weighting function proposed by Kondo and Koshizuka

Figure 6: Particle and pressure behaviors at times 0.25 (left) and 0.5 (right) without
the influence radius reduction
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(a) Standard MPS method with Eq. 4

(b) Present; logarithmic-type weighting function of Eq. 7

(c) Weighting function proposed by Kondo and Koshizuka

Figure 7: Time histories of the pressure at particles 1 (left) and 2 (right) without
the influence radius reduction
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(a) Standard MPS method with Eq. 4

(b) Present; logarithmic-type weighting function of Eq. 7

(c) Weighting function proposed by Kondo and Koshizuka

Figure 8: Particle and pressure behaviors at times 0.25 (left) and 0.5 (right) with
the influence radius reduction
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(a) Standard MPS method with Eq. 4

(b) Present; logarithmic-type weighting function of Eq. 7

(c) Weighting function proposed by Kondo and Koshizuka

Figure 9: Time histories of the pressure at particles 1 (left) and 2 (right) with the
influence radius reduction
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Figure 10: Comparison of present results with experimental data

shown in Fig. 8. The corresponding time histories of the pressure at particles 1 and
2 are also shown in Fig. 9. From both figures, the pressure distributions with the
influence radius reduction are generally improved than those without the reduction
shown in Fig. 6 and Fig. 7. In particular, the present results are qualitatively similar
to the improved MPS simulation. Fig. 10 shows the time evolutions of the leading-
edge of the water using the present approach and the standard MPS method through
comparison with experimental data [Martin and Moyce (1952)]. The agreement
between the present results, the standard MPS simulation and the experimental
data appears satisfactory.

For the dam break problem, Fig. 11 shows the particle representations and the
POV-Ray rendering using marching cubes algorithm. The convincing results are
obtained when the iso-surface of the color field is visualized using the POV-Ray
rendering with the marching cubes algorithm as illustrated in Fig. 11. Using the
generated polygons and the POV-Ray, our computational results show satisfactory
rendering effects.



Fluid Flow Simulation Using Particle Method 69

(a) t = 0.25

(b) t = 0.5

Figure 11: Particle representations (left) and POV-Ray rendering (right) at different
times

7 Conclusions

We have presented the MPS approach using logarithmic-type weighting function
for solving numerically incompressible viscous fluid flow involving free surfaces
and gravity. The standard MPS method has been widely utilized as a particle strat-
egy for free surface flow, the problem of moving boundary, and multi-physics/multi-
scale ones. To overcome spurious oscillations in the standard MPS method, we
have proposed to utilize the logarithmic weighting function and also take into the
influence radius reduction for solving an auxiliary Poisson equation for the pres-
sure field. The polygonization of numerical data has been constructed by using
the marching cubes algorithm, and also the rendering has been significantly illus-
trated in using the generated polygons and POV-Ray as the physics-based computer
graphics. As the numerical example, the well-known dam-breaking flow problem
has been carried out and compared with experimental data and other numerical
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ones. The numerical results obtained herein are summarized as follows:

(1) The standard MPS approach leads to irregular pressure distributions, while the
present distributions using logarithmic weighting function are improved slightly.

(2) We can see that the pressure distributions with the influence radius reduction
are generally improved than those without the reduction.

(3) The qualitative agreements between the present results and the experimental
data appear satisfactory.

(4) The numerical results demonstrate that the approach is capable of solving qual-
itatively and in a stable manner the complicated flow phenomena involving free
surfaces.

(5) The convincing images are visualized using the POV-Ray rendering and the
marching cubes algorithm.
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