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Large Rotation Analyses of Plate/Shell Structures Based
on the Primal Variational Principle and a Fully Nonlinear

Theory in the Updated Lagrangian Co-Rotational
Reference Frame
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Abstract: This paper presents a very simple finite element method for geometri-
cally nonlinear large rotation analyses of plate/shell structures comprising of thin
members. A fully nonlinear theory of deformation is employed in the updated La-
grangian reference frame of each plate element, to account for bending, stretching
and torsion of each element. An assumed displacement approach, based on the
Discrete Kirchhoff Theory (DKT) over each element, is employed to derive an ex-
plicit expression for the (18x18) symmetric tangent stiffness matrix of the plate
element in the co-rotational reference frame. The finite rotation of the updated
Lagrangian reference frame relative to a globally fixed Cartesian frame, is simply
determined from the finite displacement vectors of the nodes of the 3-node element
in the global reference frame. The element employed here is a 3-node plate ele-
ment with 6 degrees of freedom per node, including 1 drilling degree of freedom
and 5 degrees of freedom [3 displacements, and the derivatives of the transverse
displacement around two independent axes]. The present (18×18) symmetric tan-
gent stiffness matrices of the plate, based on the primal variational principle and the
fully nonlinear plate theory in the updated Lagrangian reference frame, are much
simpler than those of many others in the literature for large rotation/deformation
analysis of plate/shell structures. Numerical examples demonstrate the accuracy
and robustness of the present method.
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1 Introduction

Exact and efficient nonlinear large deformation analyses of space structures have
significance in diverse engineering applications, such as civil and aerospace en-
gineering. Over the past 3 decades, many different methods were developed by
numerous researchers for the linear and nonlinear analyses of 3D plate/shell struc-
tures. For example, Kang, Zhang and Wang (2009), Kulikov and Plotnikova (2008),
Nguyen-Van, Mai-Duy and Tran-Cong (2007) developed several displacement plate-
/shell elements based on the Kirchhoff or Mindlin theories. Chin and Zhang (1994),
Choo, Choi and Lee (2010), Huang, Shenoy and Atluri (1994), Maunder and Moit-
inho (2005) proposed some hybrid plate element based on assumed strain distribu-
tions or hybrid principles. Iura and Atluri (1992) employed the drilling degrees of
freedom in plate/shell elements to avoid the problem of singularity in the stiffness
matrix. Iura and Atluri (2003), Gal and Levy (2006), Rajendran and Narasimhan
(2006), Wu, Chiu and Wang (2008) overviewed some progress of the plate analy-
ses. Albuquerque and Aliabadi (2008), Baiz and Aliabadi (2006), Fedelinski and
Gorski (2006) developed the boundary element formulations for the analyses of
plates or shells. Atluri and his co-workers (Atluri 1980; Atluri and Cazzani 1994;
Atluri 2005) extensively studied the large rotations in plates and shells, and atten-
dant variational principles involving the rotation tensor as a direct variable. These
diverse theories and methods of the plate/shell have now been widely applied to a
variety of problems.

Although a large number of different efforts have been made, some inherent diffi-
culties related to the linear/nonlinear analyses of 3D plate/shell structures still need
to be further overcome. The objective of this paper is to provide an essentially ele-
mentary engineering treatment of plates and shells undergoing large deformations
and rotations without resorting to the highly mathematical tools of differential ge-
ometry, and group –theoretical treatment of finite rotations, as in most of the prior
literature. This paper presents a simple finite element method for large deforma-
tion/large rotation analyses of plate/shell structures comprising of thin members. A
fully nonlinear theory of deformation is employed in the updated Lagrangian refer-
ence frame of each plate element, to account for bending, stretching, and torsion of
each element. An assumed displacement approach, based on the Discrete Kirchhoff
Theory (DKT) over each element, is employed to derive an explicit expression for
the (18x18) symmetric tangent stiffness matrix of the plate element in the updated
Lagrangian reference frame. Numerical examples demonstrate the accuracy and
robustness of the present method.
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2 A fully nonlinear theory for a plate undergoing moderately large deforma-
tions in the updated Lagrangian reference frame

We consider a fixed global reference frame with axes x̄i (i = 1,2,3) and base vec-
tors ēi. The plate in its undeformed state, with local coordinates x̃i (i = 1,2,3) and
base vectors ẽi, is located arbitrarily in space, as shown in Fig.1. The current con-
figuration of the plate, after arbitrarily large deformations, is also shown in Fig.1.
The local coordinates in the reference frame in the current configuration are xi and
the base vectors are ei (i = 1,2,3).
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Fig.2 Large deformation analysis model of a plate element 

As shown in Fig.2, we consider the large deformations of a typical thin plate. A 
fully nonlinear theory (retaining all the nonlinear terms in the relations between 
the incremental strains and incremental displacements) of deformation is 
assumed for the continued deformation from the current configuration, in the 

Figure 1: Updated Lagrangian reference frame for a plate element

As shown in Fig.2, we consider the large deformations of a typical thin plate. A
fully nonlinear theory (retaining all the nonlinear terms in the relations between
the incremental strains and incremental displacements) of deformation is assumed
for the continued deformation from the current configuration, in the updated La-
grangian frame of reference ei (i = 1,2,3) in the local coordinates xi (i = 1,2,3).
If h is the characteristic thickness of the thin plate, and ui (x j) are the displace-
ments of the plate from the current configuration in the ei directions, the precise
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Figure 2: Large deformation analysis model of a plate element

assumptions governing the continued deformations from the current configuration
are (α = 1,2;β = 1,2,3)

1. h
L � 1 (the plate is thin);

2. u3/h∼ O(1);

3.
(

∂u3
∂xα

)
� 1;

4. uα/h� 1;

5.
(

∂uα

∂xβ

)2
and

(
∂u3
∂xα

)2
are all retained as nonlinear terms in the co-rotational

frame of reference;

6. All strains Eαβ � 1 [where Eαβ are strains from the current configuration,
in the xα coordinates];

7. The material is linear. For elastic-plastic material, the rate relation is bi-
linear.

Thus, the generally 3-dimensional displacement state in the ei system is simplified
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to be of the type

u1 = u10 (xα)− x3
∂u3

∂x1

u2 = u20 (xα)− x3
∂u3

∂x2

(1)

where

u3 = u30 (x1,x2)
u10 = u10 (x1,x2)
u20 = u20 (x1,x2)

(2)

2.1 Strain-displacement relations

Considering the complete nonlinearities in the rotated reference frame ei (xi), we
can write the Green-Lagrange strain-displacement relations in the updated La-
grangian co-rotational frame ei in Fig.1 as (Cai, Paik and Atluri 2010):

E = EL +EN (3)

where

EL =
[
EL

11 EL
22 EL

12 EL
21
]T

=
[
u10,1− x3u30,11 u20,2− x3u30,22 u10,2− x3u30,12 +θ3 u20,1− x3u30,12−θ3

]T
(4)

EN =
[
EN

11 EN
22 EN

12 EN
21

]T (5)

where , i denotes a differentiation with respect to xi, θ3 = 1
2 (u20,1−u10,2) are the

drilling degrees of freedom, 2EN
11 = u2

10,1 +u2
20,1 +u2

30,1, 2EN
22 = u2

10,2 +u2
20,2 +u2

30,2,
and 2EN

12 = 2EN
21 = u10,1u10,2 +u20,1u20,2 +u30,1u30,2.

2.2 Stress-Strain relations

The stress-measure conjugate to these strains is the second Piola-Kirchhoff stress
tensor S1

[
S1

i j

]
.

We assume a state of plane-stress to derive the stresses from strains in a thin plate
as

S1 = D̃
(
εεε

L +εεε
N)= S1L +S1N (6)
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where

D̃ =
E

1−ν2


1 ν 0 0
ν 1 0 0
0 0 1−ν 0
0 0 0 1−ν

 (7)

where E is the elastic modulus; ν is the Poisson ratio.

2.3 Generalized stresses

If the mid-surface of the plate is taken as the reference plane in the co-rotational
updated Lagrangian reference frame, the generalized forces of the plate in Fig.2
can be defined as

σσσ = Dεεε (8)

where σσσ are the element generalized stresses, εεε are the element generalized strains,
and

σσσ =



σ1
σ2
σ3
σ4
σ5
σ6
σ7


=



N11
N22
N12
N21
M11
M22
M12


(9)

εεε =



ε1
ε2
ε3
ε4
ε5
ε6
ε7


= εεε

L +εεε
N =



u10,1
u20,2

u10,2 +θ3
u20,1−θ3
−u30,11
−u30,22
−2u30,12


+

1
2



u2
10,1 +u2

20,1 +u2
30,1

u2
10,2 +u2

20,2 +u2
30,2

u10,1u10,2 +u20,1u20,2 +u30,1u30,2
u10,1u10,2 +u20,1u20,2 +u30,1u30,2

0
0
0


(10)

D =



C νC 0 0 0 0 0
νC C 0 0 0 0 0
0 0 C1 0 0 0 0
0 0 0 C1 0 0 0
0 0 0 0 D νD 0
0 0 0 0 νD D 0
0 0 0 0 0 0 D1


(11)
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where C = Eh
1−ν2 , D = Eh3

12(1−ν2) , C1 = (1−ν)C and D1 = (1−ν)D/2.

If we denote θ1 = u30,1 and θ2 = u30,2, Eq. (10) can be rewritten as

εεε
L = LU =

[
u10,1 u20,2 u10,2 +θ3 u20,1−θ3 −θ1,1 −θ2,2 −θ1,2−θ2,1

]T
(12)

εεε
N =

1
2

Aθ Uθ (13)

where

L =



∂/∂x1 0 0 0 0 0
0 ∂/∂x2 0 0 0 0

∂/∂x2 0 0 0 0 1
0 ∂/∂x1 0 0 0 −1
0 0 0 −∂/∂x1 0 0
0 0 0 0 −∂/∂x2 0
0 0 0 −∂/∂x2 −∂/∂x1 0


(14)

Aθ =



u10,1 u20,1 θ1 0 0 0
0 0 0 u10,2 u20,2 θ2

u10,2/2 u20,2/2 θ2/2 u10,1/2 u20,1/2 θ1/2
u10,2/2 u20,2/2 θ2/2 u10,1/2 u20,1/2 θ1/2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(15)

U =
[
u10 u20 u30 θ1 θ2 θ3

]T (16)

Uθ =
[
u10,1 u20,1 θ1 u10,2 u20,2 θ2

]T (17)

3 Interpolation functions

As shown in Fig.2, the plate element has three nodes with 6 degrees of freedom per
node. By defining the following DKT displacements functions

θ1 =
3

∑
i=1

(Riwi +Rxiθ1i +Ryiθ2i)

θ2 =
3

∑
i=1

(Hiwi +Hxiθ1i +Hyiθ2i)

(18)
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where

R1 = 1.5(m6N6/l6−m4N4/l4) , R2 = 1.5(m4N4/l4−m5N5/l5) ,

R3 = 1.5(m5N5/l5−m6N6/l6) ,

Rx1 = N1 +N4
(
0.5n2

4−0.25m2
4
)
+N6

(
0.5n2

6−0.25m2
6
)
,

Rx2 = N2 +N4
(
0.5n2

4−0.25m2
4
)
+N5

(
0.5n2

5−0.25m2
5
)
,

Rx3 = N3 +N5
(
0.5n2

5−0.25m2
5
)
+N6

(
0.5n2

6−0.25m2
6
)
,

Ry1 =−0.75(m4n4N4 +m6n6N6) , Ry2 =−0.75(m4n4N4 +m5n5N5) ,

Ry3 =−0.75(m5n5N5 +m6n6N6) ;

H1 = 1.5(n6N6/l6−n4N4/l4) , H2 = 1.5(n4N4/l4−n5N5/l5) ,

H3 = 1.5(n5N5/l5−n6N6/l6) ,

Hx1 = Ry1, Hx2 = Ry2, Hx3 = Ry3,

Hy1 = N1 +N4
(
0.5m2

4−0.25n2
4
)
+N6

(
0.5m2

6−0.25n2
6
)
,

Hy2 = N2 +N4
(
0.5m2

4−0.25n2
4
)
+N5

(
0.5m2

5−0.25n2
5
)
,

and

Hy3 = N3 +N5
(
0.5m2

5−0.25n2
5
)
+N6

(
0.5m2

6−0.25n2
6
)

;

lk is the length of side i j (i = 1,2,3 and j = 2,3,1 when k = 4,5,6); mk = cosαk
and nk = sinαk ( k = 4,5,6) where αk is defined in Fig.3;

N j = (2L j−1)L j ( j = 1,2,3)
N4 = 4L1L2,N5 = 4L2L3,N6 = 4L3L1

(19)

Li are the area coordinates of the three-node triangular plate elements and can be
expressed as

Li =
1

2A
(ai +bix1 + cix2) (20)

ai = x j
1xm

2 − xm
1 x j

2, bi = x j
2− xm

2 , ci =−x j
1 + xm

1 (21)

where i = 1,2,3; j = 2,3,1; m = 3,1,2, and A is the area of the triangular element,
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we can approximate the displacement function in each plate element by

U = Nâ =
[
N1 N2 N2

]
â1
â2
â3

 (22)

where the displacement function U is defined in Eq.(16), the displacement vectors
of node i in the updated Lagrangian frame ei of Fig.2 are:

âi =
[
ui

10 ui
20 ui

30 θ i
1 θ i

2 θ i
3

]T [i = 1,2,3] (23)

Ni =



Li 0 0 0 0 0
0 Li 0 0 0 0
0 0 Li 0 0 0
0 0 Ri Rxi Ryi 0
0 0 Hi Hxi Hyi 0
0 0 0 0 0 Li

 [i = 1,2,3] (24)

9 

4α

 

Fig.3 Triangular plate element 

From Eqs.(12), (13) and (22), we obtain 
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Figure 3: Triangular plate element

From Eqs.(12), (13) and (22), we obtain

εεε = εεε
L +εεε

N =
(
BL + B̂N) â (25)

where

BL =
[
BL

1 BL
2 BL

3
]

(26)
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BL
i =



Li,1 0 0 0 0 0
0 Li,2 0 0 0 0

Li,2 0 0 0 0 Li

0 Li,1 0 0 0 −Li

0 0 −Ri,1 −Rxi,1 −Ryi,1 0
0 0 −Hi,2 −Hxi,2 −Hyi,2 0
0 0 −Ri,2−Hi,1 −Rxi,2−Hxi,1 −Ryi,2−Hyi,1 0


(27)

B̂N = Aθ G/2 (28)

where

G =
[
G1 G2 G3

]
(29)

Gi =



Li,1 0 0 0 0 0
0 Li,1 0 0 0 0
0 0 Ri Rxi Ryi 0

Li,2 0 0 0 0 0
0 Li,2 0 0 0 0
0 0 Hi Hxi Hyi 0

 (30)

and thus

δ (εεε) =
(
BL +2B̂N)

δ â =
(
BL +BN)

δ (a) = Bδ â (31)

4 Updated Lagrangian formulation in the co-rotational reference frame ei

If τ0
i j are the initial Cauchy stresses in the updated Lagrangian co-rotational frame

ei of Fig.1, and S1
i j are the additional (incremental) second Piola-Kirchhoff stresses

in the same updated Lagrangian co-rotational frame with axes ei, then the static
equations of linear momentum balance and the stress boundary conditions in the
frame ei are given by

∂

∂xi

[(
S1

ik + τ
0
ik
) (

δ jk +
∂u j

∂xk

)]
+b j = 0 (32)

(
S1

ik + τ
0
ik
) (

δ jk +
∂u j

∂xk

)
ni− f j = 0 (33)

where b j are the body forces per unit volume in the current reference state, and f j

are the given boundary loads.
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By letting Sik = S1
ik + τ0

ik, the equivalent weak form of the above equations can be
written as∫
V

{
∂

∂xi

[
Sik

(
δ jk +

∂u j

∂xk

)]
+b j

}
δu jdV−

∫
Sσ

[
Sik

(
δ jk +

∂u j

∂xk

)
ni− f j

]
δu jdS = 0

(34)

where δu j are the test functions.

By integrating by parts the first item of the left side, the above equation can be
written as∫
V

−Sik

(
δ jk +

∂u j

∂xk

)
δu j, idV +

∫
V

b jδu jdV +
∫
Sσ

f jδu jdS = 0 (35)

From Eq.(6) we may write

S1
ik = S1L

ik +S1N
ik (36)

Then the first item of Eq.(35) becomes

Sik
(
δ jk +u j,k

)
δu j,i =

(
τ

0
i j + τ

0
iku j,k +S1L

i j +S1N
i j +S1

iku j,k
)

δu j,i

= S1L
i j δε

L
i j + τ

0
ikδ

(
1
2

u j,ku j,i

)
+
(
τ

0
i j +S1N

i j +S1
iku j,k

)
δu j,i

(37)

By using Eq.(5), Eq.(35) may be written as∫
V

(
S1L

i j δε
L
i j + τ

0
i jδε

N
i j
)

dV =
∫
V

b jδu jdV +
∫
Sσ

f jδu jdS−
∫
V

(
τ

0
i j +S1N

i j +S1
iku j,k

)
δε

L
i jdV

(38)

The terms on the right hand side are ‘correction’ terms in a Newton-Rapson type
iterative approach. Carrying out the integration over the cross sectional of each
plate, and using Eqs.(3) to (31), Eq.(38) can be easily shown to reduce to:

∑
e

δ âT
∫
A

(
BL)T DBLdA â+δ âT

∫
A

(
BN)T

σσσ
0dA

=

∑
e

δ âT F̂1−δ âT
∫
A

(
BL)T (

σσσ
0 +σσσ

1N)dA −δ âT
∫
A

(
BN)T

σσσ
1dA

 (39)
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where F̂1 =
∫
V

NTb∗ dV +
∫

Sσ

NTf∗ dS is the external equivalent nodal force.

If we neglect the nonlinear items in Eq.(39) for the convenience of solving the
non-linear equation, Eq.(39) can be rewritten as

∑
e

[
δ âT (K̂L + K̂S) â

]
= ∑

e

[
δ âT (F̂1− F̂S) ] (40)

where K̂ = K̂L + K̂S is the symmetric tangent stiffness matrix of the plate element,

K̂L =
∫
A

(
BL)T DBLdA [linear part ] (41)

K̂S =
∫
A

(
BN)T

σσσ
0dA =

∫
A

GT
σσσ

0
θ GdA [nonlinear part ] (42)

F̂S =
∫
A

(
BL)T

σσσ
0dA (43)

where the element generalized stresses are updated by using σσσ = σσσ0 +σσσ1L,

σσσ
0
θ =

[
N0

11I N0
12+N0

21
2 I

N0
12+N0

21
2 I N0

22I

]
(44)

I =

1 0 0
0 1 0
0 0 1

 (45)

The tangent stiffness matrix K̂ = K̂L + K̂S is a 18×18 symmetric matrix, and can
be explicitly expressed with the coordinates of the nodes of the triangular element,
by using the Eqs. (11), (26), (28) and (44).

It is clear from the above procedures, that the explicit expression and the numerical
implementation of the present (18×18) symmetric tangent stiffness matrices of the
plate in the co-rotational reference frame, based on the primal theory, are much
simpler than those based on Reissner variational principle (Cai, Paik and Atluri
2010) and many others in the literature for large rotation/deformation analysis of
built-up plate/shell structures
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5 Transformation between deformation dependent co-rotational local [ei],
and the global [ēi] frames of reference

As shown in Fig.1, x̄i (i = 1,2,3) are the global coordinates with unit basis vectors
ēi. By letting xi and ei be the co-rotational reference coordinates for the deformed
plate element, the basis vectors ei are chosen such that

e1 =
(
x12

1 ē1 + x12
2 ē2 + x12

3 ē3
)/

l12 = ã1ē1 + ã2ē2 + ã3ē3

e3 = c̃1ē1 + c̃2ē2 + c̃3ē3

e2 = e3× e1

(46)

where x jk
i = x j

i − xk
i , l jk =

[(
x jk

1

)2
+
(

x jk
2

)2
+
(

x jk
3

)2
] 1

2

,

b̃1 =
x13

1
l13 , b̃2 =

x13
2

l13 , b̃3 =
x13

3
l13 (47)

c̃1 =
ã2b̃3− ã3b̃2

lc , c̃2 =
ã3b̃1− ã1b̃3

lc , c̃3 =
ã1b̃2− ã2b̃1

lc (48)

and

lc =
[(

ã2b̃3− ã3b̃2
)2 +

(
ã3b̃1− ã1b̃3

)2 +
(
ã1b̃2− ã2b̃1

)2
] 1

2
(49)

Then ei and ēi have the following relations:
e1
e2
e3

=

ã1 ã2 ã3
d̃1 d̃2 d̃3
c̃1 c̃2 c̃3


ē1
ē2
ē3

 (50)

where

d̃1 = c̃2ã3− c̃3ã2, d̃2 = c̃3ã1− c̃1ã3, d̃3 = c̃1ã2− c̃2ã1 (51)

λλλ 0 =

ã1 ã2 ã3
d̃1 d̃2 d̃3
c̃1 c̃2 c̃3

 (52)

Thus, the transformation matrix λλλ for the plate element, between the 18 general-
ized coordinates in the co-rotational reference frame ei, and the corresponding 18
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coordinates in the global Cartesian reference frame ēi, is given by

λλλ =



λλλ 0 0 0 0 0 0
0 λλλ 0 0 0 0 0
0 0 λλλ 0 0 0 0
0 0 0 λλλ 0 0 0
0 0 0 0 λλλ 0 0
0 0 0 0 0 λλλ 0

 (53)

Then the element matrices are transformed to the global coordinate system using

ā = λλλ
T a (54)

K̄ = λλλ
T Kλλλ (55)

F̄ = λλλ
T F (56)

where ā,K̄, F̄ are respectively the generalized nodal displacements, element tangent
stiffness matrix and generalized nodal forces, in the global coordinates system. The
Newton-Raphson method is used to solve the nonlinear equation of the plate in this
implementation.

6 Numerical examples

6.1 Buckling of the thin plate

The (18×18) tangent stiffness matrix for a plate in space should be capable of pre-
dicting buckling under compressive axial loads, when such an axial load interacts
with the transverse displacement in the plate. We consider the plate with two types
of boundary conditions as shown in Figs.4a and 4b. Assume that the thickness of
the plate is h = 0.01, and a = b = D = 1. The buckling loads of the plate obtained
by the present method using different numbers of elements are shown in Tab.1. It
is seen that the buckling load predicted by the present method agrees well with the
analytical solution (buckling load is Pcr = kπ2D/b2, where k = 4 for Fig.4a and
k = 1.7 for Fig.4b).

6.2 A simply supported or clamped square plate

A simply supported or clamped square plate loaded by a central point load p or
a uniform load q is considered for linear elastic analysis. The side length and the
thickness of the square plate are l and h. The results listed in Tab.2 and Tab.3 in-
dicate the good accuracy and convergence rate of the present elements. Numerical
results also indicate that, although the primal methods are used, the displacement
solutions of the example are not always convergence from "BELOW" for the DKT-
type approach.
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Tab.3 indicate the good accuracy and convergence rate of the present elements. 
Numerical results also indicate that, although the primal methods are used, the 
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Figure 4: Model of the plate subject to an axial force

Table 1: Buckling load of the plate

Mesh
Fig.4a Fig.4b

Present method Exact Present method Exact
4×4 39.7001

39.4784
17.0938

16.77838×8 39.4956 16.8422
16×16 39.4787 16.7807

Table 2: Central deflection for a square plate clamped along all four boundaries

Mesh Uniform load
(
wc×ql4/100D

)
Point load

(
wc× pl2/100D

)
2×2 0.1212 0.6342
4×4 0.1257 0.5905
8×8 0.1263 0.5706

16×16 0.1265 0.5640
Exact 0.1260 0.5600

6.3 Geometrically nonlinear analysis of a clamped square plate subjected to a
uniform load

The geometrically nonlinear analysis of a clamped plate under uniform load q is
studied (Cui, Liu, Li, Zhao, Nguyen, and Sun 2008). The side length and the
thickness of the square plate are l = 100mm and h = 1mm. The material properties
are E = 2.1e06N/mm2 and ν = 0.316. The analytic central solution of the plate is
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Table 3: Central deflection for a square plate simply supported along all four bound-
aries

Mesh Uniform load
(
wc×ql4/100D

)
Point load

(
wc× pl2/100D

)
2×2 0.3673 1.2820
4×4 0.3972 1.1993
8×8 0.4040 1.1719

16×16 0.4057 1.1635
Exact 0.4062 1.1600

given by chia (1980):(w0

h

)3
+0.2522

w0

h
= 0.0001333

ql4

Dh
(57)

where wc = 2.5223w0.

The whole plate is modeled and the central deflection wc of the plate for different
meshes is shown in Tab.4. It is observed that the results of the present method
converge quickly to the analytic solution.

Table 4: The central deflection of a clamped square plate subjected to a uniform
load

Mesh
q

0.5 1.3 2.1 3.4 5.5
4×4 0.340689 0.736689 0.999181 1.294422 1.619091
8×8 0.321312 0.702915 0.960410 1.253279 1.578696

16×16 0.314811 0.690971 0.945723 1.235726 1.558095
32×32 0.313109 0.687847 0.941829 1.230899 1.552026

Analytical 0.322050 0.688258 0.933327 1.214635 1.531733

6.4 Geometrically nonlinear analysis of a clamped circular plate subjected to a
uniform load

The large deformation analysis of a clamped circular plate subjected to a uniformly
distributed load q is considered. The radius of the plate is r = 100 and the thickness
of the plate is h = 2. The material properties are E = 1.0e07 and ν = 0.3. The
analytic central deflection w0 of the plate is given by Chia (1980):

16
3(1−ν2)

[
w0

h
+

1
360

(1+ν)(173−73ν)
(w0

h

)3
]

=
qr4

Eh4 (58)
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Due to the double symmetry, only one quarter of the plate is discretized as shown
in Fig.5. Fig.6 shows the comparison of the present result of the central deflection
and the analytic solution by Chia (1980). It is observed that the present result is in
very good agreement with the analytical solution.

Figure 5: Mesh of one quarter of a clamped circular plate

6.5 Geometrically nonlinear analysis of a clamped circular plate subjected to a
concentrated load

The circular plate subjected to a concentrated load p at the center of the plate is
considered (Zhang and Cheung 2003). The geometric and material property are the
same as the Section 5.4. Tab.5 gives the nondimensional central deflections w/h of
the circular plate by using 289 nodes from the present method and the analytical
solution by Chia (1980).

6.6 Nonlinear analysis of a cantilever plate with conservative end load

The cantilever plate with conservative end load shown in Fig.7 has been analyzed.
The geometry parameters are a = 40m, b = 30m and h = 0.4m. The material prop-
erties are E = 1.2e8N/m2 and ν = 0.3. The load-deflection curve is shown in Fig.8
where the present solution using a mesh of 8×8 is compared with the solution by
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Fig.6 Nonlinear results of a clamped circular plate 
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6.6 Nonlinear analysis of a cantilever plate with conservative end load 

The cantilever plate with conservative end load shown in Fig.7 has been 
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Figure 6: Nonlinear results of a clamped circular plate

Table 5: Nondimensional central deflection w/h of a clamped circular plate sub-
jected to a concentrated load

pr2/
(
Eh4

)
1 2 3 4 5 6

Present method 0.2139 0.4080 0.5751 0.7182 0.8424 0.9520
Analytical solution 0.2129 0.4049 0.5695 0.7098 0.8309 0.9372

Oral and Barut (1991). WA and WB in Fig.8 are correspondingly the deflections of
point A and point B along x3.

6.7 Nonlinear analysis of a cylindrical shell panel

A cylindrical shell panel clamped along all four boundaries shown in Fig.9 is con-
sidered for nonlinear analysis. The shell panel is subjected to inward radial uniform
load q. The geometry parameters are l = 254mm, r = 2540mm, h = 3.175mm and
θ = 0.1rad. The material properties are E = 3.10275kN/mm2 and ν = 0.3. Due to
the double symmetry, only one quarter of the panel is discretized using a mesh of
8×8. The present results of the central deflection together with solutions by Dhatt
(1970) are shown in Fig.10. It is observed that the present method works very well.
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Fig.8 Load-deflection curve for the cantilever plate 

6.7 Nonlinear analysis of a cylindrical shell panel 

A cylindrical shell panel clamped along all four boundaries shown in Fig.9 is 

considered for nonlinear analysis. The shell panel is subjected to inward radial 

Figure 8: Load-deflection curve for the cantilever plate
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Figure 10: Nonlinear results of a clamped cylindrical shell panel

6.8 Hinged spherical shell with central point load

The hemispherical shell with an 180 hole shown in Fig.11 is analyzed. The geom-
etry parameters are the radius r = 10m and h = 0.04m. The material properties are
E = 6.825e7kN/m2 and ν = 0.3. Due to the double symmetry, only one quarter of
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the shell is discretized using a mesh of 16×16(Fig.12). Fig.13 shows the present
solutions based on primal method are in good agreement with the results of Kim
and Lomboy (2006). The deformed shape of hemispherical shell with a mesh of
16×16 when F = 200kN is shown in Fig.14.
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7 Conclusions

Based on a fully nonlinear theory of deformation in the co-rotational updated La-
grangian reference frame and the primal principle, a simple finite element method
has been developed for large deformation/rotation analyses of plate/shell structures
with thin members. It is shown to be possible to derive an explicit expression for
the (18x18) symmetric tangent stiffness matrix of each element, including nodal
displacements, nodal derivatives of transverse displacements, and nodal drilling



Large Rotation Analyses of Plate/Shell Structures 271

degrees of freedom, even if assumed-displacement type formulations are used. The
explicit expression and the numerical implementation of the present plate element
are much simpler than many others in the literature for large rotation/deformation
analysis of built-up plate/shell structures. While the present work is limited to elas-
tic materials undergoing large deformations, the extension to inelasticity is straight
forward and will be pursued in forthcoming publications.
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