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High-Performance 3D Hybrid/Mixed, and Simple 3D
Voronoi Cell Finite Elements, for Macro- &

Micro-mechanical Modeling of Solids, Without Using
Multi-field Variational Principles
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Abstract: Higher-order two-dimensional as well as low and higher-order three-
dimensional new Hybrid/Mixed (H/M) finite elements based on independently as-
sumed displacement, and judiciously chosen strain fields, denoted by HMFEM-2,
are developed here for applications in macro-mechanics. The idea of these new
H/M finite elements is based on collocating the components of the independent
strain field, with those derived from the independently assumed displacement fields
at judiciously and cleverly chosen collocation points inside the element. This is
unlike the other techniques used in older H/M finite elements where a two-field
variational principle was used in order to enforce both equilibrium and compat-
ibility conditions in a variational sense. The eight- and nine-node quadrilateral
iso-parametric elements are used as examples of higher order two-dimensional el-
ements; the eight-node brick element is used as an example of a low order three-
dimensional element, while the twenty-node brick element is used as an example
of higher order three-dimensional element. The performance of these new ele-
ments are compared with those of the primal (displacement-based) finite elements
in terms of stability, efficiency, invariance, locking, and sensitivity to mesh dis-
tortion in various numerical experiments. All these new H/M elements proved to
be stable, invariant, less sensitive to mesh distortion and experience no locking.
The superiority of these new HMFEM-2 elements over the displacement-based el-
ements is very much more significant for the low order elements than that for the
higher order ones. The performance and efficiency of these new H/M finite ele-
ments are much better than that of many other H/M elements in the literature [Pian
and co-workers (1964-1984), and Atluri and co-workers (1975-1984)].

The same idea of the simple collocation is used in developing a general three-
dimensional Voronoi cell finite element, denoted as VCFEM-RBF-W, based on
radial basis functions (RBF) as the interior displacement fields and the Wachspress
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Barycentric linear functions as the boundary surface displacement field, for model-
ing micro-mechanics of solids. The compatibility between the interior and bound-
ary displacements in the present VCFEM-RBF-W element is enforced using two
methods: the first by collocation at some carefully chosen points at the boundaries
of the VCFEM-RBF-W element, and the second by using the least squares method
which can be considered as the limiting case of the collocation method when the
number of collocation points increases to infinity. The developed 3D Voronoi cell
finite element has an arbitrary number of faces, and each face has an arbitrary num-
ber of sides or edges. Some numerical experiments are presented to evaluate the
performance of this new element. The VCFEM-RBF-W element is then used in
a micro-mechanical application of determining the effective material properties of
functionally graded materials (FGM), and the results are found to be in agreement
with those of the experiments, and are better than those determined by other mod-
els used in the literature. The new VCFEM-RBF-W element formulation is much
simpler and efficient, as compared to the VCFEM-HS developed by Ghosh and co-
workers (1991-2011), based on Pian’s hybrid stress method. The new elements are
suitable for extension to dynamical, geometrically nonlinear, elastic-plastic, and
fracture analyses.

Keywords: Hybrid/Mixed finite elements, higher order, three-dimensional finite
elements, Voronoi cells, radial basis functions, Wachspress Barycentric coordi-
nates, functionally graded materials, collocation, least square, efficiency, invari-
ance, locking.

1 Introduction

In contrast to the popular selective-reduced-integration methods, the use of the
multi-field finite element methods may be one of the more rational ways to resolve
many problems that the primal displacement-based finite elements suffer from,
such as locking phenomena, the difficulty to satisfy higher-order inter-element con-
tinuity requirements, the sensitivity to mesh distortion, etc. Generally, these multi-
field finite elements are called "hybrid/mixed" finite elements, and were developed
in various ways throughout the previous forty years. However, these multi-field
finite element methods did not enjoy as much acceptability and use, as their pri-
mal counterparts, mainly due to the complexity of their formulations, the difficulty
or near-impossibility of satisfying the LBB stability conditions a priori, and in no
small measure, due to their very high-cost of computation as compared to the pri-
mal (displacement-based) elements.

The two-field finite element, based on assuming both the displacement and stress
fields, was the first idea that evolved. This first version was introduced by [Pian
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(1964)] as an “equilibrated-stress” finite element, based on applying the modified
principle of minimum complementary energy, and using an “a-priori equilibrated”
assumed stress field in each element, along with an inter-element compatible dis-
placement field along the element boundaries. Modifying the idea by using an “a-
posteriori equilibrated” stress field and an inter-element compatible displacement
field inside each element, and applying Reissner’s variational principle was done by
Atluri and his co-workers in several applications [Atluri (1975); Atluri, Tong, and
Murakawa (1983); Cai, Paik, and Atluri (2009); Cai, Paik, and Atluri (2009); Cai,
Paik, and Atluri (2010b); Zhu, Cai, Paik, and Atluri (2010); Cai, Paik, and Atluri
(2010b); Punch and Atluri (1984b); Punch and Atluri (1984a); Rubinstein, Punch,
and Atluri (1984)]. The use of an “a-posteriori equilibrated” stress field is more
convenient than the “a-priori-equilibrated” one for the geometrical nonlinear and
dynamical problems. Again, [Pian and Wu (1983)] developed a hybrid/mixed finite
element based on the modified Reissner’s principle [Reissner (1950)] and assuming
an incompatible displacement field with the assumed stress field.

On the other hand, the two-field finite element based on assuming both the dis-
placement and strain fields in each element was also developed by Atluri and his
co-workers in [Cazzani, Garusi, Tralli, and Atluri (2005); Dong and Atluri (2011a,
2011b, 2012)].

Three-field finite elements were also developed by assuming displacement, stress
and strain fields using Hu-Washizu principle in [Atluri (1975); Atluri, Tong, and
Murakawa (1983); Tang, Chen, and Liu (1984)].

The hybrid/mixed finite elements were able to demonstrate their advantages in
applications which vary from 2D to 3D problems, from solid to fluid mechanics
problems and, for solid mechanics, from rod and beam to plate and shell types of
structures.

[Cai, Paik, and Atluri (2009); Cai, Paik, and Atluri (2010a); Zhu, Cai, Paik, and
Atluri (2010)] developed a locking-free hybrid-mixed rod/beam element for large
deformation analysis of space frame structures based on Reissner’s variational prin-
ciple. [Lee and Pian (1978); Cai, Paik, and Atluri (2010b)] modeled locking-free
plates and shells in large deformation analysis using Reissner’s variational prin-
ciple. [Pian and Mau (1972); Cazzani, Garusi, Tralli, and Atluri (2005)] devel-
oped hybrid assumed strain finite elements to analyze laminated composite plates.
[Bratianu and Atluri (1983); Ying and Atluri (1983)] developed stable mixed finite
elements for Stokes flows.

Babuska and Brezzi [Babuska (1973); Brezzi (1974)] analyzed the existence, unique-
ness, stability and convergence of saddle point problems and established the so-
called LBB conditions. Inability to satisfy LBB conditions in general would plague
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the solvability and stability of hybrid/mixed finite element equations. Atluri and
his co-workers in [Punch and Atluri (1984a); Punch and Atluri (1984b); Rubin-
stein, Punch, and Atluri (1984); Xue, Karlovitz, and Atluri (1985)] used a sophis-
ticated group theory to develop guidelines for selecting least-order stress interpo-
lations, from which stable and invariant finite elements satisfying LBB conditions
can be formulated. [Pian and Wu (1983)] also proposed to choose stress interpola-
tions by matching each stress/strain mode to each of the stress/strain modes derived
from non-rigid-body displacement modes. These LBB conditions exist only with
the cases of multi-field variational principles, where Lagrangian multipliers are in-
volved. The new H/M elements presented here use the primitive field variational
principle, and hence Lagrangian multipliers are not involved, and thus avoid the
LBB conditions.

The idea of the Voronoi cell finite element was presented by [Ghosh and Mallett
(1994)] to model random composites based on discretizing the solution domain us-
ing Dirichlet tessellation, that was introduced in 1991 by [Ghosh and Mukhopad-
hyay (1991)], and developing the corresponding VCFEM polygonal finite elements
to solve problems of micro-mechanics. The 3D version of this VCFEM with ellip-
soidal heterogeneities was developed by [Ghosh and Moorthy (2004)]. Ghosh and
his co-workers [Ghosh (2011)] use a modified principle of complementary energy
based on "a priori equilibrated" stress field inside each element (similar to that of
[Pian (1964)]), and continuous displacement field along the element boundaries.
However, selecting an "a priori equilibrated" stress field is difficult or even im-
possible for dynamical and geometrically nonlinear problems. Also, Lagrangian
multipliers are involved in the two-field variational principle used by Ghosh and
his co-workers, and hence the derived elements suffer from LBB conditions, which
are impossible to be satisfied a priori.

This paper extends the idea of assuming independently chosen element interior-
displacement, and inter-element compatible boundary-displacement fields, but us-
ing the primitive variational principle in the end, to the modeling of three dimen-
sional micro-mechanics problems through the Voronoi cell finite elements (VCFEM).
The present work is an extension of the 2D formulations in [Dong and Atluri
(2011a, b)]. Radial basis functions-(RBF)-based displacement fields are assumed
in the interior of the 3D Voronoi cell, and linear displacement fields are assumed
on the boundaries of each cell. The boundary displacements in the present Voronoi
cell finite element (VCFEM) are inter-element compatible, and are linear in terms
of the Wachspress coordinates. Since the displacements are denoted by the RBF
in the interior, and the Wachspress functions at the boundary, the present VCFEM
(which has an arbitrary number of faces, each with an arbitrary number of edges)
are denoted as VCFEM-RBF-W. The compatibility, between the interior RBF and
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the boundary Wachspress functions, can be enforced using two methods. The
first is done simply by collocating the two displacement fields at some boundary
collocation-points, and the second is done using the least square method which is
the limit of the collocation method as the number of collocation points increases to
infinity. The present 3D VCFEM-RBF-W element is much simpler and more effi-
cient than the VCFEM-HS developed by Ghosh and co-workers (1991-2011) using
the hybrid-stress variational principle of Pian (1964-1984) and a-priori equilibrated-
stress fields. This is due to the following limitations in the VCFEM-HS elements
developed by Ghosh and co-workers (1991-2011) using Pian’s hybrid-stress two
field variational principle: (1) there are LBB stability conditions which are impos-
sible to be satisfied a priori, and the idea proposed in [Ghosh and Moorthy (2004)]
to assure the satisfaction of the LBB conditions is computationally expensive and
can affect the invariance of the element and the accuracy of the solution, (2) there
are additional matrices (H and G) which need to be computed through quadrature
in each element, (3) H needs to be inverted in each element, and the rank of G in
each element has to be assured a priori, (4) the equilibrated stress field, as derived
from the 3-D Maxwell-Morera stress functions is not always complete.

This paper also uses the newly developed VCFEM-RBF-W elements in an impor-
tant micro-mechanical application of determining the effective elastic properties of
functionally graded materials (FGM).

The paper is organized as follows: Section 2, the basic idea of the new hybrid/mixed
finite elements (HMFEM-2 family) is introduced. Section 3 discusses the higher
order 2D elements of the HMFEM-2 family (8-node and 9-node quadrilateral ele-
ments) and the numerical examples that show their performance from several points
of view. Section 4 introduces the 3D version of the lower-order HMFEM-2 (8-node
brick element), as well as the 3D higher order version (20-node brick element), and
some numerical examples that show the performance of the elements and com-
pare them to the primal displacement-based elements and the hybrid-stress ele-
ments. The development of the new three-dimensional Voronoi cell finite element
(VCFEM-RBF-W), and the numerical examples and applications of this element
are introduced in section 5. The final conclusions are presented in section 6.

2 Basic Idea of the new Hybrid/Mixed finite elements, based on indepen-
dently assumed strain and displacement fields in each element

One of the main goals of this paper is to develop high-performance lower-order ele-
ments in 3-D (8-node iso-parametric elements) by improving on the usual compati-
ble 8-node brick primal (displacement-based) element, by assuming an independent
strain-field, which completely eliminates locking in each element, in addition to an
element displacement field. The compatibility between the independently assumed
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displacement field and locking-free strain field is enforced by collocation at a finite
number of judiciously chosen points within the elements. Thus, the use of the two-
field variational principles and the attendant LBB conditions are totally avoided.
We also show that while the new procedures presented in this paper improve the
performance of the low-order elements, such as 8-noded bricks in 3D, dramatically,
they do not improve the performance of the higher-order elements much. This is
due to the effect of the well-known “limitation principle”.

The general geometric interpolation relation for the iso-parametric elements is

xi = ∑
n

x(n)
i N(n)(ξ γ) (1)

While the general compatible displacement interpolation is

ui = ∑
n

u(n)
i N(n)(ξ γ) (2)

Where xi are the global Cartesian coordinates, x(n)
i are the nodal Cartesian coordi-

nates, ξ γ are the local non-dimensional element curvilinear coordinates, ui are the
Cartesian components of displacements, u(n)

i are nodal displacements, denoted by
the vector q and N(n)(ξ γ) are the shape functions which are polynomials, complete
to a certain order.

A strain field, in Cartesian components, can be derived from the displacement field
in ξ γ and can be written in terms of the nodal displacement vector q as:

εi j = u(i, j) =
1
2
(ui, j +u j,i) = εi j(ξ γ ,q) (3)

An independent strain field may be assumed for these elements, in Cartesian coor-
dinates, as:

ε
In
i j = ε

In
i j (ξ

γ ,ααα) (4)

Where ε In
i j (ξ

γ ,ααα), are the carefully chosen simple polynomials (the choices for
which are physically motivated) complete to a certain order, and ααα is a vector con-
taining undetermined parameters.

This independent strain field can also be written in terms of the vector of nodal
strains qε instead of the undetermined parameters ααα , as:

ε
In
i j = ε

In
i j (ξ

γ ,qε) (5)
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In Matrix and vector notation, equation (1) can be written as:

x = N(ξ γ)X (6)

where X is the nodal coordinate vector, and equations (2) and (3) can be written as:

u = N(ξ γ)q (7)

εεε = u(i, j) = B(ξ γ)q (8)

εεε or u(i, j) are the strains derived from the independently assumed displacement field
of equation (7). We can also write equations (4) and (5) as:

εεε
In = A(ξ γ)ααα = Nε(ξ γ)qε (9)

Where εεε In is the independently assumed strain tensor, Nε(ξ γ) are the shape func-
tions for the independent strain field.

Then the Cauchy’s stress tensor σσσ and the traction vector t on a surface whose unit
normal vector is n have the forms:

σσσ = Dεεε
In (10)

t = nσσσ (11)

Where D is the material stiffness tensor.

The basic idea of HMFEM-2 is to enforce compatibility of the independently as-
sumed strains, and the strains derived from the independently assumed displace-
ments, at several pre-selected collocation points ξ γk, k = 1, 2, ..., M, leading to:

ε
In
i j (ξ

γk,ααα) = εi j(ξ γk,q) or alternatively ε
In
i j (ξ

γk,qε) = εi j(ξ γk,q) (12)

Where ε In
i j (ξ

γk,ααα) or ε In
i j (ξ

γk,qε), and εi j(ξ γk,q), are the independently assumed
strain field, and the strain field derived from the displacement field, respectively,
at point ξ γk. It is not necessary to collocate all the strain components at the same
points ξ γk. Which strain component is collocated at which points in the element,
can be based on the judiciously chosen physical behavior of the element.

By judiciously selecting enough collocation equations, we can express the vector
ααα or the nodal strains vector qε in terms of the nodal displacement vector q:

ααα = Cq or equivalently qε = Eq (13)
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Hence, the strain and stress fields can be expressed in terms of q, as:

εεε
In = A(ξ γ)Cq = Nε(ξ γ)Eq = B∗(ξ γ)q (14)

σσσ = Dεεε
In = DA(ξ γ)Cq = DNε(ξ γ)Eq = DB∗(ξ γ)q (15)

Now, we can use the principle of minimum potential energy applied to the following
primitive-field functional to derive the stiffness matrix of HMFEM-2 family.

π(ui) = ∑
m

{∫
Ωm

[
W (εi j(uk))− fiui

]
dΩ−

∫
Stm

tiuidS
}

(16)

Where Ωm is a subdomain (finite element) from the discretized domain Ω, Stm is
the traction boundary of the subdomain Ωm and is a subset from St the traction
boundary of the domain Ω, fi and ti are components of prescribed body force, and
boundary traction vectors respectively.

W = W (εi j(uk)) is the energy density function expressed here is terms of strain
field εi j which, in turn, is expressed in terms of displacement uk.

For a linear elastic solid, the constitutive equation has the form:

σi j =
∂W
∂εi j

; W =
1
2

Ei jklεi jεkl in Ω (17)

Considering a compatible displacement field which satisfies the constitutive equa-
tion (17), the displacement boundary condition:

ui = ui at Su, (18)

and the displacement compatibility at each inter-subdomain:

u+
i = u−i at ρm (19)

a priori, we can use the functional of equation (16) to derive the static equilibrium
equation:

σi j, j + fi = 0; σi j = σ ji in Ω , (20)

the traction boundary condition:

n jσi j = ti at St , (21)

and the traction reciprocity condition at each inter-subdomain boundary:

(n jσi j)+ +(n jσi j)− = 0 at ρm (22)
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Where Su is the displacement boundary of the domain Ω, and ρm is the internal
subdomain boundary (or the portion of the subdomain boundary that is intersecting
with neither St the traction boundary, nor Su the displacement boundary).

The same functional (16) which is used to develop the displacement-based primal
finite elements, based on assuming the displacement field only and suffers from
the well-known locking phenomena (the normal and the shear strains derived from
the displacement field are locked together), can now be used to develop the new
HMFEM-2 elements by applying the principle of minimum potential energy as
follows:

δπ(q) =

δ ∑
m

{∫
Ωm

[
1
2

qT B∗T (ξ γ)DB∗(ξ γ)q−qT NT (ξ γ)f
]

dΩ−
∫

Stm

qT NT (ξ γ)tdS
}
(23)

Setting δπ(q) equals to zero, we get:

∑
m

(qT Keq−qT Q) = 0, or ∑
m

(Keq−Q) = 0 (24)

Where

Ke =
∫

Ωm

B∗T (ξ γ)DB∗(ξ γ)dΩ (25)

and

Q =
∫

Ωm

NT (ξ γ)fdΩ+
∫

Stm

NT (ξ γ)tdS (26)

The independently assumed strain field ε In
i j is used in the constitutive equation (17)

and the functional of equation (16) to derive the stiffness matrix (25).

It is important to note that using the functional of equation (16) as a primitive
field functional, using the strains expressed in terms of nodal displacements is not
plagued with the so-called LBB conditions because Lagrangian multiplier functions
are not involved as in the case of the two-field variational principle (ui and σi j or ui

and εi j).

3 Isoparametric higher order two-dimensional Hybrid/Mixed quadrilateral
element

3.1 Eight-node H/M Quadrilateral Element

In order for the element to be invariant (i.e., the element properties, such as the
eigenvalues of the stiffness matrix, are not changed according to the orientation
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of the global Cartesian coordinate system, or the observer’s point of view), an
element-fixed set of local orthogonal coordinates is used. Whatever the rotation of
the global Cartesian coordinate system x1− x2− x3, the element-fixed local curvi-
linear coordinates ξ 1−ξ 2, as well as the element-fixed local orthogonal base vec-
tors ĝ1− ĝ2 will be kept invariant.

 
Figure 1: Global Cartesian coordinates, curvilinear coordinates, and element-fixed
orthogonal base vectors for the eight-node quadrilateral finite element

Figure 1 shows the eight-node quadrilateral element in global Cartesian coordinates
x1−x2−x3 in the direction of the orthogonal base vectors e1−e2−e3, the element-
fixed curvilinear coordinates ξ 1 − ξ 2, and the covariant base vectors g1 − g2 in
their directions, and the element-fixed local orthogonal base vectors ĝ1− ĝ2. The
isoparametric mapping transforms the regular element in the non-dimensional co-
ordinates ξ 1−ξ 2 that varies from -1 to 1 into the irregular element in the Cartesian
x1− x2 coordinates.

The element-fixed local orthogonal base vectors ĝ1− ĝ2 are defined as follows: ĝ1
is in the same direction as that of the covariant base vector g1 evaluated at the center
(0, 0), and ĝ2 is obtained by rotating ĝ1 around e3 counterclockwise by 90o.

g1 can be obtained from the following relation:

g1 =
∂R
∂ξ 1 =

∂x1

∂ξ 1 e1 +
∂x2

∂ξ 1 e2 (27)

Using equation (1), we can write g1 as:

g1 =
∂R
∂ξ 1 = ∑

n

(
∂N(n)(ξ 1,ξ 2)

∂ξ 1 x(n)
1 e1 +

∂N(n)(ξ 1,ξ 2)
∂ξ 1 x(n)

2 e2

)
(28)
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Then, ĝ1 and ĝ2 have the forms:

ĝ1 = g1(0,0) = ∑
n

(
∂N(n)

∂ξ 1 (0,0)x(n)
1 e1 +

∂N(n)

∂ξ 1 (0,0)x(n)
2 e2

)
(29)

ĝ2 = e3× ĝ1 = ∑
n

(
−∂N(n)

∂ξ 1 (0,0)x(n)
2 e1 +

∂N(n)

∂ξ 1 (0,0)x(n)
1 e2

)
(30)

Because we are using covariant base vectors, the contravariant components of the
independent strain field are specified in terms of the element-fixed non-dimensional
coordinates and undetermined coefficients as follows:

ε̂
In11 = α1 +α2ξ

1 +α3ξ
2 +α4ξ

1
ξ

2 +α5(ξ 1)2 +α6(ξ 2)2 +α7(ξ 1)2
ξ

2

+α8(ξ 2)2
ξ

1 +α9(ξ 1)2(ξ 2)2 (31)

This can be written as in equation (9):

ε̂
In11 = AN(ξ γ)ααα (32)

Where:

AN(ξ γ) =
[
1 ξ 1 ξ 2 ξ 1ξ 2 (ξ 1)2 (ξ 2)2 (ξ 1)2ξ 2 (ξ 2)2ξ 1 (ξ 1)2(ξ 2)2

]
and ααα =

[
α1 α2 α3 α4 α5 α6 α7 α8 α9

]T .

Similarly, we can write:

ε̂
In22 = AN(ξ γ)βββ ; βββ =

[
β1 β2 ... β9

]T (33)

ε̂
In12 = As(ξ γ)γγγ; γγγ =

[
γ1 ... γ4

]T (34)

Where

As(ξ γ) =
[
1 ξ 1 ξ 2 ξ 1ξ 2

]
ααα,βββ , and γγγ are vectors of undetermined parameters. Note that the independently
assumed element shear strain is of a low-order, and does not involve any parasitic
coupling with the normal strains. Also note that the present element has 16 nodal
displacement degrees of freedom, and 13 non-rigid-body modes. However the in-
dependently assumed strain field has 22 undetermined parameters. This will be
seen later, to lead to the effect of the “limitation principle”
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The transformation of the strain components from the element-fixed local orthogo-
nal coordinates to the global Cartesian coordinates follows this relation;

εi j = ε̂
kl(ĝk.ei)(ĝl.ej) (35)

i.e.

ε11 = ε̂
11(ĝ1.e1)(ĝ1.e1)+ ε̂

22(ĝ2.e1)(ĝ2.e1)+ ε̂
12(ĝ1.e1)(ĝ2.e1)+ ε̂

21(ĝ2.e1)(ĝ1.e1)

ε22 = ε̂
11(ĝ1.e2)(ĝ1.e2)+ ε̂

22(ĝ2.e2)(ĝ2.e2)+ ε̂
12(ĝ1.e2)(ĝ2.e2)+ ε̂

21(ĝ2.e2)(ĝ1.e2)

ε12 = ε̂
11(ĝ1.e1)(ĝ1.e2)+ ε̂

22(ĝ2.e1)(ĝ2.e2)+ ε̂
12(ĝ1.e1)(ĝ2.e2)+ ε̂

21(ĝ2.e1)(ĝ1.e2)

ε21 = ε̂
11(ĝ1.e2)(ĝ1.e1)+ ε̂

22(ĝ2.e2)(ĝ2.e1)+ ε̂
12(ĝ1.e2)(ĝ2.e1)+ ε̂

21(ĝ2.e2)(ĝ1.e1)
(36)

Using the fact that εi j = ε ji and ε̂kl = ε̂ lk, equation (36) can be written as:
ε11
ε22
2ε12

=

 (ĝ1.e1)2 (ĝ2.e1)2 (ĝ1.e1)(ĝ2.e1)
(ĝ1.e2)2 (ĝ2.e2)2 (ĝ1.e2)(ĝ2.e2)

2(ĝ1.e1)(ĝ1.e2) 2(ĝ2.e1)(ĝ2.e2) (ĝ1.e1)(ĝ2.e2)+(ĝ2.e1)(ĝ1.e2)


ε̂11

ε̂22

2ε̂12



(37)

or, εεε = Tε̂εε

Where T is a transformation matrix.

Because the collocation of the strain fields should be done in the local orthogonal
coordinate system, we should first transform the components of the strain tensor,
derived from the displacement field, from the Cartesian coordinate system to this
local orthogonal coordinate system according to equation (37).

ε̂εε = T−1
εεε = T−1B(ξ γ)q = B̂(ξ γ)q (38)

[Dong and Atluri (2011a)] proved that in order for the HMFEM-2 elements to pass
the patch test, the collocation of strain fields should be done at Gauss quadrature
points.

Here, collocation is done by equating the two direct (or normal) strain fields at the
9 points of the 3×3 Gauss quadrature points (points 9-17 in Figure 2 (left)), while
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Figure 2: The eight-node quadrilateral element in the non-dimensional coordinate
system with the 3×3 (left) and 2×2 (right) Gauss quadrature points

the shear strains are collocated at the 4 points of the 2×2 Gauss quadrature points
(points 18-21 in Figure 2 (right)).

So for the normal strains in the 1 direction, we have:

ε̂
In11(ξ γk) = ε̂

11(ξ γk) where ξ
γk are the coordinates of points 9−17 (39)

This produces nine equations in the nine undetermined parameters, thus we can
write in matrix notation:

Gααα = ε̂εε
11 = B̂1.q

Where G is a constant matrix whose rows are the substitution of the coordinates of
the collocation points in the matrix AN(ξ γ), and B̂1 is a constant matrix whose rows
are the substitution of the coordinates of the collocation points in the first row of
the B̂ matrix (corresponding to the normal strain in the 1-1 direction) of the strain
field derived from the displacement field. Thus,

ααα = G−1
ε̂εε

11= G−1B̂1.q (40)

Similarly, we can get:

βββ = G−1
ε̂εε

22= G−1B̂2.q (41)

γγγ = G−1
s ε̂εε

12= G−1
s B̂s.q (42)

Thus, the independent strain field can be written now in terms of the nodal dis-
placements as:

ε̂ In11 = AN(ξ γ)ααα = AAAN(ξ γ)G−1B̂1.q
ε̂ In22 = AN(ξ γ)βββ = AN(ξ γ)G−1B̂2.q
ε̂ In12 = As(ξ γ)γγγ = As(ξ γ)G−1

s B̂s.q
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This can be combined as:

ε̂εε
In =

AN(ξ γ) 0 0
0 AN(ξ γ) 0
0 0 As(ξ γ)


G−1B̂1
G−1B̂2
G−1

s B̂s

= A(ξ γ)Cq = B̂∗q (43)

Where,

A(ξ γ) =

AN(ξ γ) 0 0
0 AN(ξ γ) 0
0 0 As(ξ γ)

 , C =


G−1B̂1
G−1B̂2
G−1

s B̂s

 and B̂∗ = A(ξ γ)C

(44)

It should be clearly noted that, in equation (43), one needs to invert the (9 × 9)
matrix G, and a (4× 4) matrix Gs. However, no element integrations are necessary,
to evaluate these matrices, G and Gs. In contrast, if a two-field variatioal principle
were to have been used, there would have been a need to use element-integration to
evaluate a (22× 22) element-matrix H which needs to be inverted for each element,
and a (22 × 16) matrix G (whose minimum rank must be 13).

Now, after determining the independent strain field in terms of the nodal displace-
ment vector q, we should transform the independent strain components from the
element-fixed local orthogonal coordinate system back to the Cartesian coordinate
system in order to compute the stiffness matrix.

εεε
In = Tε̂εε

In = TA(ξ γ)Cq = TB̂∗q = B∗q (45)

Thus the stiffness matrix can be computed as in equation (25):

Ke =
∫

Ωm

B∗T (ξ γ)DB∗(ξ γ)dΩ = CT
∫

Ωm

AT (ξ γ)TT DTA(ξ γ)dΩC = CT Kep C

(46)

Where

Kep =
∫

Ωm

AT (ξ γ)D̂A(ξ γ)dΩ and D̂ = TT DT (47)

So, in order to calculate the element stiffness matrix for the HMFEM-2 family,
we use the transformation matrix T to obtain D̂ = TT DT, then we use A(ξ γ) to
calculate Kep and finally we use C to obtain Ke = CT Kep C, where A(ξ γ) and C
are defined in equation (44). The same procedure is followed for all the elements of
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this HMFEM-2 family but using the corresponding representation of the T matrix,
which depends on the shape functions of the element and the selected element-fixed
local orthogonal base vectors, and the A(ξ γ) matrix which depends on the selected
form of the independently assumed strain field. The matrix C depends on these
previously mentioned selections.

 
Figure 3: Global Cartesian coordinates, curvilinear coordinates, and element-fixed
orthogonal base vectors for the nine-node quadrilateral finite element

3.2 Nine-node H/M Quadrilateral Element

Figure 3 shows the nine-node quadrilateral element in global Cartesian coordinates
x1−x2−x3 in the direction of the orthogonal base vectors e1−e2−e3, the element-
fixed curvilinear coordinates ξ 1 − ξ 2, and the covariant base vectors g1 − g2 in
their directions, and the element-fixed local orthogonal base vectors ĝ1− ĝ2. The
iso-parametric mapping transforms the regular element in the non-dimensional co-
ordinates ξ 1−ξ 2 that varies from -1 to 1 into the irregular element in the Cartesian
x1− x2 coordinates.

The same procedure used with the eight-node element is followed here. Collocation
is also done by equating the two strain fields at the 9 points of the 3×3 Gauss
quadrature points for the normal strains (points 10 to 18 in Figure 4 (left)), while at
the 4 corner nodes of the 2×2 Gauss quadrature points (points 19 to 22 in Figure 4
(right)) for the shear strains.
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Figure 4: The nine-node quadrilateral element in the non-dimensional coordinate
system with the 3×3 (left) and 2×2 (right) Gauss quadrature points

3.3 Numerical Examples

In order to test the performance of the new elements, some numerical tests will be
illustrated here. The properties that will be tested are: stiffness, invariance, stability
and efficiency, patch test, Locking, and sensitivity to mesh distortion.

3.3.1 Stiffness, Invariance, Stability and Efficiency

A single square element is considered here, with 8-nodes having Cartesian coordi-
nates: (-1,-1), (1,-1), (1,1), (-1,1), (0,-1), (1,0), (0,1), (-1,0) with the addition of the
center node (0,0) for the case of the nine-node elements. The material properties
are: E = 1 and ν = 0.25. The eigenvalues of the element in Cartesian coordinates are
computed to compare the stiffness of the HMFEM-2 higher order two-dimensional
elements with the primal displacement-based finite elements (DPFEM). Then the
global Cartesian coordinate system is rotated counterclockwise by any arbitrary
angle θ and the eigenvalues are computed again in order to check the invariance
property. Finally the CPU time is recorded for all the cases to compare the effi-
ciency.

Figure 5 shows the configuration of the test. Table 1 shows the eigenvalues of the
different higher order elements. It can be seen that, first, all the elements are stable
because only three zero eigenvalues exist for each element corresponding to the
three rigid-body modes. Second, the new HMFEM-2 elements are less stiff than
the DPFEM elements (some of the eigenvalues are smaller for the HMFEM-2 than
their correspondents in the DPFEM, especially for the nine-node elements). This
is a desirable property that resulted from the unlocked nature of the new elements.
However, the “limitation principle” resulted in the fact that the present 8-noded
HMFEM-2 is not significantly better than the 8-noded DPFEM.
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Figure 5: Test of invariance under coordinate system rotation

Exactly the same eigenvalues were obtained when the original coordinate system
is rotated counterclockwise by any arbitrary angle θ (See Figure 5). The DPFEM
is known to be invariant while the invariance of the HMFEM-2 elements is a result
of using the element-fixed local orthogonal coordinate system introduced before.
Thus, the new elements are invariant. It is worth mentioning that all these elements
are invariant whatever the shape or the distortion of the element. If we used an
arbitrary quadrilateral element (not of a rectangular shape), the elements will stay
invariant for any rotation of the original coordinate system.

Finally, the CPU time required to compute the stiffness matrix for each element is
presented in Table 2, and is normalized to the case of the DPFEM elements in the
last row. It can be seen that the HMFEM-2 elements are not as efficient as that
of the DPFEM cases because of the extra computation needed for transformation
between εi j and ε̂kl and between ε̂ Ini j and ε In

kl , and for computing the strain field
derived from the displacement field in order to collocate it with the independent
strain field.

From Table 1 and Table 2, it is evident that the present hybrid/mixed formula-
tion using non-locking independently assumed strains, and compatible displace-
ments does not improve the performances of the 8- and 9-noded 2D quadrilateral
elements significantly, due to the “limitation principle”, even though the compu-
tational cost of the present hybrid/mixed element is still higher than that of the
pure displacement element. However, it was shown in [Dong and Atluri (2011a)]
that the lower-order 4-node quadrilateral HMFEM-2 element, performs much bet-
ter than the displacement based DPFEM 4-node quadrilateral element, and this is
also the case for the lower-order 8-node 3D brick element that will be presented in
the next section of this paper. Also, it should be pointed out that since no element-
computation of other supplementary matrices H and G, and their inversions are
involved in the present mixed formulation, the computation of the element stiffness
matrix is much cheaper and more efficient than that of the elements formulated by
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Table 1: Eigenvalues of the stiffness matrix of different elements in the original
Cartesian coordinate system

Eigenvalue
Elements

DPFEM-Q8 HMFEM-2 (Q8) DPFEM-Q9 HMFEM-2 (Q9)
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0.165 0.165 0.165 0.165
5 0.3015 0.3015 0.2725 0.2659
6 0.3015 0.3015 0.2725 0.2659
7 0.4497 0.4444 0.4497 0.4444
8 0.5673 0.5673 0.5673 0.5408
9 0.9195 0.9195 0.6712 0.5408
10 1.1733 1.0667 0.6712 0.5673
11 1.4602 1.4602 0.9195 0.9195
12 1.4602 1.4602 1.1733 1.0667
13 2.1172 2.1172 1.6129 1.5611
14 2.2347 2.1333 1.6129 1.5611
15 4.5938 4.5938 2.1172 2.1172
16 4.5938 4.5938 2.2347 2.1333
17 5.3634 5.1255
18 5.3634 5.1255

Table 2: CPU time (in seconds) required for computing the stiffness matrix of each
element, normalized to that of the DPFEM elements in the last row

CPU Time

Element
DPFEM-Q8 HMFEM-2 (Q8) DPFEM-Q9 HMFEM-2 (Q9)

0.000668 0.0011 0.000655 0.0012
1 1.646706587 1 1.832061069

multi-field variational principles [Pian (1964); Punch and Atluri (1984a); Punch
and Atluri (1984b); Pian and Wu (1983)].

3.3.2 Patch test

Patch test requires that any arbitrary linear displacement field can theoretically be
exactly reproduced by using a small number of elements in the patch.

A standard stress patch test is shown in Figure 6. A square sheet of side length
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Figure 6: Patch test: a cube under constant tensile stress or uniform displacement

 
 Figure 7: Two mesh configurations for the patch test

"L" fixed from one side and is subjected to uniform tensile stress as shown in the
figure. The square domain is meshed using 4 two-dimensional elements, once in a
regular configuration and again in an irregular configuration as shown in Figure 7.
The geometrical properties of this problem is L = 1, while the material properties
are: E = 1 and ν= 0.25.

This problem has a simple analytical solution and thus the error can be defined as:

Error =
‖q−qexact‖
‖qexact‖ (48)

Where q and qexact are the computed and exact nodal displacement vector. ‖‖
represents the 2-norm.

Table 3 shows the errors for all the elements for the cases of regular and irregular
meshes. The errors are very small for all the elements and thus, all pass the constant
stress patch test.
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Table 3: Performance of different elements in the constant stress patch test

Mesh DPFEM-Q8 HMFEM-2 (Q8) DPFEM-Q9 HMFEM-2 (Q9)
Regular 6.9797 ×10−15 2.0892×10−15 3.7777×10−15 3.9070×10−15

Irregular 3.6440×10−15 2.9436×10−15 1.7293×10−15 2.0309×10−15

Considering a displacement patch test, and instead of applying a uniform stress field
on the plate in Figure 6, a uniform displacement is applied and the displacement of
the center point of the plate is compared to the exact solution. This time the error
is defined as:

Error =
|uc−uexact

c |
|uexact

c | (49)

Where uc and uexact
c are the computed and the exact center point displacements

respectively.

Table 4 shows the errors for all the elements for the cases of regular and irregular
meshes. The errors are very small for all the elements and thus, all pass the uniform
displacement patch test.

Table 4: Performance of different elements in the uniform displacement patch test

Mesh DPFEM-Q8 HMFEM-2 (Q8) DPFEM-Q9 HMFEM-2 (Q9)
Regular 2.5403 ×10−15 1.6212×10−15 1.0401×10−15 1.0824×10−15

Irregular 5.4920×10−15 5.1161×10−15 5.8252×10−15 7.5395×10−15

3.3.3 Locking

In order to test the performance of the elements against locking, a plane stress
problem in the form of a cantilevered 2D beam of length L, width W = 2c and unit
thickness, subjected to an end load as shown in Figure 8 is considered. The beam
is composed of five elements with different distortions in each of them as used by
[Pian and Sumihara (1984)].

For this test, the geometric properties are L = 10, c = 1, and the material properties
are E = 1500, and ν= 0.25. Two loading cases are considered: end shear with P
= 300 and end moment with M = 2000. Table 5 shows the computed tip vertical
displacement at point "A" and the computed normal stress at the lower left Gaussian
point "B" of the leftmost element. The table also shows the results of the exact
theory of elasticity model.
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Figure 8: Mesh configuration for overall test of performance against locking

The exact solution of this problem can be found in [Timoshenko and Goodier
(1976)] as:

End Shear loading:

ux =− Py
6ĒI

[3x(2L− x)+(2+ ν̄)(y2− c2)]

uy =
P

6ĒI
[x2(3L− x)+3ν̄(L− x)y2 +(4+5ν̄)c2x]

σx =−P
I
(L− x)y

σy = 0

σxy =− P
2I

(y2− c2)

(50)

End Bending loading:

ux =−M
ĒI

xy

uy =
M

2ĒI
(x2 + ν̄y2)

σx =−M
I

y

σy =− ν̄

1− ν̄2
M
I

y

σxy = 0

(51)

Where

I =
2c3

3
Ē =

{
E

E
(1−ν)2

ν̄ =

{
ν for plane stress

ν

(1−ν) for plane strain
(52)
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Table 5: Computed and Exact solutions of cantilever beam under end shear or end
moment

Element type
End Shear End Bending

νA σb νA σb

DPFEM-Q8 101.8345 2512.2 99.9179 1731.8
HMFEM-2 (Q8) 102.2350 2528.6 99.9780 1731.2

DPFEM-Q9 102.3742 2523.3 100.25 1732.1
MHFEM-2 (Q9) 102.7707 2532.3 100.25 1732.1

Exact 102.625 2531.8 100.3 1732.1

As explained before, for the quadrilateral 8 and 9-noded plane elements, the present
formulation does not significantly improve the performance of the elements formu-
lated by the usual primal method because of the “limitation principle”.

3.3.4 Sensitivity to element distortion

In order to test the sensitivity of the elements to mesh distortion, the same plane
stress problem can be used, but this time the cantilever beam will be composed of
only two distorted elements as shown in Figure 9. The distortion ratio is defined as
2e/L. the geometrical properties for this test is: L = 10 and c = 1, while the material
properties are: E = 1 and ν = 0.

 
Figure 9: Test of element sensitivity to element distortion, cantilever beam under
end loading

Figure 10 shows the effect of varying the distortion ratio on the computed relative
stress and the computed relative displacement (FE/Exact) for the eight-node ele-
ments for the case of end shear, while Figure 11 shows that for the end bending
case. Figure 12 and Figure 13 show the same plots but for the nine-node elements.

It can be seen from Figure 10 to Figure 13 that the sensitivity to element distortion
of the HMFEM-2 elements is always less than or equal that of the DPFEM ele-
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Figure 10: Relative stress at point "B" and relative displacement at point "A" for
the 2D 8-node elements for end shear load case

ments. It is also clear that the nine-node elements give significantly more accurate
results than those of the eight-node elements.

4 Isoparametric three-dimensional Hybrid/Mixed brick elements

4.1 Eight-node H/M Brick Element

Figure 14 shows the eight-node brick element in global Cartesian coordinates x1−
x2−x3 in the direction of the orthogonal base vectors e1−e2−e3, the element-fixed
curvilinear coordinates ξ 1−ξ 2−ξ 3, and the covariant base vectors g1−g2−g3 in
their directions, and the element-fixed local orthogonal base vectors ĝ1− ĝ2− ĝp.
The isoparametric mapping transforms the regular element in the non-dimensional
coordinates ξ 1− ξ 2− ξ 3 that varies from -1 to 1 into the irregular element in the
Cartesian x1− x2− x3 coordinates.

The element-fixed local orthogonal base vectors ĝ1− ĝ2− ĝp are defined as follows:
ĝ1 is in the same direction of the covariant base vector g1 evaluated at the center
(0, 0, 0), g2 is the contravariant base vector perpendicular to g1 and g3 (i.e. g2 =
g3× g1) and ĝ2 is in the same direction of g2 but evaluated at the center (0, 0, 0),
and finally ĝp is perpendicular to both ĝ1 and ĝ2.

Following the same procedure illustrated in the two-dimensional case, but using the
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Figure 11: Relative stress at point "B" and relative displacement at point "A" for
the 2D 8-node elements for end bending load case

 
 
Figure 12: Relative stress at point "B" and relative displacement at point "A" for
the 2D 9-node elements for end shear load case

 
 
Figure 13: Relative stress at point "B" and relative displacement at point "A" for
the 2D 9-node elements for end bending load case



High-Performance 3D Hybrid/Mixed 65

 
Figure 14: Global Cartesian coordinates, curvilinear coordinates, and element-
fixed orthogonal base vectors for the eight-node brick finite element

independent strain components as:

ε̂
In11 = α1 +α2ξ

2 +α3ξ
3 +α4ξ

2
ξ

3

ε̂
In22 = α5 +α6ξ

1 +α7ξ
3 +α8ξ

1
ξ

3

ε̂
In33 = α9 +α10ξ

1 +α11ξ
2 +α12ξ

1
ξ

2

ε̂
In12 = β1 +β2ξ

3

ε̂
In23 = β3 +β4ξ

1

ε̂
In31 = β5 +β6ξ

2

(53)

Note that the shear strains are completely decoupled from the direct strains, and
also the shear strains are of lower order as compared to the direct strains. Also
note that the presently chosen least-order strain field in each element is physically
motivated as: the direct strain in each direction involves linear strains in the other
two directions, correctly reflecting the bending modes. There are a total of 18
independently assumed, and judiciously chosen strain parameters in this 8-noded
brick element with 24 displacement degrees of freedom and 6 rigid-body modes.
Thus the chosen independent strain field is of the least order possible.

This can be written as in equation (9):

ε̂
In11 = A1(ξ γ)ααα1 , ε̂

In12 = As1(ξ γ)βββ 1, etc.. (54)
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Figure 15: The eight-node brick element in the non-dimensional coordinates and
the different collocation points

Where:

A1(ξ γ) =
[
1 ξ 2 ξ 3 ξ 2ξ 3

]

ααα1 =
[
α1 α2 α3 α4

]T

As1(ξ γ) =
[
1 ξ 3

]
βββ 1 =

[
β1 β2

]
ααα i,βββ i, i = 1−3 are vectors of undetermined parameters.

Collocation is done by equating the normal strains of the two strain fields at only
4 points from the 2×2×2 Gauss quadrature points, and these 4 points are not the
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same for each of the 3 normal strain components. ε̂ In11 components are collocated
at the 4 Gauss quadrature points at the corners of the hatched plane in Figure 15
(upper left) having ξ 1 = 0 (points 9-12). While ε̂ In22 are collocated at the 4 corners
of the plane having ξ 2 = 0 (points 13-16 in Figure 15 (upper right)), and ε̂ In33 are
collocated at the 4 corners of the plane having ξ 3 = 0 (points 17-20 in Figure 15
(lower left)). Each of the shear strain components are also collocated at different
points. ε̂ In12 components are collocated at the 2 Gaussian points with ξ 1 = ξ 2 = 0
(points 21-22 in Figure 15 (lower right)), ε̂ In23 are collocated at the 2 Gaussian
points with ξ 2 = ξ 3 = 0 (points 23-24 in Figure 15 (lower right)), and finally ε̂ In31

are collocated at the 2 Gaussian points with ξ 1 = ξ 3 = 0 (points 25-26 in Figure
15 (lower right)).

The following alternative choice of the independent strain field can also lead to a
more efficient element:

ε̂
In11 = α1 +α2ξ

1 +α3ξ
2 +α4ξ

3 +α5ξ
1
ξ

2 +α6ξ
2
ξ

3 +α7ξ
1
ξ

3 +α8ξ
1
ξ

2
ξ

3

ε̂
In22 = α9 +α10ξ

1 +α11ξ
2 +α12ξ

3 +α13ξ
1
ξ

2 +α14ξ
2
ξ

3 +α15ξ
1
ξ

3 +α16ξ
1
ξ

2
ξ

3

ε̂
In33 = α17 +α18ξ

1 +α19ξ
2 +α20ξ

3 +α21ξ
1
ξ

2 +α22ξ
2
ξ

3 +α23ξ
1
ξ

3 +α24ξ
1
ξ

2
ξ

3

ε̂
In12 = β1 +β2ξ

3

ε̂
In23 = β3 +β4ξ

1

ε̂
In31 = β5 +β6ξ

2

(55)

giving a total of 30 independent strain modes in the 8-noded brick element.

The collocation is done at the 8 points of the 2×2×2 Gaussian points (points 9-
16 in Figure 16) for all the normal strain components, while the shear strains are
collocated in the same fashion mentioned before (see Figure 15 (lower right) and
the preceding paragraph). Using this choice of strain field and collocation points,
even though includes more terms in the normal strain components, is efficient since
the collocation points are the same quadrature points that are used in integrating
the stiffness matrix (using 2×2×2 Gauss quadrature rule). However, the two men-
tioned choices of strain fields, i.e. equation (53) and (55) respectively, with their
associated collocation points yield the same element (same stiffness matrix).

4.2 Twenty-node H/M Quadratic Brick Element

Figure 17 shows the twenty-node quadratic brick element, and the different coordi-
nate systems and base vectors involved in the transformations.

The same procedure will be followed here as in the eight node brick element case,



68 Copyright © 2012 Tech Science Press CMES, vol.84, no.1, pp.41-97, 2012

 
Figure 16: The eight-node brick element in the non-dimensional coordinates and
the 2×2×2 Gauss quadrature points which are the collocation points for the normal
strain components (Extracted from the element for illustration)

but the independent strain components have the form:
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(56)

This can be written as in equation (9):

ε̂
In11 = A1(ξ γ)ααα1 , ε̂

In12 = As1(ξ γ)βββ 1, etc.. (57)
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Figure 17: Global Cartesian coordinates, curvilinear coordinates, and element-
fixed orthogonal base vectors for the twenty-node brick finite element

Where:

A1(ξ γ) =
[

1 ξ 1 ξ 2 ξ 3 ξ 1ξ 2 (ξ 2)2 ξ 2ξ 3 (ξ 3)2 ξ 1 ξ 3 ξ 1(ξ 2)2

ξ 1(ξ 3)2 ξ 2(ξ 3)2 ξ 3(ξ 2)2 ξ 1ξ 2ξ 3 ξ 1ξ 2(ξ 3)2 ξ 1ξ 3(ξ 2)2
]

ααα1 =
[
α1 ... α16

]T

As1(ξ γ) =
[
1 ξ 1 ξ 2 ξ 3 ξ 1ξ 2 ξ 2ξ 3 ξ 3ξ 1 ξ 1ξ 2ξ 3

]

βββ 1 =
[
β1 ... β8

]
ααα i, βββ i, i=1-3 are vectors of undetermined parameters.

Collocation is done by equating the two strain fields at 16 points of the 3×3×3
Gauss quadrature points for the normal strains, but these 16 points are not the same
for the three normal strains. Figure 18 (right) shows the 27 points of the 3×3×3
Gauss quadrature points, extracted from the 20 node brick element for clarification.
ε̂ In11 components are collocated at points 21-24, 26-29, 39-42 and 44-47 in Figure
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18 (right). ε̂ In22 are collocated at points 21, 23, 24, 26, 27, 29, 30, 32, 36, 38, 39,
41, 42, 44, 45, and 47 in Figure 18 (right). ε̂ In33 are collocated at points 21-23,
27-29, 30, 32, 36, 38, 39-41, and 45-47 in Figure 18 (right).

While all the shear strain components are collocated at the 8 corner points of the
3×3×3 Gauss quadrature points (points 21, 23, 27, 29, 39, 41, 45 and 47 in Figure
18 (right)). Selecting these 8 points for collocating the shear strain components is
more efficient than selecting the 8 corner points of the 2×2×2 Gauss quadrature
points since the selected points belong to the quadrature points used in integrating
the stiffness matrix (3×3×3 Gauss quadrature rule), so no need for more computa-
tions to collocate at other points.

 
 
Figure 18: (left): The twenty-node brick element, (right): 3×3×3 Gaussian points

4.3 Numerical Examples

4.3.1 Stiffness, Invariance, Stability and Efficiency

A single cube element is considered here, with its 8 corners having Cartesian coor-
dinates: (-1,-1,-1), (1,-1,-1), (1,1,-1), (-1,1,-1), (-1,-1,1), (1,-1,1), (1,1,1), (-1,1,1).
The material properties are: E = 1 and ν= 0.25. The eigenvalues of the element
in Cartesian coordinates are computed to compare the stiffness of the HMFEM-
2 three-dimensional elements with the primal displacement-based finite elements
(DPFEM). Then the global Cartesian coordinate system is rotated counterclock-
wise by any arbitrary angle θ once around the ξ 1axis, then around ξ 2 axis and
again around ξ 3axis. After each rotation, the eigenvalues are computed in order to
check the invariance property. Finally the CPU time is recorded for all the cases to
compare the efficiency.
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Table 6 shows the eigenvalues of the different 3D 8-noded "linear" brick elements,
while Table 7 shows that of the different 20-noded brick elements. It can be seen
that, first all the elements are stable because only six zero eigenvalues exist for each
element corresponding to the six rigid-body modes. Second, the new HMFEM-2
elements are significantly less stiff than the DPFEM elements (the values of the
eigenvalues are smaller for the HMFEM-2). This is a desirable property that re-
sulted from the unlocked nature of the new elements.

It is thus seen that the present HMFEM-2 formulation improves significantly the
performance of the lower order 8-noded linear brick elements, as compared to the
pure displacement formulation.

Table 6: Eigenvalues of the stiffness matrix of the eight-node brick elements in the
original coordinate system

Eigenvalue
Elements

DPFEM-B8 HMFEM-2 (B8) DPFEM-B8 HMFEM-2 (B8)
1 0 0 13 0.4 0.2667
2 0 0 14 0.4 0.2667
3 0 0 15 0.5333 0.5333
4 0 0 16 0.6667 0.5333
5 0 0 17 0.6667 0.5333
6 0 0 18 0.6667 0.5333
7 0.1333 0.1333 19 0.8 0.8
8 0.1333 0.1333 20 0.8 0.8
9 0.2222 0.1333 21 0.8 0.8
10 0.2222 0.1333 22 0.8 0.8
11 0.2222 0.1333 23 0.8 0.8
12 0.4 0.2667 24 2 2

Exactly the same eigenvalues were obtained when the original coordinate system
is rotated counterclockwise around any coordinate axis. The DPFEM is known to
be invariant while the invariance of the HMFEM-2 elements is a result of using
the element-fixed local orthogonal coordinate system introduced before. Thus, the
new elements are invariant. It is worth mentioning that all these elements are in-
variant whatever the shape or the distortion of the element. If we used an arbitrary
hexahedron element (not of a cubic shape), the elements will stay invariant for any
rotation of the original coordinate system.

Finally, the CPU time required to compute the stiffness matrix for each element is
presented in Table 8, and is normalized to the case of the DPFEM elements in the
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last row. It can be seen that the HMFEM-2 elements are not as computationally
efficient as that of the DPFEM cases because of the extra computation needed for
transformation between εi j and ε̂kl and between ε̂ Ini j and ε In

kl , and for computing
the strain field derived from the displacement field in order to collocate it with the
independent strain field. As the order of the element is increased the difference in
CPU time between the DPFEM and HMFEM-2 elements tends to decrease, but the
performances of both types of elements tend to be similar as will be illustrated in
thefollowing examples in the section. The HMFEM-2 is much more efficient than
the least order hybrid stress elements developed in [Punch and Atluri (1984b)].

It can be seen that the present HMFEM-2 formulation mainly improves the perfor-
mance of lower order (8-noded) bricks dramatically; however, at a modest increase
in computational cost.

4.3.2 Patch test

Consider a standard stress patch test. Cube of side length "L" fixed from one side
and is subjected to uniform tensile strength as shown in Figure 6 before. The cube
is meshed by 8 brick elements, once in a regular configuration and again in an
irregular configuration which is shown in Figure 19. The geometrical properties
of this problem is L = 1 and e = L/6 for the irregular mesh, while the material
properties are: E = 1 and ν= 0.25.

 
Figure 19: The irregular mesh configurations for the patch test

Table 9 shows the errors for all the elements for the cases of regular and irregular
meshes as defined in equation (48). The errors are very small for all the elements
and thus, all pass the constant stress patch test.

Considering a displacement patch test, and instead of applying a uniform stress
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Table 7: Eigenvalues of the stiffness matrix of the twenty-node brick elements in
the original coordinate system

Eigenvalue
Elements

DPFEM-B20 HMFEM-2 (B20) DPFEM-B20 HMFEM-2 (B20)
1 0 0 31 0.4387 0.4335
2 0 0 32 0.4812 0.4335
3 0 0 33 0.4812 0.4335
4 0 0 34 0.6965 0.5975
5 0 0 35 0.6965 0.5975
6 0 0 36 0.6965 0.5975
7 0.0752 0.0585 37 0.7322 0.6988
8 0.0752 0.0585 38 0.7322 0.6988
9 0.0752 0.0585 39 0.8513 0.6988

10 0.0788 0.0877 40 0.8513 0.7322
11 0.0788 0.0877 41 0.8513 0.7322
12 0.0954 0.0877 42 1.2116 0.9006
13 0.0954 0.0883 43 1.2457 1.1665
14 0.0954 0.0883 44 1.2457 1.1665
15 0.1099 0.1099 45 1.2457 1.1665
16 0.1099 0.1099 46 1.268 1.1791
17 0.1422 0.1422 47 1.268 1.1791
18 0.1949 0.1856 48 1.268 1.1791
19 0.1949 0.1856 49 1.6771 1.6398
20 0.1949 0.1856 50 1.6771 1.6398
21 0.2817 0.2931 51 1.6771 1.6398
22 0.288 0.2931 52 2.1623 2.1623
23 0.288 0.2931 53 2.1623 2.1623
24 0.288 0.3509 54 3.4842 2.3885
25 0.289 0.3579 55 3.4842 2.3885
26 0.289 0.3579 56 3.4842 2.3885
27 0.289 0.3592 57 5.4002 5.4002
28 0.3687 0.3592 58 5.5293 5.4953
29 0.4387 0.3592 59 5.5293 5.4953
30 0.4387 0.3687 60 5.5293 5.4953
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Table 8: CPU time (in seconds) required for computing the stiffness matrix of each
element, normalized to that of the DPFEM elements in the last row

Element
CPU DPFEM-B8 HMFEM-2 (B8) LO-B8 DPFEM-B20 HMFEM-2 (B20) LO-B20
Time 0.001772 0.002742 0.0072 0.00985 0.0124 0.0641

1 1.5474 4.06 1 1.2586 6.5063

Table 9: Performance of different 3D elements in the constant stress patch test

Mesh DPFEM-B8 HMFEM-2 (B8) DPFEM-B20 HMFEM-2 (B20)
Regular 9.6061 ×10−16 1.4932×10−16 3.0132×10−15 3.5245×10−15

Irregular 1.0761×10−15 9.9588×10−16 2.5556×10−15 1.600×10−4

field on the plate, a uniform displacement is applied, and the displacement of the
center point of the plate is compared to the exact solution.

Table 10 shows the errors for all the elements for the cases or regular and irregular
meshes as defined in equation (49). The errors are very small for all the elements
and thus, all pass the uniform displacement patch test.

Table 10: Performance of different 3D elements in the uniform displacement patch
test

Mesh DPFEM-B8 HMFEM-2 (B8) DPFEM-B20 HMFEM-2 (B20)
Regular 2.4722 ×10−16 2.2640×10−16 8.7887×10−16 2.9716×10−15

Irregular 4.5280×10−16 3.6835×10−16 5.8252×10−16 2.6719×10−6

4.3.3 Sensitivity to element distortion

In order to test the sensitivity of the elements to mesh distortion, the same problem
can be used but this time the cantilever beam is composed of only two distorted
elements as shown in Figure 20. The distortion ratio is defined as 2e/L. the ge-
ometrical properties for this test is: L = 10, W = 2 and t = 2 while the material
properties are: E = 1 and ν = 0. The black dots are the nodes of the 8-node brick
elements while the white dots are the nodes to be added for the case of the 20-node
elements.

The exact solution of this problem with end bending moment can be found in [Tim-
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Figure 20: Test of sensitivity to element distortion, cantilever beam under end load-
ing

oshenko and Goodier (1976)] as:

u =−νxy
R

v =
1

2R
[z2 +ν(y2− x2)]

w =−yz
R

σz =−Ey
R

σx = σy = τxy = τyz = 0

(58)

Where:

R =
EIx

M
Ix =

tW 3

12
(59)

z is the longitudinal axis of the beam, y is directed upward, and x is perpendicular
on the page.

The exact 2D solution for the end shear case mentioned in equation (50) can also
be used here for the 3D case.

Figure 21 shows the effect of varying the distortion ratio on the computed relative
stress and the computed relative displacement (FE/Exact) for the eight-node brick
elements for the end shear case, while Figure 22 shows that of the end bending case.
Figure 23 and Figure 24 show the same plots for the twenty-node brick elements.

These figures show that for both loading conditions the accuracy of HMFEM-2 is
always better than that of the DPFEM for the whole range of distortion ratios. How-
ever, as the order of the elements is increased, the difference in accuracy between
the two types of elements is decreased. This is because the higher order elements
generally have high accuracy, hence the superiority of the HMFEM-2 becomes in-
significant.
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Figure 21: Relative stress at point "B" and relative displacement at point "A" for
the 3D 8-noded brick elements for end shear load case

 
 
Figure 22: Relative stress at point "B" and relative displacement at point "A" for
the 3D 8-noded brick elements for end bending load case

5 Three-Dimensional Voronoi cell finite element

5.1 3D VCFEM-RBF-W formulation

For an arbitrary polyhedron (3D Voronoi cell) element in the 3D space as in Figure
25 with n nodes x1, x2, . . . . xn, with corresponding nodal displacements u1

i , u2
i ,

. . . un
i , a smooth linear displacement field assumption on each surface can be used:

uS
i =

n

∑
k=1

N∗k(x)uk
i at ∂Ωm (60)

Dealing with polygonal surfaces, Barycentric coordinates should be used to de-
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Figure 23: Relative stress at point "B" and relative displacement at point "A" for
the 3D 20-noded brick elements for end shear load case

 
 
Figure 24: Relative stress at point "B" and relative displacement at point "A" for
the 3D 20-noded brick elements for end bending load case

scribe the displacement field. The Barycentric coordinates, denoted as λi(i = 1,
2, ... m) where m is the number of the vertices of the convex polygon, in general
should satisfy two properties:

1. Non-negative: λi ≥ 0 on Ωm.

2. Linear completeness: For any linear function f (x) : Ωm→ R,

f (x) = ∑
m
i=1 f (xi)λi

Any set of Barycentric coordinates under this definition also satisfies:
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Figure 25: Polyhedron (3D Voronoi cell) element with arbitrary number of polyg-
onal faces

3. Partition of unity: ∑
n
i=1 λi ≡ 1.

4. Linear precision: ∑
n
i=1 xiλi(x) = x.

5. Dirac delta: λi(xj) = δi j.

In this paper, we use the Wachspress coordinates [Wachspress (1975)], defined as
follows:

Let x ∈ Ω, and define the areas: Bi as the area of the triangle having xi−1,xi and
xi+1 as its three vertices, and Ai(x) as the area of the triangle having x, xi and xi+1

as its three vertices. This is illustrated in Figure 26.

 
 

Figure 26: Definition of triangles Bi and Ai(x)

Define the Wachspress weight function as:

wi(x) = Bi ∏
j 6=i, i−1

A j(x) (61)
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Then, the Wachspress coordinates are given by the rational functions:

λi(x) =
wi(x)

∑
m
j=1 w j(x)

(62)

Similar to the well-known triangular coordinates used in the 2D triangular ele-
ments, where the shape functions associated with the three vertices are indeed the
triangular coordinates themselves, the shape functions associated with the vertices
of this polygonal surface displacement field are the Barycentric coordinates. The
triangular coordinates are actually a special case of the Barycentric coordinates
when the polygon is just a triangle.

So, equation (60) becomes:

uS
i =

n

∑
k=1

λ
k
i (x)uk

i on ∂Ωm or uS = N∗(x)q (63)

Inside the element, an interior displacement field, as compactly-supported radial
basis functions (CS-RBF), is assumed. The CS-RBF has the advantages of positive
definetness, Dirac delta property and relatively simple forms of spatial derivatives.
The CS-RBF have been widely used recently by [Wu (1995); Atluri, Han, and
Rajendran (2004), for example]. The lack of their completeness has been overcome
by introducing additional polynomial functions as in [Golberg, Chen, and Bowman
(1999)]. Under such an assumption, the interior displacement field is represented
as:

uI
i = RT(x)a+PT(x)b in Ωm (64)

Where RT(x) = [Rr1(x) Rr2 (x) ... Rrl (x)] is a set of radial basis functions centered
at l points xr1, xr2, ... xrl on ∂Ωm; PT(x) = [P1(x) P2(x) ... Pm(x)] is a set of m
monomial functions which are complete to a certain order; a, b are coefficient
vectors.

Equation (64) can be written as:

uI = M(x)ααα in Ωm (65)

Where M(x) =
[
RT(x) PT(x)

]
and ααα =

{
a
b

}
.

While various radial basis functions can be used, in the current study, we use:

Rrl(x) =


(

1− drl(x)
rrl

)3(
1+3 drl(x)

rrl

)
drl(x) < rrl

0 drl(x)≥ rrl
(66)
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Where drl(x) =
∣∣x−xrl

∣∣ is the Euclidean distance from point x to point xrl , and rrl

is the support size of Rrl(x).
In this study, a first order complete polynomial basis is used:

PT(x) =
[
1 x y z

]
(67)

The compatibility between the surface displacements of the element, as in equation
(63) and the interior displacement field, as in equation (64) or (65), at the surface
∂Ωm, can be enforced in many ways, including:

(a) The method of minimizing boundary-least-squares error between uS
i and uI

i at
∂Ωm, or

(b) The boundary collocation between uS
i and uI

i at selected points on ∂Ωm.

Both methods are presented in the following:

 
Figure 27: Collocation points on the boundary surfaces of the 3D VCFEM-RBF-W

Using the Collocation method:

The coefficients are obtained by enforcing the compatibility condition of the inte-
rior and the surface displacements at collocation points

[
xr1, xr2, ... xrl

]
(see

Figure 27) which leads to:[
R0 P0
PT

0 0

]{
a
b

}
=
{

ur
i

0

}
(68)

R0 =


Rr1(xr1) Rr2(xr1) ... Rrl(xrl)
Rr1(xr2) Rr2(xr2) ... Rrl(xr2)

: : : :
Rr1(xrl) Rr2(xrl) ... Rrl(xrl)

 (69)
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P0 =


P1(xr1) P2(xr1) ... Pl(xrl)
P1(xr2) P2(xr2) ... Pl(xr2)

: : : :
P1(xrl) P2(xrl) ... Pl(xrl)

 (70)

urT
i =

[
ur1

i ur2
i ... url

i
]

=
[

n
∑

k=1
N∗k(xr1)uk

i

n
∑

k=1
N∗k(xr2)uk

i ...
n
∑

k=1
N∗k(xrl)uk

i

]
(71)

Solving equation (68) gives:

a = Grur
i and b = Gpur

i (72)

So the interior displacement field has the form:

uI
i =
[
RT(x)Gr+PT(x)Gp

]
ur

i =
n

∑
k=1

Nk(x)uk
i in Ωm (73)

In terms of nodal displacement vector q, the interior displacement field are ex-
pressed as:

uI = N(x)q in Ωm (74)

The corresponding interior strains are:

uI
(i, j) = B(x)q in Ωm (75)

Now, we can use the principle of minimum potential energy (16) to obtain the finite
element equation for any of the two mentioned methods:

δπ(q) = 0
δπ(q) = δ ∑

m

{∫
Ωm

[1
2 qT BT (x)DB(x)q−qT NT (x)f

]
dΩ−

∫
Stm

qT N∗T (x)tdS
}

δπ(q) = ∑
m

[
δqT ∫

Ωm
BT (x)DB(x)dΩq−δqT

(∫
Ωm

NT (x)fdΩ+
∫

Stm
N∗T (x)tdS

)]
δπ(q) = ∑

m

(
δqT Keq−δqT Q

)
(76)

Where Ke and Q are defined as:

Ke =
∫

Ωm

BT (ξ γ)DB(ξ γ)dΩ (77)
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and

Q =
∫

Ωm

NT (ξ γ)fdΩ+
∫

Stm

N∗T (ξ γ)tdS (78)

[Dong and Atluri (2011a)] proved that for the VCFEM-RBF to pass the patch
test, when the collocation method is used, with an error reduced to a satisfactory
level, the interior and boundary displacements should be collocated at the quadra-
ture points. So, for VCFEM-RBF-W, the collocation points are the 2D triangular
quadrature points on the triangles generated by triangulating each polygonal sur-
face.

 
Figure 28: Collocation points on one surface of VCFEM-RBF-W

In principle, as the number of quadrature points increases, the error in the patch test
is decreased provided that a sufficient quadrature order is used in the integration of
the stiffness matrix. However, since the integrands in the stiffness matrix are not
polynomials, the numerical quadrature always gives an approximate solution what-
ever the order of the quadrature. Three-dimensional Delaunay triangulation is used
to divide each Voronoi cell finite element into a number of tetrahedrons in order
to use the 3D tetrahedron numerical quadrature in calculating the stiffness matrix
of each element. In this work, we use 7 2D triangular quadrature points, on each
of the triangles generated by triangulating each polygonal surface, as the colloca-
tion points (See Figure 28) for enforcing the boundary-displacement compatibility.
We use 11 or 15 quadrature points in each tetrahedron, for integrating the stiffness
matrix in order to obtain sufficiently accurate results.

It should be mentioned here that the matrix that is being inverted in equation (68),
in order to obtain aand b, has dimensions n×n, where n is the number of RBF
basis functions plus the number of the P basis functions. Here, the number of RBF
basis functions is taken to be exactly the number of collocation points, and the RBF
centers are taken to be exactly the collocation points in the whole element. Thus,
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n = number of collocation points + 4, which is n= 7× number of triangles on all
boundaries + 4 in our case.

Using the Least squares method:

When the number of collocation points is increased to a limit of infinity, it is
equivalent to enforcing the compatibility between uI and uS using the least squares
method, namely minimizing the following functional:

e(ααα,q) =
∫

∂Ωm

(uI
i
−uS

i
)(uI

i
−uS

i
)dS

=
∫

∂Ωm

(αααT MT Mααα−2αααT MT N∗q+qT N∗T N∗q)dS

= αααT Uααα−2αααT Vq+qT Wq

(79)

Where equations (63) and (65) are used.

To minimize e for a fixed q, we have,

δe(δααα,q) = 2δααα
T Uααα−2δααα

T Vq = 0 (80)

This should be true for any δααα , hence;

Uααα = Vq or ααα = U−1Vq = Lq (81)

Substituting this into equation (65) gives:

uI = M(x)ααα = M(x)Lq = N(x)q in Ωm (82)

Hence, the strain field can be determined as in equation (75), and the principle of
minimum potential energy can be used as done in equation (76) in order to get the
stiffness matrix Ke and the load vector Q as in equation (78).

Only the square matrix U =
∫

∂Ωm

MT MdS is being inverted here. The dimensions

of this matrix is also n×n where n is the number of RBF basis functions plus the
number of the P basis functions. If we take the number of RBF basis to be exactly
the same as that of the integration points in the whole element as we did in the
case of the collocation method, the number of unknowns ααα =

[
a b

]T will be
larger than that of the equations (in a collocation sense) by the number of the P-
basis functions (4 here). So the number of integration points in the whole element
used in evaluating U and V matrices should be larger than that of the RBF basis
functions.

Here, we selected the RBF centers to be at the 3 Gaussian points in each triangle of
the triangulated boundary surfaces, while 7 Gaussian points per triangle are used
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in integration. Hence the number of RBF basis functions is 3× number of triangles
on all boundaries. This number of RBF basis functions proved to be enough to
give sufficient accuracy of the element unlike the case of the collocation method
where 7 collocation points per triangle are required to give an acceptable accuracy.
Thus, n= 3× number of triangles on all boundaries + 4. This number n is much less
than that used in the collocation method and hence the least square method yields a
much cheaper element while also leading to a better accuracy as will be illustrated
in the numerical examples in the following section.

Comparing the features of the formulation of VCFEM-RBF-W with that of [Ghosh
and Moorthy (2004)], the only available 3D VCFEM model in the literature, we
note the superiority of this new formulation in the following:

1. VCFEM-RBF-W is based on displacement fields only and the use of the
principle of minimum potential energy, thus the present formulation avoids
the LBB conditions. Ghosh’s formulation, on the other hand, is based on
assuming both an inter-element compatible boundary-displacement field, and
an “a priori equilibrated” stress field inside the element, and the use of a
multi-field functional in the modified principle of minimum complementary
energy, thus it contains Lagrangian multipliers and is plagued with the LBB
conditions (which are impossible to be satisfied a priori).

2. The use of hybrid stress formulation involves the generation of two addi-
tional element matrices (H and G), through quadrature over each element, in
constructing the element stiffness matrix; H should be inverted, thus raising
the computational cost, and the rank of G (3 times the number of nodes in
the 3-D VCFEM, less 6, the number of rigid modes for each element) should
be assured a priori.

3. The use of hybrid stress formulation, which requires an equilibrated stress
field, involves the assumption of six stress functions. However, Ghosh’s for-
mulation used Maxwell or Morera’s simplifications to reduce the number
of stress functions to three. Maxwell and Morera’s simplifications produce
stress fields that are not always complete.

4. VCFEM-RBF-W uses Wachspress functions as the boundary surface dis-
placements, and hence avoids adding additional nodes inside the surfaces.
However, Ghosh’s formulation divides each surface of the VCFEM into tri-
angles, after adding a center node in each surface.

5. VCFEM-RBF-W formulation is much simpler, and computationally more
efficient.
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Extending the modeling of VCFEM-RBF-W to include the presence of voids and
inclusions will be presented in a future work.

5.2 Numerical Examples and Applications

In order to test the performance of the new element, some numerical tests will be
illustrated here. The properties that will be tested are: Stiffness, Invariance, sta-
bility, and patch test. The element will then be used to model a representative
volume element (RVE) of a functionally graded material (FGM) with different vol-
ume fractions of the two constituents in a tension test to determine the effective
elastic material properties.

5.2.1 Stiffness, Invariance and Stability

A single cube element is considered here, with its 8 corners having Cartesian
coordinates: (-1,-1,-1), (1,-1,-1), (1,1,-1), (-1,1,-1), (-1,-1,1), (1,-1,1), (1,1,1), (-
1,1,1). The material properties are: E = 1, and ν = 0.25. The eigenvalues of
the element in Cartesian coordinates are computed to compare the stiffness of the
three-dimensional element VCFEM-RBF-W, using both the mentioned displace-
ment compatibility enforcing methods, with the primal displacement-based finite
element (DPFEM) and the Hybrid/Mixed element HMFEM-2 discussed before.
Then the global Cartesian coordinate system is rotated counterclockwise by any ar-
bitrary angle θ once around the x-axis, then around y-axis and again around z-axis.
After each rotation, the eigenvalues are computed in order to check the invariance
property.

Table 11 shows the eigenvalues of the different 3D elements. It can be seen that,
first, all the elements are stable because only six zero eigenvalues exist for each ele-
ment corresponding to the six rigid-body modes. Second, the lower eigenvalues of
the new VCFEM-RBF-W element (using collocation method) are larger than that
of the HMFEM-2 (B8) element which means that the VCFEM-RBF-W element
is stiffer, but the eigenvalues of the VCFEM-RBF-W element (using collocation
method) are comparable with the DPFEM-B8 element, which means similar stiff-
ness. The VCFEM-RBF-W element using the least squares method is stiffer than
the element developed by using the collocation method.

Exactly the same eigenvalues were obtained when the original coordinate system is
rotated around any coordinate axis by any angle. Thus, the new VCFEM-RBF-W
element proves to be invariant whatever the shape or the distortion of the element.

It should be mentioned that in evaluating the eigenvalues of the VCFEM-RBF-W,
with rotation of the coordinate axis, the same tetrahedrons connectivity should be
used in integrating the element stiffness matrix in order to get the same eigenvalues.
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Table 11: Eigenvalues of the stiffness matrix of a cube using different elements

Eigenvalue Elements
DPFEM-B8 HMFEM-2 (B8) VCFEM-RBF-W VCFEM-RBF-W

(Collocation) (Least squares)
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0.1333 0.1333 0.1378 0.1898
8 0.1333 0.1333 0.1382 0.1936
9 0.2222 0.1333 0.2429 0.2443
10 0.2222 0.1333 0.2454 0.2732
11 0.2222 0.1333 0.2475 0.2899
12 0.4 0.2667 0.4067 0.4581
13 0.4 0.2667 0.4135 0.4666
14 0.4 0.2667 0.4155 0.5031
15 0.5333 0.5333 0.5484 0.6180
16 0.6667 0.5333 0.6828 0.7586
17 0.6667 0.5333 0.6830 0.7736
18 0.6667 0.5333 0.6914 0.7927
19 0.8 0.8 0.8 0.8
20 0.8 0.8 0.8 0.8
21 0.8 0.8 0.8 0.8
22 0.8 0.8 0.8 0.8
23 0.8 0.8 0.8 0.8
24 2 2 2 2

This is because the integrands of the stiffness matrix contain radial basis functions
(RBF) which are not polynomials and hence any numerical quadrature will give
approximate solutions not exact ones. So, the eigenvalues of the element stiffness
matrix will be slightly different if we change the way of domain decomposition.
Also, the same quadrature order should be used for all cases in integrating the
stiffness matrix, since as per the previous reason, the stiffness matrix will slightly
change as the order of integration changes.
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5.2.2 Patch test

First, a single cube element similar to that of the previous section with the same
material properties is tested in a constant stress patch test and the result is compared
with the analytical solution. Then a cubic domain of side length equal to 10 is
meshed using 10 arbitrary 3D Voronoi cell finite elements, as shown in Figure 29,
and tested under the same constant stress patch test.

 
Figure 29: Domain meshed using 10 Voronoi cell finite elements The

The error in all the nodal displacements, defined in equation (48) is tabulated in
Table 12 for the two tests for VCFEM-RBF-W using the collocation and the least
squares methods.

The mesh configuration in Figure 29 is also used in the uniform displacement patch
test, and the error of all the nodal displacements (Not only the center node), defined
in equation (48), is also calculated and tabulated in Table 12.

As can be seen from Table 12, even though the Least squares method gives less
error than that of the collocation method for the case of single cube element in
the patch test, as the domain is meshed using multi elements, the performance of
both methods is similar. However, the least squares method is much cheaper as
mentioned earlier and hence it is recommended to be used in the 3D VCFEM-
RBF-W. This is unlike the case of the 2D VCFEM in [Dong and Atluri (2011b);
Dong and Atluri (2012)] where it was shown that the collocation method is the least
computationally intensive and the most accurate method for enforcing displacement
compatibility.
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Table 12: Eigenvalues of the stiffness matrix of a cube using different elements

Test VCFEM-RBF-W VCFEM-RBF-W
(Collocation) (Least squares)

Constant single cube 8.7 × 10−3 3.9 × 10−3

stress patch
test

Domain of 10 arbi-
trary VCFEM

6.0 × 10−3 6.1 × 10−3

Uniform
displacement
patch test

Domain of 10 arbi-
trary VCFEM

5.7 × 10−3 5.8 × 10−3

It should be mentioned that, as the mesh configuration of the domain changes,
the error in the patch tests will slightly change, since the numerical integration
of the stiffness matrices of the elements is always approximate and never reach
the exact solutions. Different mesh configurations were tested in patch tests of
different domains and the error never exceeds the 1%. Thus, the new VCFEM-
RBF-W element can pass the patch tests with satisfactorily small error.

5.2.3 FGM effective material properties determination

One of the most important applications, that this new 3D Voronoi cell finite ele-
ment can be used for, is the determination of the effective properties of functionally
graded materials (FGM). These materials have microstructure and properties that
vary in a continuous fashion, from one material to the other. The use of these ma-
terials reduces the service stresses of ceramic-coated metallic parts and the stresses
developed during fabrication due to the differences in thermo-mechanical proper-
ties of metals and ceramics. Thus, replacing the sharp ceramic/material interface
with an intermediate graded layer of FGM can stop problems like decohesion at
the ceramic/metal interface, plastic deformation and void nucleation in metal, and
cracking within the ceramic. A schematic of a FGM is shown in Figure 30 to illus-
trate how the microstructure varies in a complex fashion from one pure material to
the other.

It is important to study the distribution of stresses and the stress reduction mech-
anisms in these functionally graded materials, as well as determining the effective
material properties of these heterogeneous materials as a function of the volume
fractions of the constituent materials.

Several models have been developed to predict the effective elastic properties of
heterogeneous materials and their dependence on materials microstructure.

Based on the Eshelby’s equivalent inclusion method [Eshelby (1957)], a number
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Figure 30: (a) A schematic representation of the variation in FGM microstructure:
(b) and (d) typical microstructure at small volume fractions of the two materials;
(c) typical microstructure at comparable volume fractions of the two materials

of self-consistent models were proposed [Hill (1965); Budiansky (1965); Hori and
Nemat-Nasser (1993)]. These models are generally successful in predicting the
effective material properties only for relatively simple microstructures and low vol-
ume fractions of the inclusions.

Based on the finite element analysis, a number of models that overcome the limita-
tion of the low volume fraction of the inclusion were proposed [Christman, Needle-
man, and Suresh (1989); Tvergaard (1990); Bao, Hutchinson, and McMeeking
(1991)]. These models assume that the heterogeneous material can be represented
as a periodic repetition of a representative material element (RME). However, the
real microstructures are rarely periodic. Consequently, non-homogeneity and non-
linearity in deformation at the structure length scale, which may occur under com-
plex loading conditions, may not be predicted, if this local periodicity constraint is
imposed.

[Grujicic and Zhang (1998)] used the two dimensional Voronoi cell finite element
to determine the effective elastic properties of FGM. They used the 2D VCFEM de-
veloped by Ghosh and co-workers in a series of papers [Ghosh and Mukhopadhyay
(1991); Ghosh and Mallett (1994); Ghosh, Lee, and Moorthy (1995)].

Following [Grujicic and Zhang (1998)], the microstructure of the FGM can be mod-
eled as a 3D Voronoi cell finite elements with embedded inclusions if the volume
fraction (VF) of any of the two constituent materials ranges from 0 to 0.3, and as
some intertwined clusters of the two phases if the VF of any of the materials ranges



90 Copyright © 2012 Tech Science Press CMES, vol.84, no.1, pp.41-97, 2012

from 0.4 to 0.6. In the regions where the VF of one constituent ranges from 0.3
to 0.4, the microstructure is treated as consisting of the two basic microstructures
mentioned above mixed in different proportions.

In order to obtain realistic predictions of a new materials macroscopic behavior by
the computational means, three-dimensional numerical simulations of statistically
representative micro-heterogeneous material samples are unavoidable.

Extending the 3D Voronoi cell finite element to include 3D inclusions and voids
is a nontrivial enterprise, and will be addressed in a future article. For now, we
can examine our new VCFEM-RBF-W element (using the least square method) in
modeling FGM when the range of the volume fraction of any of the two constituent
materials is in the range of 0.4 to 0.6.

Analysis of Ni3Al/TiC system
Ni3Al/TiC functionally graded material is considered here. The material properties
are as follows: ENi3Al= 217 GPa, νNi3Al= 0.30, ETiC= 440 GPa, and νTiC= 0.19.

In order to account for the randomness of the microstructure, three samples of the
RVE are considered in this analysis. Each sample has a different mesh configura-
tion composed of 50 three-dimensional Voronoi cell finite elements. For each mesh
configuration, six random distributions of the 2 materials are tested. Data points
are calculated for the cases when the volume fraction of Ni3Al ranges from 0.4 to
0.6.

Figure 31 shows the 3 considered mesh configurations, for different random mate-
rial distributions for 3 cases with the Ni3Al volume fraction ≈ 0.4, 0.5 and 0.6. In
this figure the blue color denotes Ni3Al while the red color denotes TiC.

The results of the variation of the effective Elasticity modulus (Young’s modulus)
and the effective Poisson’s ratio as the volume fraction of TiC is changed from 0.4
to 0.6 are shown in Figure 32 and compared with the experimental results [Zhai,
Jiang, and Zhang (1993)] and other methods from the literature: the self-consistent
method (SCM), the Equivalent inclusion method (EIM), and the VCFEM-2D (us-
ing 600 elements) [Grujicic and Zhang (1998)].

It is clear from Figure 32 (upper) that the current model gives much better results
for the effective Young’s modulus than the 2D VCFEM based on Hybrid stress for-
mulation, even though the 3D model used only 50 elements while the 2D used 600.
As for the Poisson’s ratio variation shown in Figure 32 (lower), the results of the
current model are comparable to the other models. Increasing the number of ele-
ments in the RVE is expected to increase the resolution of the results. Including the
effect of voids is expected to yield more realistic models, and including the pres-
ence of inclusions in the VCFEM-RBF-W element is expected to aid in extending
the results to all the range of volume fractions.
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Figure 31: The 3 considered mesh configurations: the first with VF of Ni3Al≈0.6,
the second with VF of Ni3Al≈0.5, the third with VF of Ni3Al≈0.4 (The blue color
denotes Ni3Al and the red color denotes TiC)

6 Conclusions

In this paper, the Hybrid/Mixed finite elements based on assumed independent
strains and displacements (HMFEM-2 family of elements) is extended to the higher
order two-dimensional case (8-node and 9-node quadrilateral elements), and low as
well as high-order three-dimensional cases (8-node and 20-node brick elements).
This new family of Hybrid/Mixed finite elements, that is not based on multi-field
variational principles, proved to be stable, invariant (through the introduction of the
element-fixed local orthogonal base vectors of the strain tensor) and less sensitive
to mesh distortion compared to the displacement-based elements. The elements
can also pass the patch test, avoid the locking phenomenon associated with the
well-known primal displacement-based finite elements (DPFEM) and give more
accurate results for the computed stresses and strains. This accuracy is much more
significant in the lower order cases (4-node quadrilateral elements in 2D and 8-node
brick elements in 3D) than in the higher order ones. As the order of the elements
is increased, the DPFEM gives high enough accuracy that the difference between
the two element types is not highly significant (this is the limitation principle). Be-
cause the newly developed elements use the strains derived from the displacement
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Figure 32: The results of the current model for the Effective Young’s modulus (up-
per) and effective Poisson’s ratio (lower) compared to the experimental and other
models from the literature

field in order to collocate the strains with the independent strain field, and because
of the transformations involved between the coordinate systems, the HMFEM-2 is
less computationally efficient than the DPFEM.

However, the HMFEM-2 family is much more efficient than any other hybrid/mixed
finite elements developed in the literature such as the least order hybrid stress finite
elements [Pian (1964); Punch and Atluri (1984b)].
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In this paper also, three-dimensional Voronoi cell finite element (VCFEM) based
on radial basis functions (RBF) and Wachspress coordinates is developed. This
3D element, denoted as "VCFEM-RBF-W", proved to be stable, invariant and able
to pass the patch tests. The VCFEM-RBF-W is computationally very simple; and
at the same time, computationally very efficient, as compared to the hybrid-stress
Voronoi cell FEM developed by Ghosh and his colleagues [Ghosh and Mukhopad-
hyay (1991); Ghosh and Mallett (1994); Ghosh and Moorthy (2004)]. Enforc-
ing the displacement compatibility between the two displacement fields using the
least square method yields a much cheaper element than that using the collocation
method.

The newly developed VCFEM-RBF-W is used in an important micromechanical
application of determining the effective elastic material properties for functionally
graded materials. For the considered range of volume fraction variations, the ac-
curacy of the results of this new 3D VCFEM-RBF-W for predicting the variation
of the effective Young’s modulus as a function of the volume fraction of one of the
FGM constituents is better than that of the 2D hybrid stress VCFEM-HS model of
[Ghosh and Mallett (1994)] and other methods in the literature, however it gives
comparable results for predicting the variation of Poisson’s ratio. The resolution
is expected to increase as the number of elements is increased. Including voids
and inclusions in modeling the VCFEM will be considered in future work and is
expected to help in extending the results to the full range of volume fractions and
predicting the behavior of FGM in different applications.
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