
Copyright © 2012 Tech Science Press CMES, vol.84, no.1, pp.13-26, 2012

Implementation of a Parallel Dual Reciprocity Boundary
Element Method for the Solution of Coupled

Thermoelasticity and Thermoviscoelasticity Problems
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Abstract: A parallel dual reciprocity boundary element method solution to ther-
moelasticity and thermoviscoelasticity problems is proposed. The DR-BEM for-
mulation is given in Fourier Transform Space where the Time Space solutions are
obtained through inverse Fourier Transform. The parallellization of the code is
achieved through solving each frequency at a distinct computational node. The im-
plemented parallel code is tested on 64-core IBM blade servers and it is seen that a
linear speed-up is achieved.
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1 Introduction

The boundary element method (BEM) is one of the powerful numerical techniques
in the field of solid and fluid mechanics. In a very general sense, when applied to
a specific problem, the BEM establishes integral equations derived from the gov-
erning differential equations of the problem, transforms the resulting integral equa-
tions into boundary integral equations and solves them numerically by discretizing
only the boundary of the solution domain. There are several stated advantages and
disadvantages of the BEM, most of which are given in comparison to the finite el-
ement method (FEM) - the numerical method which is relatively more penetrated
into the engineering life in practical sense. The most common known advantage is
that, with its boundary-only nature, the BEM reduces the dimension of problem by
one, e.g., for a 3D problem, the boundary element (BE) mesh is 2D and for a 3D
problem, the BE mesh is 1D.

In view of the power of computers attained presently to handle large linear systems
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of equations, the major portion of the time spent in the analysis of a problem stems
from modeling, e.g., meshing of the domain and imposition of the boundary con-
ditions, which require human attention and time. Compared to the FEM, the BEM
reduces the time spent in modeling considerably due to its boundary-only nature.

A drawback of the BEM is that it requires knowledge of some pre-determined fun-
damental solutions (FS). The FS can be thought as the weighting functions used in
the weighted residual methods. In literature, the FS can be found for many mathe-
matical models - yet in some problems, as in thermoelasticity (TE) and thermovis-
coelasticity (TVE), the FS can be very complex. The integration of those complex
FS, considering their complexity in singular integrals too, would be a hard task. In
some problems, on the other hand, there exists no such FS in literature. Such prob-
lems are mostly the problems defined by inhomogenous differential equation(s)
where the inhomogenous term would result in a domain integral associated with the
inhomogenous term. The domain integration of these resulting domain integrals is
possible, yet this would impair the boundary-only nature of the BEM. To retain
the boundary-only property of the BEM, some methods are proposed in literature,
carrying the domain integral to the boundary. Among these methods, the most
commonly used is the dual reciprocity (DR) method [Partridge, Brebbia, and Wro-
bel (1992)], which is based on expressing the solution as the sum of homogenous
and particular solutions. The DR method (DRM) involves: (i) expansion of inter-
nal excitation distribution in terms of pre-assumed base functions, in most cases,
the radial basis functions, (ii) determination of the coefficients appearing in the ex-
pansion by matching these internal excitation values at the collocation points, (iii)
finally, evaluation of approximate particular solution in view of expansion assumed
for internal excitation.

In the DRM, only the boundary of the solution domain is discretized, but in the so-
lution domain there is a need of sufficient number of additional collocation points.
No mesh is needed inside the domain, which retains the boundary-only nature of
the BEM.

In the present study, the DRM is applied to TE and TVE problems. As mentioned
above, the FS for these problems are provided in literature [Sladék and Sladék
(1983)], yet these functions are rather complicated. In this study, to simplify the
complexity of these FS, we will treat the coupling terms in GE of TE and TVE
as nonhomogenous terms (internal excitations) and apply DRM which makes it
possible to carry out the analysis using the FS of elastodynamics and diffusion
equation, which are less complicated than the FS of TE and TVE.

The use of DRM in TE and TVE problems is very limited and recent. Henry and
Banerjee was first to implement DRM in steady-state and uncoupled quasi-static TE
[Henry and Banerjee (1988)] in 1987. Later, Golberg, Chen and Bowman worked
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on the base functions that can be used in TE problems [Golberg, Chen, and Bow-
man (1999)]. A summary for the use of DRM in uncoupled TE may be found
in [Cheng, Chen, Golberg, and Rashed (2001)].The only reference to the research
on DRM applied to coupled TE and TVE problems is by Baranoglu and Mengi
[Baranoglu and Mengi (2006)].

In this study we propose a parallel solution to the coupled TE and TVE problems.
Though the direct solution involves the evaluation of large system of linear equa-
tions, the computational time considerably increases when the number of unknowns
are increased in the problem. To cope with the increase in computational time, par-
allel solution is needed. There are some research on parallel application of BEM
and DRM in literature [Chen and Shanazari (2010)], but no reference occurs to the
parallel solution of TE and TVE problems.

For the problem under consideration, parallelism can be achieved at different stages
of the solution. For example, data-decomposition is always possible for the con-
current matrix operations involved (e.g., matrix multiplication, inversion, Gauss-
Seidel iteration), or frequency space can be partioned for the so-called functional-
decomposition [Chandlar and Taylor (1992)]. This study takes the latter view to
obtain a parallel solution of TE and TVE problems.

2 Boundary Element Formulation and single-processor (sequential) solution
algorithm

It may be shown that, in Fourier Transform Space (FTS), the governing equations
(GE) of thermoelasticity (and thermoviscoelasticity using correspondance principle
and ignoring viscous dissipation term) can be given as

Li j(u j) = βθ,i ; L(θ) = ηuk,k (1)

where

Li j = δi jµ∇
2 +(λ + µ)∂i j +ρω

2
δi j ; L = k∇

2− iωCv ; η = T0β iω (2)

In the above equations, Einstein’s summation convention is in place requiring sum-
mation over a repeated index. Also, a comma in the indices imply differentiation,
e.g., [ ],i = ∂ [ ]

∂xi
. The field variables are; the components of the displacement vector,

ui and the temperature difference from reference temperature θ (where the refer-
ence temperature is denoted by T0). The material constants: shear modulus, µ ,
Lame’s modulus, λ , thermal expansion coefficient, k, the heat capacity under con-
stant volume, Cv, the density, ρ and β = (3λ +2µ)α with α being the thermal
expansion coefficient. The Fourier Transform (FT) parameter is denoted with ω ,
which also can be regarded as the angular frequency. In the equations i =

√
−1
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and δi j is the Kronecker’s delta with δi j = 1 if i = j and δi j = 0 if i 6= j. The
left-equation in Eq.1 will be called the mechanical equations (ME) and the right-
equation is called the thermal equation (ThE). In correspondance principle we re-
place the material constants with their complex forms (which are defined using a
specific viscoelastic model), e.g., µ → µ̃ , λ → λ̃ and β → β̃ in the ME. The Eq.1
are coupled through the terms βθ,i in the ME (which will be called the thermal
coupling) and ηuk,k in the ThE (which will be called as the mechanical coupling).

In this study, we utilize a direct solution to the given set of differential equations
using the DR-BEM. For this, we consider the coupling terms as body force and
internal heat generation and write the displacement and temperature solutions as a
summation of homogenous and particular solutions as

ui = uh
i +up

i ; θ = θ
h +θ

p (3)

where, the associated tractions and flux would be

ti = th
i + t p

i −βniθ ; q = qh +qp (4)

where ni are the components of the unit normal vector on the boundary. Note here
that, the homogenous parts are solutions to the equations

Li j(uh
j) = 0 ; L(θ h) = 0 (5)

and the particular parts are particular solutions to the equations

Li j(u
p
j ) = βθ,i ; L(θ p) = ηuk,k (6)

It may be shown that, with above definitions, the boundary element equations for
ME and ThE are

Ci ju j−
∫
S

Gi jt jdA+
∫

Hi ju jdA−β

∫
S

Gi jn jθdA

= Ci ju
p
j −
∫
S

Gi jt
p
j dA+

∫
Hi ju

p
j dA (7)

Cθ −
∫
S

GqdA+
∫
S

HθdA = Cθ
p
∫
S

GqpdA+
∫
S

Hθ
pdA (8)

To proceed further, we represent the temperature field and the displacement field in
truncated series expansion as

θ(P) =
N+M

∑
n=1

φn(P)ψn(P,Pn) ; ui(P) =
N+M

∑
n=1

φin(P)ψn(P,Pn) (9)
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where φn and φin are the coefficients of the series expansion and ψn are the base
functions. In this study, for simplicity, base functions are selected to be ψn(P,Pn) =
1+r(P,Pn) where r(P,Pn) is the distance between points P and Pn. In the truncated
series expansions, the truncation limit is N + M where N is the number of nodes
taken on the boundary of the solution domain and M is the additional collocation
points selected within the solution domain. Defining particular solutions θ

p
in and

up
in as the solutions to the equations

L(θ p
in) = ηψn,i ; Li j(u

p
jn) = βψn,i (10)

with their associated flux and traction, qp
in and t p

in, we obtain, after several mathe-
matical manipulations,

up
i = φnup

in ; t p
i = φnt p

in ; θ
p = φinθ

p
in ; qp = φinqp

in (11)

The general solutions to Eq.11 can be found in literature. Inserting Eq.11 into Eq.7
and 8 would yield

Ci ju j−
∫
S

Gi jt jdA+
∫

Hi ju jdA− β̃

∫
S

Gi jn jθdA

=
N+M

∑
n=1

φn

Ci ju
p
jn−

∫
S

Gi jt
p
jndA+

∫
S

Hi ju
p
jndA

 (12)

Cθ −
∫
S

GqdA+
∫
S

HθdA =
N+M

∑
n=1

φin

Cθ
p
in−

∫
S

Gqp
indA+

∫
S

Hθ
p
indA

 (13)

To compute the coefficients of the truncated series expansion, φn and φin, we use
the collocation method: at the collocation points Pn (n = 1..N + M) we match the
values of ui and θ obtained from the series expansion with the given data. When
we write these equations at all collocation points, we obtain two systems of linear
algebraic equations which can be represented in matrix relations as

ui = ψ ·φ
i
→ φ

i
= ψ

−1 ·ui ; θ = ψ ·φ → φ = ψ
−1 ·θ (14)

Inserting Eq.14 into 12 and 13 and writing Eq.12 and 13 at each boundary node,
we obtain the matrix relations

H(b) ·u(b)−G(b) · t− β̃G(b)nΘ
(b) =

(
H(b) ·U−G(b) ·T

)
·F−1 ·Θ

H̄(b) ·Θ(b)− Ḡ(b) ·q =
(

H̄(b) · Θ̂− Ḡ(b) ·Q
)
· F̄−1 ·u (15)
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Here, the superscript (b) denotes that these matrices (or column vectors) are eval-
uated over the boundary nodes. Matrices with no superscript are either not defined
outside the boundary (like traction, t, normal flux, q, and unit outward normal at
the boundary, n) or contain values from both boundary and internal, e.g.,

Θ =
{

Θ(b)

Θ(i)

}
; u =

{
u(b)

u(i)

}
(16)

Note that, in Eq.15, the matrix F contains the values of the base functions evaluated
at the collocation points. The matrix F̄−1 on the other hand, obtained from F−1

using appropriate row and column changes. Defining

S =
(

H(b) ·U−G(b) ·T
)
·F−1 ; S̄ =

(
H̄(b) · Θ̂− Ḡ(b) ·Q

)
· F̄−1 (17)

and defining new sub matrices such that

S ·Θ→
[

S(b)

S(i)

]
·
{

Θ(b)

Θ(i)

}
; S̄ ·u→

[
S̄(b)

S̄(i)

]
·
{

u(b)

u(i)

}
(18)

Eq.15 can be re-written as

H(b) ·u(b)−G(b) · t =
[

S(b)

S(i)

]
·
{

Θ(b)

Θ(i)

}
H̄(b) ·Θ(b)− Ḡ(b) ·q =

[
S̄(b)

S̄(i)

]
·
{

u(b)

u(i)

}
(19)

The integral equations in Eq.12 and 13, when written for the internal DR points,
lead to

u(i) = G(i) · t−H(i) ·u(b) + β̃G(i)nΘ
(i) +

(
U(i) +H(i) ·U−G(i) ·T

)
·F−1 ·Θ

Θ
(i) = Ḡ(i) ·q− H̄(i) ·Θ(b) +

(
Θ̂

(i) + H̄(i) · Θ̂− Ḡ(b) ·Q
)
· F̄−1 ·u (20)

Through the steps defined above, these matrix equations can be re-written as

u(i) = G(i) · t−H(i) ·u(b) +
[

Y(b)

Y(i)

]
·
{

Θ(b)

Θ(i)

}
Θ

(i) = Ḡ(i) ·q− H̄(i) ·Θ(b) +
[

Ȳ(b)

Ȳ(i)

]
·
{

u(b)

u(i)

}
(21)
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At this point the matrix equations in Eq.19 and 21 can be combined to obtain
H(b) −

(
β̃G(b)nΘ(b) +S(b)

)
0 −S(i)

−S̄(b) H̄(b) −S̄(i) 0
H(i) −

(
β̃G(i)nΘ(i) +Y(b)

)
I −Y(i)

−Ȳ(b) H̄(i) −Ȳ(i) I




u(b)

Θ(b)

u(i)

Θ(i)

 (22)

=


G(b) 0

0 G(i)

Ḡ(b) 0
0 Ḡ(i)

{ t
q

}

Here, 0 represents the zero matrix and I represents the identity matrix of match-
ing size. After the imposition of the boundary conditions, the resulting system of
equations can be represented by

K̄ ·x = b̄ (23)

which would be solved for the unknown quantities x. When the sub-matrices in
Eq.22 are examined, it may be seen that

• Matrix F is frequency independent, and F−1 is used successively at each fre-
quency to obtain S, S̄, Y and Ȳ. Therefore, it would be profitable to evaluate
it in a separate subroutine (evaluate_Finv) together with its inverse, at the
beginning of the code, and make it available to all frequencies.

• sub-matrices G(b), H(b), Ḡ(b) and H̄(b) involve integrations over the bound-
ary elements when the fixed point A is on the boundary. To evaluate the
off-diagonal elements of these matrices GQ with 10 points are employed,
whereas for the diagonal elements, since the resulting integrals become sin-
gular, semi-analytical solutions are provided. The evaluation of these matri-
ces involve common computations, therefore implemented in a single sub-
routine (coupled_2d)

• sub-matrices G(i), H(i), Ḡ(i) and H̄(i) involve integrations over the boundary
elements when the fixed point A is within the solution domain - the point
A coincides with a collocation point within the domain. In this case, no
singularities would occur, therefore all integrals are evaluated using 10 point
GQ. Since the evaluations of these matrices involve common computations,
they are implemented in a single subroutine (coupled_2d_drm)
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• The evaluation of S, S̄, Y and Ȳ involve the evaluation of point-to-point
distance functions preceded with matrix multiplications. These matrices
are evaluated in a single subroutine (Obtain_DR_matrices) which should be
called after the previously mentioned subroutines.

The algorithm for the sequential program can be found in Fig. 1

Figure 1: Sequential Algorithm
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3 Frequency parallellization

One of the advantages of working in FTS is that the solution at each frequency is
independent of one another. In TS, however, the solution at a specific time step
depends on all previous time solutions (if time integration is employed), or the
previous time step and the value of the time increment selected (if time stepping
algorithm is used as proposed by Brebbia). The fact that each frequency can be
solved individually and independently gives the opportunity of parallellization of
the solution algorithm in such a way that each frequency may be solved at a free
and distinct computation node (CN).

The algorithm for the parallel program can be found in Fig. 2

Figure 2: The parallel algorithm

4 Assessment of code and results

The algorithm described above is implemented in a FORTRAN code. The code is
written in Intel-FORTRAN on IBM blade servers - total of 112 cores, 64 of which
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are reserved for this study. Also, for comparison, a sequential code is prepared
using the same functions and subroutines with the parallel code.

For the application of FFT algorithm, 2n frequency points should be specified at
which the solution will be obtained. In the code, for simplicity but without loss of
generality, two dimensional formulation is implemented using constant elements.
The formulation, however, is applicable to three dimensional problems and higher
order elements. Also, for DR formulation, in the truncated series expansions, the
simplest radial basis function (ψ = 1+ r) is employed.

The developed code determines the response in FTS, from which the TS response
can be obtained through inversion using FFT algorithm. For FFT is not in the scope
of this study, the Fouriér transform and inverse transform is made using a separate
small program.

To assess the code, we consider the dynamic response of an elastic/viscoelastic
tube to a harmonic thermal input. The object of this example is to examine the
performance of the developed code using 2, 4, 8, 16, 32 and 64 CN. In the example,
we consider an infinitely long circular elastic tube whose inner and outer boundaries
are free of forces. The thermal input is specified at the inner boundary as a uniform
temperature rise of (θ = θ ∗). The outer boundary remains at the same temperature
(θ = 0). Since the problem is symmetric in two cartesian coordinate axes, only 1

4 of
it is enough to be modeled (see Fig. 3 where the modeling and boundary conditions
are presented together with a boundary element mesh). The exact solution to the
problem in case of uncoupled thermoelasticity is known, also it is shown that the
results obtained are promising [Baranoglu and Mengi (2006)].

The main focus of this present example will be to test the performance of the pro-
posed parallel solution in comparison with the sequential code, therefore no atten-
tion will be given to the change in accuracy while changing the size of the problem
(which may be a topic for a later study). The problem is modeled using 4 different
meshes as given in Tab.1. For obtaining the frequency response of the problem,
256 discrete frequency points are employed with ∆ f = 0.1. In the study no major
effect of increasing the number of frequency points is obtained (a linear increase
in time occurs with respect to increase in the number of frequency points), so the
response of the program to 256 frequency points is considered to be characteristic.

It is seen in the study that, the difference in the solution times of the sequential pro-
gram and the single-core parallel program is too small, when the total computation
time is considered (See Tab.2)

Instead of giving the change of solution time with the number of cores, we present

the relative change with respect to the sequential program,
tsequential

tcore
. This will

show the speed-up with respect to the expected speedup (which is the number of



Parallel DR-BEM for TE and TVE 23

Figure 3: Geometry, boundary conditions and meshing of the problem

Table 1: Number of elements and internal collocation points (DR point) used in 4
different meshes

Mesh # # of nodes # of DR points
1 126 130
2 260 260
3 520 600
4 1040 1200

CN used), as given in Fig. 4

Note that, the performance of the algorithm can be considered to be good in Mesh 1,
where the system of equations is smaller, and as the size of the system is increased,
the performance drops. This is mainly due to the fact that communication time
increase between the cores as the size of the matrices that are delivered in and out
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Table 2: Solution times (s) on IBM Blade server

# of Processors Mesh 1 Mesh 2 Mesh 3 Mesh 4
Sequential 479 2818 21943 153607

1 491 2823 21948 153612
2 246 1411 10984 76981
4 124 763 6666 47576
8 66 503 4497 36635

16 34 278 2563 18906
32 18 145 1286 9615
64 9 73 651 4895

Figure 4: Speed-up ratios for given meshes
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is increased.

5 Conclusion

In this study, a parallel code is implemented for the solution of TE and TVE prob-
lems using DR-BEM. The formulation is done in FTS and the parallellization is
made by solving each frequency at different CN. In the analysis, without losing
generality, 256 frequency points are considered.

From the obtained results, it can be concluded that, the functional-decomposition
of the frequency space provides linear speed-ups for all meshes; yet as the total
number of computation points (nodes on the boundary and DR points inside the
solution domain) increases, the speed-up ratio decreases. This is mainly due to the
increase in the communication times of broadcasting large amount of matrix data
over the computational nodes. The following approaches may alliviate this problem
and will be considered in the future:

• Parallellization of the formulation by parallel execution of the subroutines
called in the program, instead. This would decrease the communication time,
yet there is a possibility of cores which finish the execution waiting for the
still executing cores, if a good load balancing is not done.

• Parallellization of the evaluation of the integrals (Gaussian Quadratures), in-
stead. This would decrease the data transferred in communication drastically,
but the number of communications increase. The efficiency of the algorithm
would depend on which one is more dominant.

• A hybrid approach, where frequency parallellization is coupled with parallel-
lizations described above. In such a program, each frequency will be solved
in parallel and by more than one CN. This would be a very good alternative,
yet it is much more complicated to implement and also the load balancing
would be very important.
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