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Gauss Process Based Approach for Application on
Landslide Displacement Analysis and Prediction
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Abstract: In this paper, the Gauss process is proposed for application on land-
slide displacement analysis and prediction with dynamic crossing validation. The
prediction problem using noisy observations is first introduced. Then the Gauss
process method is proposed for modeling non-stationary series of landslide dis-
placements based on its ability to model noisy data. The monitoring displacement
series of the New Wolong Temple Landslide is comparatively studied with other
methods as an instance to implement the strategy of the Gauss process for predict-
ing landslide displacement. The dynamic crossing validation method is adopted
to manage the displacement series so as to give more precise predictions. Differ-
ent covariance functions are illustrated to give predictive results which show that
different covariance functions result in varying levels of prediction accuracy. Com-
parisons with other methods are also discussed in this study. The results show that
the Gauss process can perform better than the RBF network and the SVM meth-
ods in this problem in view of the trends according to the original data. Finally,
the landslide criterion is given for creep-typed slopes that landslide event would
occur imminently if the cross angle at the intersection point of displacement curve
changes more than 45˚.
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1 Introduction

1.1 Research background and related work

Time series are commonly used in many fields to reveal the characteristics of com-
plicated systems. The observation of landslide displacement is typical time series
data which represents the overall features of landslides. Taking away the compli-
cated inducing factors, landslide displacement is the comprehensive external out-
come of the underlying dynamic evolutionary process for potential landslides. The
displacement has been used as one of the main means to indicate the status of
slopes. Study on landslide displacement has been recognized as an effective way
to know the potential for a landslide event for a long time. Researchers have been
studying proper prediction models for monitoring series of landslide displacement
in the past decades. Landslide displacement prediction is the fundamental work for
the prevention of landslide disasters despite the fact that it is far from being able to
completely forecast them. Studying landslide displacements is an effective tool for
better understanding landslide movements. Models or methods have been proposed
with proper criteria on the issue of modeling specific landslide displacement series,
mainly including the grey forecasting model, the neural network and the support
vector machine, etc.

For the grey forecasting model, Zhou and Hu(2008) presented an effective hybrid
approach for forecasting gyro drift based on grey theory and ARMA model. Using
the view of treating landslide as a grey system, Liu, Xu, Meng and Chen (2009)
conducted a study on landslide displacement prediction with a modified GM(1.1)
model for unequal interval observation series. While, the predictive accuracy of
the GM model depends largely on the number of samples for modeling; the exact
sample size was difficult to reasonably identify.

Many researchers have reported the outperformance of different ANNs for study of
slope displacement and movement. Feng, Wang and Yao (1996) stated a real-time
prediction model for roof pressure in coal mines using a multilayer feed-forward
neural network and achieved a satisfactory level of accuracy. Sakellariou and Fer-
entinou (2005) promoted the study on the estimation of slope stability using neural
networks based on a collective data set of historical slopes worldwide and they also
studied the relative importance of the parameters affecting slope stability. Wang
and Xu (2005) presented the Back Propagation Neural Networks (BPNN) with five
input nodes, two hidden layers, and two output nodes to evaluate slope instability
by using a training data set of landslide samples throughout regional observations.
Ferentinou and Sakellariou(2007) presented a study on the prediction of slope per-
formance obtained by using the back-propagation algorithm, the theory of Bayesian
neural networks and the Kohonen self-organizing maps. The results indicated that
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this method was promising and should be further explored.

Feng, Zhang, and Xu (1999, 2004); Matías, Taboada and Ordótez (2010); XU F.
and XU W. (2010); Samui and Kothari (2011) investigated the implementation of
support vector machines for modeling the displacement and movement of slopes
to give satisfactory predictive results. Feng, Zhang, and Xu (1999, 2004) pre-
sented the support vector machine (SVM) to obtain a global optimization model
for the evaluation of the non-linear displacement behavior of geo-materials under
the conditions of large project dimensions, small sample sizes and nonlinearity.
They found that the SVM can appropriately describe the evolutionary law of the
deformation of geo-materials at depth and provide predictions for the future 6-10
time steps with acceptable accuracy and confidence. Matías, Taboada and Ordótez
(2010) proposed the PLSVM method with the kernel composed of a linear kernel
and a nonlinear kernel. They found that the PLSVM had improved results over the
other autoregressive approaches for predicting the monthly movement of a mine
slope. This had significant impact on the safety of mining operations. XU F. and
XU W. (2010) conducted the prediction of slope displacement series using a hy-
bridization of the SVMs and Markov chains and found that the integrated model
provided consistently accurate predictive results. Samui and Kothari (2011) exam-
ined the capability of the LSSVM model for slope stability analysis and they also
carried out a comparative study between the LSSVM and ANN. Their study con-
cluded that the developed LSSVM is a robust model for slope stability analysis.
Various models were presented by former researchers for time series prediction.

Some of the models mentioned above gave the estimation of slope stability accord-
ing to the collection of historical data on slope cases, however precise data acqui-
sition is quite a difficult task for some of the parameters of the slopes, especially
the descriptive data. Thus some others presented models for prediction of landslide
displacement based on observations, which is another way to analyze slopes and
can be called the phenomenal way. However, these methods are not sufficient to
prevent the searching of new methods to study landslide displacement since they
all have some restrictions. For example, the performance of grey model is closely
related to the amount of data that is modeled. And no consensus has been made on
the best quantity of data for modeling. ANNs are thought to be powerful for their
ability to deal with nonlinear problems while the parameters and results of ANNs
are sometimes difficult to be physically explained. The SVM is proposed for ma-
chine leaning on the principle of minimizing the empirical risk. Its performance is
greatly affected by the types of kernel function and other parameters. Mehdi and
Mehdi (2011) reviewed broadly the literature on the time series prediction when
they proposed a hybridization of neural networks and ARIMA models for time se-
ries forecasting. They concluded that improving forecasting accuracy, especially
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time series forecasting, was an important yet often difficult task facing decision
makers in many areas. The research for improving the effectiveness of forecasting
models would never stop despite the numerous time series models available. Thus
work is still needed to present a prediction method which can take into account of
the previous knowledge of the landslide system.

In Neal’s work (1996) on Bayesian learning for neural network analysis inspired a
new regression method. The Gauss process has proved to be an attractive method
for modeling noisy data based on prior over functions. Problems with noise-free
and stationary series have been studied using the Gauss Process [Williams and
Rasmussen (1996); Brahim-Belhouari and Vesin (2001); Brahim-Belhouari and
Bermak (2004)]. In this study modeling the noisy and non-stationary landslide
displacement series was discussed.

The Gauss process is based on Bayesian leaning. The advantages lie in that it
utilizes not only the model information and data message, but also makes the best
of prior knowledge about the studied object. What’s more, the prior knowledge
can be free of special restrictions. The prior distribution need not be objective as it
can partially or completely depend on the subjectivities. Thus it gains superiority
in discussing strong empirical systems like landslides. And this has increased its
development and applications in many fields [Li and Sun (2009); Tarek and Nizar
(2011)].

Conclusions can be made from the literature that a predictive model may be able to
generate satisfactory results for one set of training samples, but that it might not be
able to outperform for other input data with different behaviors. The clue may lie in
that some models are linear, while others are nonlinear. Linear models can perform
well for linear systems and nonlinear ones can generate quite good results for non-
linear systems, however linear models could not adequately account for nonlinear
systems and vice-versa. Landslide displacement is complicated with typical non-
linear features. Despite all of the achievements, landslide displacement modeling
is still needed to be further studied since it deals with natural data, which concerns
with not only calculations and numerical analysis, but also concepts, perception,
judgment and employment of experience that cannot be strictly represented numer-
ically.

1.2 Content of this study

This study first introduced slope prediction problem with noisy observations and
then presented the explanation of Gauss process including the definition, model
selection, model training and the decision making. In Section 4, the observed dis-
placement data of Wolong Temple landslide is illustrated to apply the approach
introduced in this study. Comparisons on different models are also discussed in
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Section 4 as well as the discussion on the landslide criteria. Finally conclusions are
made based on the work.

2 Prediction problems of slope displacement

A slope is a nonlinear open system coupling affected by things such as the geo-
environment of the rock mass, the hydrological condition, underground water, rain-
fall, manual activities, and even the seismic activities. It is extremely difficult to un-
cover the complicated evolutionary process for slopes in complex conditions. The
displacement behavior of slopes is aggravated by its material structures, reinforce-
ments, excavation blasting, human activities, tectonic activities, seismic forces,
high stresses, high water pressure, temperature gradient, strong geo-chemical reac-
tion and their coupled effects [Feng, Zhao, Li (2004)].The measured displacement
series is noisy, non-stationary and variable over time. Modeling the measured dis-
placement is important and feasible for analysis and prediction of the slope stability
status. The prediction of slope displacement is aimed at estimating and predicting
its future displacement in magnitude and tendency based on the historical displace-
ment time series.

Once a certain model is proved to be suitable for prediction of landslide displace-
ment, then the forecasting of a landslide occurrence could be considered within
proper thresholds and the criteria for potential slope instability. The predictive
model is processed as the main issue for the prediction problem of slope dis-
placement. Regard a set of nodes as d such that the observed target is denoted
as X =

{
xk−d+1,xk−(d−1)+1, · · · ,xk

}
and the next xk+1 is the prediction target or

the modeling output. Since the measuring conditions are usually influenced by
multitudinous complicated factors, let ε , yi, f (x,θ) be the overall effect of noise
corrupting the data, the observation and the predictive distribution of slope dis-
placement, respectively. Then the aim of prediction is to obtain the mapping of
observations using observed input data x = [xk−d+1,xk−(d−1)+1, · · · ,xk]. Thus the
prediction problem for the slope displacement can be denoted as

yi = f (xi,θ)+ ε
i i = 1, · · · ,n. (1)

The goal of prediction is to obtain the non-linear mapping f (x,θ), where θ denotes
the unknown parameters to be determined by training with the input data using
proper techniques. In fact, as an important application field of neural networks, the
mapping f (x,θ) can be given by a specified network. The outcome of the RBF
network is computed as a linear superposition [Bishop (1995)] as

f (x,θ) =
M

∑
j=1

w jg j(x) (2)
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where w j and g j(x) are the weights of the output layer and the Gaussian basis
functions, respectively. And g j(x) are defined as

g j(x)=exp

{
−
∥∥x−µ j

∥∥2

2σ2
j

}
(3)

where µ j and σ j denote means and variances respectively.

Thus the parameters θ can be defined as θ =
[
w j,µ j,σ

2
j

]
, ( j = 1, · · · ,M), which

would be estimated by a special training algorithm like the Back Propagation Al-
gorithm.

Unlike the neural network method, predictions by non-parameter methods, for ex-
ample the support vector machine [XU F. and XU W. (2010)], are gained without
representing the unknown slope system as an explicit parameterized mapping. A
new method for regression was inspired by Bayesian learning and an attractive
method for modeling non-stationary noisy landslide displacement data is proposed
hereafter based on prior over function. And the Gauss Process is applied with the
proper prior covariance and the dynamic crossing validation method.

3 Methodology: Gauss process based approach

The Gauss process represents the posterior distribution over functions based on
training data and prior distribution. The graphical model of the Gauss process
is shown in Fig.1 to give a visualized view, where the squares denote the known
variables and circles the unknown ones.

Observation 
targets

Gauss 
process field

Inputs x 1x 2x 3x *x cx

2y1y *y cy

 
Figure 1: Graphical description of Gauss Process
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3.1 Basic equations

A Gaussian process f (x) is a collection of random variables, any finite set of which
have a joint Gaussian distribution (Rasmussen and Williams 2006). Its statistical
characteristics are completely specified by its mean function m(x) and covariance
function k(x,x′), i.e.

f (x)∼ GP(m(x),k(x,x′))
m(x) = E[ f (x)]
k(x,x′) = E[( f (x)−m(x))− ( f (x′)−m(x′))]

(4)

Given the observations D =
{

x(i),y(i)|i = 1,2, · · · ,n
}

and the prediction input x∗
(also named test input), the goal of Gauss process modeling is to obtain the output
y∗ for the distribution P(y∗|D,x∗). Suppose the prior distribution of observation
target y satisfies y∼ N(0,k(x,x′)) and the independent noise ε obeys ε ∼ N(0,σ2

n ),
thus the covariance of noisy observations is obtained

cov(yp,yq) = k(xp,xq)+σ
2
n δpq or

cov(y) = K(X ,X£ +σ
2
n I

(5)

where K(X ,X) is a positive definite covariance matrix with the size n× n and its
elements denote the correlations of different observation samples. Consequently
the joint distribution of the observed targets and the predictions can be signified as[

y
f∗

]
∼ N

(
0,

[
K(X ,X)+σ2

n K(X ,X∗)
K(X∗,X) K(X∗,X∗)

])
(6)

For notation simplicity, if K = K(X ,X),K∗ = K(X ,X∗), the regression equation of
the Gauss process for noisy observed target is obtained

f∗|X ,y,X∗ ∼ N( f̄∗,cov( f∗)) (7)

f̄∗
∆= E[ f∗|X ,y,X∗] = KT

∗ [K +σ
2
n I]−1y (8)

cov( f∗) = K(X∗,X∗)−KT
∗ [K +σ

2
n I]−1K∗. (9)

The output of regression eq. (7) is not a single value but a probability distribution
of predictions. This advantage can be used to obtain the prediction intervals that
describe a degree of confidence in the predictions.
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3.2 Covariance functions

Covariance functions specify the relationships between the input data and output el-
ements. Note that although eq.(7) gives the predictive distribution of the observed
target, the lateral prior function K(X ,X) need to be specified in advance. Although
there are many possible choices of prior covariance functions, an arbitrary function
of input pairs (X ,X∗) will not, in general, be a valid covariance function. The co-
variance function is a crucial element for Gaussian process regression, as it encodes
pre-assumptions about the lateral function which we wish to learn and it defines the
similarity between the inputs and test point with the predictive output. But from the
modeling point of view, the goal is to specify prior covariance functions that contain
our prior beliefs on the structure of the lateral function we are modeling. Formally,
it aims to specify a function which will generate a positive definite covariance ma-
trix for any set of input data and represent the relationships between the input data
and the output predictions.

One covariance function used universally has the square exponential term

Kse (xp,xq) = σ
2
f exp

(
−1

2
(xp− xq)T M(xp− xq)

)
+σ

2
n δpq (10)

where σ2
f , σ2

n and M denote the observed target variance, the noise variance and
the length scale, respectively. And θ = (σ2

f ,σ
2
n ,{M})T are the hyper-parameters to

be adjusted by model training. The properties of the covariance function depend on
the values of the hyper-parameters. This covariance function expresses the idea that
nearby inputs will have highly correlated outputs. One extreme case is xp− xq=0.
The simplest non-stationary covariance function is the one corresponding to a linear
trend so that K (xp,xq) 6= K (|xp− xq|), which is

Kns (xp,xq) = v0 + v1

d

∑
l=1

xp
l xq

l (11)

It has been proved that the addition and multiplication of simple covariance func-
tions are powerful in constructing various covariance functions [Brahim-Belhouari
and Bermak(2004)]. There are a variety of other covariance functions such as the
Matérn class, the polynomial, and the rational quadratic [Rasmussen and Williams
(2006)].

For landslide observation modeling on non-stationary displacement series, the hyper-
parameters of prior functions is denoted as θ = (σ2

f ,σ
2
n ,{M},v1,v2, · · ·)T , which

will be specified by model training.
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3.3 Model training

Model training is aimed at obtaining the values of the hyper-parameters in eq.(7), or
more precisely in the prior distributions, based on the observed data of the landslide
displacement series. Noting the predictive distribution of the Gauss process regres-
sion, the value of the hyper-parameters can be achieved in a maximum likelihood
framework by adjusting the hyper-parameters so as to maximize the log likelihood
of hyper-parameters. The partial derivatives of the log marginal likelihood with
respect to each hyper parameter can be obtained (See Appendix)

∂

∂θ j
log p(y|X) =

1
2

yT K−1
y

∂Ky

∂θ j
K−1

y y− 1
2

tr
(

K−1
y

∂Ky

∂θ j

)
=

1
2

tr
((

K−1
y y(K−1

y y)T −K−1
y
) ∂K

∂θ j

)
(12)

To adjust the values of the hyper-parameters, the initial values are first given ran-
domly in a regular scope within the hyper-parameters space. After this training
takes place on the input data with an iteration method, such as the conjugate gra-
dient [Steihaug(1983)]or particle swarm optimization algorithm [Chau(2006)], to
search for the optimal values of the hyper-parameters.

3.4 Loss function

It can be perceived from the previous section that, given the observed data set and
test point, Gauss process regression implements model training and searches for
the optimal hyper-parameters in the theoretical frame of maximum marginalization
using the prior distributions. After this it computes the predictive distribution of
the observation target with the optimized hyper-parameters by eq. (7). However in
practical applications, the decisions must be made about how to act, for instance,
a point-like prediction can be optimal in some sense. To this end, a loss function
L(ytrue,yguess) is needed to specify the loss incurred by guessing the true value ytrue

with yguess. For example, the loss function could be an absolute deviation or a
relative deviation between the guess value and true value.

The predictive goal is to obtain the point prediction value yguess. It is impossible to
estimate directly what the state with the minimum decision loss is for the reason that
the true value ytrue was previously unknown. Loosely speaking, the loss function
can be defined by the expected loss and optimized by minimization of the expected
loss function [Rasmussen and Williams (2006)], i.e.

R̃(yguess|X∗) =
∫

L(y∗,yguess)p(y∗|X∗,D)dy∗

yoptimal|X∗ = argmin R̃(yguess|X∗)
(13)
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Those decision loss functions commonly used are absolute error loss function (AEL =
|yguess− y∗|) and square error loss function (SEL = (yguess− y∗)2), also with their
variant versions. It has been proved in statistics that the estimation obtained by
minimizing absolute loss AEL is the median of probability p(y∗|X∗,D) and that ob-
tained by minimizing the square error loss is the mean value of p(y∗|X∗,D). And
in this study, the variant versions of loss functions were also used for point predic-
tions.

Attention should be paid that Gauss process regression derives the predictive dis-
tribution without any reference to the loss function. It just depends on the prior
and the marginalization over the functions with data input of the observation tar-
get. This is the fundamental difference between the Bayesian based methods and
the non-Bayesian paradigms. In non-Bayesian methods, model training is typically
implemented by minimizing the empirical loss, for example, the support vector ma-
chine [Chau (2006)]. In contrast, there is a clear separation in the Bayesian method
between the loss and likelihood function. The likelihood function expresses how
the noisy measurements are assumed to deviate from the underlying noise free func-
tion. In contrast, the loss function captures the consequences of making a speci?c
choice of guessing value, given an actual true state. The likelihood and loss func-
tion need not have anything in common [Barber and Saad(1996)].

4 Using Gauss process to model landslide displacement series

Discussion about analysis and prediction of the New Landslide of the Wolong Tem-
ple were presented in this section to illustrate the attractiveness of the Gauss pro-
cess in modeling the non-stationary displacement series of landslides. Some extra
data managing skills was also proved to be effective in the promotion of predictive
accuracy and tendency.

4.1 Observations of Wolong Temple landslide

The New Landslide in the Wolong Temple occurred in a loess tableland. Tear
cracks were noticed from the beginning of 1971 and it was monitored since the
11th of March by a pile driven into the earth. The landslide occurred in the early
morning of May 5th with severe destruction because of a sliding movement. The
dataset listed in Tab. 1 is the observed displacements of the cracks labeled No.5,
which has been recognized as the key monitoring point to indicate the stability
status of the slope. As can be drawn from the column of Dis. in Tab.1, the dis-
placements of the landslide developed slowly initially but increased dramatically
by the end of the observed displacement series. The characteristics of the displace-
ment series were studied with different methods. YUAN, XU and GUO (2005)
presented the Negative Selection Algorithm for identifying the mutation point of
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the displacement curve and found that the jump spot occurred at the 49th point of
the displacement series. DONG, FU and LENG (2007) presented a model using
Takens theory for predicting the landslide displacement based on support vector
machines (SVM) and they concluded that RBF kernel function had the priority in
promotion of generalization accuracy combined with SVM. Now our purpose was
modeling the observations using the Gauss process and the dynamic cross valida-
tion to give more accurate predictions.

Table 1: Observed displacements of the crack labeled No.5

Day/d Disp./mm Day/d Disp./mm Day/d Disp./mm Day/d Disp./mm
15 1.0 28 8.2 41 12.0 54 23.0
16 1.5 29 8.4 42 13.0 55 24.0
17 1.7 30 8.7 43 13.4 56 25.2
18 2.5 31 9.0 44 14.0 57 26.0
19 3.2 32 9.2 45 15.0 58 27.0
20 4.0 33 9.4 46 16.1 59 28.2
21 4.4 34 10.0 47 16.4 60 30.0
22 5.1 35 10.1 48 17.2 61 31.0
23 5.9 36 10.3 49 17.6 62 32.0
24 6.3 37 10.4 50 18.2 63 33.0
25 7.0 38 10.5 51 19.0 64 42.0
26 7.3 39 10.8 52 19.2 65 47.0
27 7.8 40 11.1 53 20.0 66 61.0

4.2 Dynamic crossing validation

The dynamic crossing validation was implemented to promote the predictive per-
formance of Gauss process regression. The observed displacement series were di-
vided into two independent datasets: the training set and the test set. The predictive
performance was checked to represent the generalization error for the derived re-
gression model. The procedure of the cross validation was implemented as follows:

(a)Supposing the observed dataset be S = (s,s2,···sn), divide S into a series of subsets
SiTr = (s,si+1,···si+d), i = 1,2, · · · ,(n−d), with the same size d; then (n−d) subsets
would be generated;

(b) Let m be the size of test sets, thus the test sets could be denoted as SiTe =
si+d+1,si+d+2, · · ·si+d+m;

(c) Generate models on the dataset S using the Gauss process regression method
and implement the training process with training set to adjust and optimize the
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hyper-parameters; and then with the test inputs output the results of the test sets
Sp

iTe
= sp

i+d+1
,sp

i+d+2
, · · · ,sp

i+d+m
;

(d) Repeat the step (a) ∼(c) for (n− d) rounds, then the predictive output for the
test sets would be Spredict = (sp

d+1
,sp

d+2
· · ·£sp

n
).

Loosely the parameter d can be recognized as the length of the training set, and m
that of the test set. Generally speaking, for effectiveness of the regression model,
the value of d would be no less than 12 so as to keep the generated model eligible
for catching patterns underlying the observed datasets. Meanwhile, m should not
be too large for reduction of the generalization error.

4.3 Modeling preparations

Generally, two problems should be settled before the Gauss process can give pre-
dictions: the prior covariance function and the corresponding hyper-parameters.
The prior covariance can be specified manually based on empirical experiences or
expert judgments which provide structural information about covariance functions.
And the numerical values of the hyper-parameters make the characteristics of the
covariance differ broadly and will be optimized by model training with proper tech-
niques.

Here another prior covariance function was also chosen: the Matérn class functions
with isotropic distance measure, i.e.

KMc (xp,xq) = σ
2
f f (
√

d ∗ r)∗ exp(−
√

d ∗ r) (14)

Where f (t) = 1+t, r =
√

(xp− xq)T ∗P−1(xp− xq), P is l times the unit matrix and
σ2

f is the signal variance, The corresponding hyper-parameters are l and σ2
f with

the initial value l = 1/4,σ2
f =1. The training and test process were implemented

using the displacement series in Tab. 1 with d = 15,m = 1.

In order to test the performance of modeling on the non-stationary displacement
series using Gauss process regression, dynamic crossing validation was applied to
strengthen the ability of the model to give more precise predictions. The hyper-
parameters are adjusted by the strategy of model training techniques introduced
in Section 3.3. The conjugate gradient method is applied for iteration computing
and optimizing values of the hyper-parameters. To avoid local minimum problem
during the training process, we would randomly initialize several selective values
within the space of the hyper-parameters during the implementation procedures. If
the values of hyper-parameters are specified, we can obtain the predictions of the
test input by substituting the values of the hyper-parameters into eq. (7).

The data for modeling often has a large size in length in practical application for
analysis and prediction of long-term monitoring displacement series of landslides.
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This causes approximation problems for these large datasets in data processing.
There are several choices for the approximation methods, such as the subset of re-
gressors, the Nyström method, the subset of data points and the Bayesian commit-
tee machine [Rasmussen and Williams (2006)]. In this study we perform short-term
point predictions and use Subset of Data Points method which is indicated in the
process of dynamic crossing validation.

4.4 Results and analysis

In this section, comparison and discussion are organized into three stages. The
former is the comparison of the Gauss process introduced in this study with the
previous work; the second is a result comparison of different covariance functions
using the Gauss process; the third part is result discussion on different methods
applied for the predictive results based on the observation of the landslide.

4.4.1 Comparison with a previous work

The relative error loss (REL) is defined to evaluate the performances of different
covariance functions REL =

∣∣∣ yi−y∗i
yi

∣∣∣× 100%,(i = 1,2, . . . ,n),yi,y∗i is the ith obser-
vation and prediction.

Predictive results and the corresponding RELs are comparatively shown in Tab.2
for the strategy of the present work in this study and the previous work in the liter-
ature [LIU and XU (2009)]. The distributive characteristics of the predictive REL
are both shown in Fig.2 for the present and previous works. It can be seen that the
previous method is moderate since the height of error histogram of the previous
work are much larger than that of the present strategy using GPR with the dynamic
crossing validation technique for most of the predictive points, which was espe-
cially highlighted at the turning point of the observed curve of the displacement.
Also, it can be seen that the error histograms jumps swiftly at the turning point of
the observed data curve for both methods which implies that it is detective for pre-
dictions on catastrophe points using continuous methods. Whereas the predictive
errors present in Fig.2 shows that the prediction strategy proposed in this research
can grasp and track the displacement fluctuations and turnings in a very short time.

Besides the relative error loss for each point prediction, two other overall loss func-
tions are also promoted to evaluate quantitatively the overall performance of the
regression strategy presented above. The average relative error loss (AREL) and

the average square error loss (ASEL) are defined as AREL = 1
n

n
∑

i=1

∣∣∣ y∗i−yi
yi

∣∣∣×100%,

ASEL = 1
n

n
∑

i=1
(y∗i − yi)2 to give comparisons with the previous work.

The AREL and ASEL of the previous and present strategies are shown in Tab.3. As
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Figure 2: Comparisons of relative error loss for each prediction

can be drawn from Tab.3, the AREL of the present strategy is 3.23%, about 60.9% of
that of the previous work; the ASEL of the present strategy is 4.68, about 80.1% of
that of the previous method. Thus the performance of predictions using the present
method in this study has been greatly promoted in contrast to that of the previous
work.

The reason for moderate performance of the previous work in the literature lies in
that the Gauss process is one of Bayesian learning methods but it was confused in
the literature. In the Bayesian theory model learning is implemented to compute
and adjust the hyper-parameters in the frame of marginalization over the likeli-
hood function. It is different in nature with those learning methods in the frame of
minimizing empirical loss. The former is implemented with probabilistic charac-
teristics. And prior knowledge about the studied system is embedded with a certain
form, for example the covariance functions. These are the key points of the Gauss
process. As for the literature [LIU and XU (2009)], it described that the Genetic
Algorithm was used to optimize the hyper-parameters. However, prudential readers
would notice that it applied Genetic Algorithm to adjust the hyper-parameters us-
ing a fitness function (essentially a loss function) after the training and prediction
for each processing step and carried out computations using an iteration method
until the termination conditions( e.g.100 processing steps) were satisfied. It did
not implement the model learning process in the frame of marginal likelihood but
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in the form of loss function. Thus it could not generate the same type of satis-
factory results as the strategy that is introduced in this work. Actually, those bi-
ological algorithms could be applied to optimize the hyper-parameters instead of
the commonly-used conjugate gradient method for iteration computations but they
cannot be mixed with loss functions.

Table 3: Comparisons of predictive loss functions

method AREL/% ASL
previous 5.30 5.84
present 3.23 4.68

4.4.2 Comparisons of different covariance functions

Several terms of covariance functions introduced above, Kse,KMc,Knsand the com-
posites, are adopted in this study in order to investigate the influences of different
prior covariance functions to the strategy of the Gauss process. The corresponding
predictive results are listed in Tab.4. The RELs for each point prediction is also
shown in Tab.4.

Several conclusions can be obtained from the predictive performances shown in
Tab.3. Predictive results of the Gauss process with different covariance functions
all had good accuracy, with RELs less than 3%, for point predictions at the non-
fluctuation positions on the displacement curve. However, predictive performances
at the fluctuation positions were moderate, mostly less than 10%, though not very
good. Results did not differ very much from those obtained by the single covariance
(Kse or Kmc) and the composite covariance functions. Also, Kse and Kmc performed
similarly in the modeling prediction problem of the Wolong Temple landslide dis-
placement. The compositions of Kse or Kmc with Kns did not improve the RELs in
our predictive modeling problem, while the composition of Kse and Kmc slightly
improved the overall predictive performances. The reason may lie in that Kns is not
suitable for accounting the characteristics of the displacement series of the Wolong
Temple and the existence of Kns reduces the predictive performance. Thus it can
be summarized here that the compositions of different covariance functions do not
necessarily give improvement in predictive performances for a specified modeling
problem. In addition to this covariance functions should be in accordance with the
characteristics of the modeling system so as to give satisfactory predictive results.

4.4.3 Comparison with other methods

In the previous section, we discussed the comparative results of different Gauss pro-
cess strategies. Comparisons with other methods such as the SVM and ANNs will
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Table 4: Predictive performances of Gauss process with different covariance func-
tions
Day/d Observation predictions of different covariance functions /mm relative error loss of different covari-

ance functions /%
Kse KMc Kse +Kns Kns +KMc Kse +KMc Kse KMc Kse +Kns Kns +KMc Kse +KMc

30 8.70 8.56 8.65 9.50 8.73 8.68 0.14 0.05 0.80 0.03 0.02
31 9.00 8.80 8.88 9.85 8.95 8.89 0.20 0.12 0.85 0.05 0.11
32 9.20 9.11 9.17 9.15 9.20 9.17 0.09 0.03 0.05 0.00 0.03
33 9.40 9.28 9.36 9.36 9.41 9.36 0.12 0.04 0.04 0.01 0.04
34 10.00 9.44 9.55 9.61 9.60 9.55 0.56 0.45 0.39 0.40 0.45
35 10.10 10.29 10.21 10.32 10.28 10.21 0.19 0.11 0.22 0.18 0.11
36 10.30 10.47 10.42 10.54 10.48 10.42 0.17 0.12 0.24 0.18 0.12
37 10.40 10.62 10.56 10.68 10.61 10.56 0.22 0.16 0.28 0.21 0.16
38 10.50 10.56 10.58 10.58 10.61 10.58 0.06 0.08 0.08 0.11 0.08
39 10.80 10.66 10.54 10.66 10.67 10.54 0.14 0.26 0.14 0.13 0.26
40 11.10 10.89 10.89 11.12 11.12 10.94 0.21 0.21 0.02 0.02 0.16
41 12.00 11.14 11.16 11.46 11.44 11.22 0.86 0.84 0.54 0.56 0.78
42 13.00 11.77 11.79 12.29 12.26 12.52 1.23 1.21 0.71 0.74 0.48
43 13.40 12.59 14.10 13.93 13.81 14.03 0.81 0.70 0.53 0.41 0.63
44 14.00 13.57 13.98 13.47 13.54 13.80 0.43 0.02 0.53 0.46 0.20
45 15.00 13.99 14.33 14.22 14.30 14.25 1.01 0.67 0.78 0.70 0.75
46 16.10 15.69 15.56 15.31 15.49 15.83 0.41 0.54 0.79 0.61 0.27
47 16.40 16.84 16.88 16.68 16.92 17.02 0.44 0.48 0.28 0.52 0.62
48 17.20 16.95 17.11 17.00 16.21 16.52 0.25 0.09 0.20 0.99 0.68
49 17.60 17.78 17.79 17.72 17.76 18.04 0.18 0.19 0.12 0.16 0.44
50 18.20 17.99 18.07 18.05 18.08 18.00 0.21 0.13 0.15 0.12 0.20
51 19.00 18.39 18.55 18.52 18.60 18.64 0.61 0.45 0.48 0.40 0.36
52 19.20 19.17 19.35 19.27 19.41 19.49 0.03 0.15 0.07 0.21 0.29
53 20.00 19.57 19.66 19.61 19.72 19.56 0.43 0.34 0.39 0.28 0.44
54 23.00 20.41 20.37 20.34 20.41 20.40 2.59 2.63 2.66 2.59 2.60
55 24.00 22.12 22.20 22.21 22.19 24.33 1.88 1.80 1.79 1.81 0.33
56 25.20 23.84 25.76 23.90 25.65 23.83 1.36 0.56 1.30 0.45 1.37
57 26.00 25.81 26.76 25.86 26.35 26.55 0.19 0.76 0.14 0.35 0.55
58 27.00 27.25 26.87 27.28 26.58 26.91 0.25 0.13 0.28 0.42 0.09
59 28.20 28.51 27.48 28.50 27.48 28.21 0.31 0.72 0.30 0.72 0.01
60 30.00 29.61 28.73 28.41 28.74 29.30 0.39 1.27 1.59 1.26 0.70
61 31.00 30.94 30.75 30.74 30.71 31.21 0.06 0.25 0.26 0.29 0.21
62 32.00 32.07 31.99 31.91 31.98 31.97 0.07 0.01 0.09 0.02 0.03
63 33.00 32.95 32.98 32.85 33.00 33.09 0.05 0.02 0.15 0.00 0.09
64 42.00 34.13 34.02 33.91 34.00 34.06 7.87 7.98 8.09 8.00 7.94
65 47.00 38.87 39.28 39.03 39.26 42.51 8.13 7.72 7.97 7.74 4.49
66 61.00 53.60 53.07 52.89 51.78 48.22 7.40 7.93 8.11 9.22 12.78



116 Copyright © 2012 Tech Science Press CMES, vol.84, no.2, pp.99-122, 2012

be now discussed. We first introduces the variant terms of the covariance functions
in the kernel form to show the consistency of the Gauss process with other learning
methods. Then it compares the predictive results obtained by different predictive
strategies for the last seven point predictions of the landslide displacement series.

It can be noticed that the coefficient KT
∗ [K +σ2

n I]−1 in eq.(8) does not depend on the
observed target y, but only on the input X hence the predictive mean f̄∗ is a linear
combination of the observed target y; this is the property of the Gauss process.
The covariance in eq.(9) is the difference between K(X∗,X∗) K(X∗,X∗)( the prior
covariance) and a positive term representing the information that the observations
give us about the function From another point of view, the mean f̄∗ in eq.(8) is the
linear combination of n kernel functions each of which is centered on a training

point i.e. f̄ (x∗) =
n
∑

i=1
αik(xi,x∗) where α = (K +σ2

n I)−1y.

Therefore it can be concluded that the Gauss process is consistent with other ker-
nel learning methods. In fact it has been proved that most kernel learning methods
could be used in accordance with the Gauss process with specific restrictions [Ras-
mussen and Williams (2006)]. Thus, comparisons of the Gauss process with ANNs
and SVM are to be discussed hereafter in regards to the predictive performance for
modeling the landslide displacement. Only the last seven point predictions are dis-
cussed for comparison since it has been shown that the Gauss process can obtain
quite satisfactory results for the other predictions as given in Tab.2 and Tab.4.

The predictive results obtained by RBF network and SVM [DONG, FU and LENG
(2007)] are shown and compared with that of the Gauss process in Fig. 3. It can
be seen that the three strategies (GPR, RBF network and SVM) all give very good
point predictions for days from 60 to 62 but there are divergent results for days
63 to 66 until the landslide occurred. The observations start jumping from day
63, which leads to moderate performances for all three strategies. Fortunately, the
results of the Gauss process regression show that the predictive results it generates
have the same trends with that of the observations even though it cannot perform
very well for point values. However the results given by the RBF and the SVM
are inferior for trend keeping even though they give better point predictions for
some days. The ultimate goal of modeling slope displacements is for forecasting
landslide occurrence. Trend prediction is an essential element for both long-term
and short-term forecasting of landslides, as well as for imminent warnings. It can
be concluded in this end that the GPR performs better than the RBF and the SVM
on the predictive modeling of the landslide displacement.



Gauss Process Based Approach for Application 117

25.00

35.00

45.00

55.00

65.00

60 61 62 63 64 65 66

di
sp

la
ce

m
en

t/m
m

day/d

GPR
RBF
SVM
Observation

 
Figure 3: Predictive performances of different strategies
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Figure 4: Actual displacements and the GPR predictions
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4.5 Further discussion

Predictive modeling on landslide displacement is an effective way for revealing the
future features of landslides. It can provide reference for landslide occurrences
in advance with proper warning criteria. In contrast to the previous works, now
concentration can be made on the lateral information that the GPR predictions ex-
presses for the warning criteria of landslides. We can see the observed displacement
process and the corresponding predictions by the GPR of the landslide in Fig.4. As
can be seen from Fig.4, the displacement of this landslide is stepped over four
stages divided by three apparent inflections before the sliding movement occurred.
The linear trends of the displacement curve at each inflection points are drawn with
continuous solid lines and the boundary lines of each stage are marked with dash
lines for a clearer understanding of the involution stages. It must be recognized that
the linear trend at each inflection point is derived approximately by a line that can
pass through as many data points as possible. Also, one can find that the intersec-
tion angle at each inflection point is different from the others and that they enlarge
as the landslide displacement develops with time. The values of the intersection an-
gles were no less than 10◦, and the intersection angle at the last inflection (labeled
as 3) was more than 45◦, after which the landslide occurred. Thus, this characteris-
tic can be considered as a criterion for forecasting such kinds of landslide.

There are two main indexes which evaluate a model’s ability to forecast landslides
from the observed displacement series: the trends of the underlying displacement
and the retardation time of forecasting, given the thresholds value for the landslide
occurrence. Drawing back to the attractive performance of the GPR strategies, it
can be noted that the predictive strategy of the paper could adapt well with the dis-
placement curves even at the inflection points. In addition to this, the trends close to
sliding time were nearly the same with that of the observations since the trend line
for both the observation and GPR curves are somewhat parallel to each other. On
the other hand, once the observed displacement jumped to a new range, the GPR
model could adapt to it swiftly in the next prediction. At this point, if the intersec-
tion angle on the predictive curve is 45◦, it would be a signal for the forecasting of
the landslide occurrence when modeling the observed displacement series. Thus it
can be regarded as a threshold value of criterion for landslide forecasting. Whereas
one could also recognize that despite its attractive ability on tendency tracking, the
displacement predictions of the GPR with dynamic crossing validation is somewhat
hysteretic to the observations at the sudden turnings of the curves. Also, the land-
slide forecasting criteria here will be responsible only for the slopes with typical
creep-typed displacements curves like Wolong Temple New Landslide.

Actually, some criteria have been proposed for landslides forecasting, but the cor-
responding threshold values for each criterion are difficult to identify. A portion
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of the criteria is the displacement rate, the rainfall thresholds, the safety factors
and the like. With the increasing sophistication of the site-investigation of slopes,
criteria with good reliability, feasibility and efficacy will intensively utilize the in-
formation from the monitoring systems. The landslides discussed in this article
ware the creep-typed slope in which the displacement curve changes slowly. In ad-
dition to this, there are landslides with stepped or shock-type displacement curves.
The stepped displacement curves often exist in slopes formed by deposits. And
the threshold values for the forecasting criteria are to be further discussed. Using
a reliable and precise prediction model for slope displacement prediction like the
Gauss process in this research, landslide forecasting can be implemented loosely
with proper threshold values of displacement criterion.

5 Conclusions

The Gauss process utilizes monitored data for model training. It can cover expert
prior knowledge in prior functions, which has increased its application in the fields
in which empirical experience is important. Its hyper-parameters are optimized
by model training to minimize the likelihood except for empirical risk functions.
These are why it can outperform than other techniques only dealing with data series.
Based on the results of this study, conclusions can be drawn as follows:

(1) The Gauss process is a good technique for modeling of landslide displacement
series. It has superior ability in point predictions for landslide displacement model-
ing with proper prior covariance functions. Also, it can provide satisfactory results
for tendency tracking of the displacement series. Thus it can be regarded as a good
strategy for tendency predictions of phenomenal data of complex systems.

(2) The covariance functions and the relevant hyper-parameters are the main causes
for moderate or good performances of the Gauss process strategy with dynamic
crossing validation in this study. Model training of the Gauss process is executed
by means of minimizing the likelihood of hyper-parameters. The predictive AREL
and ASEL of the strategy in this study is about 60.9% and 80.1% better than that in
previous works. Thus training target function cannot be confused with loss func-
tions. Also, comparative works show that the strategy introduced in this study is
superior to the RBF and the SVM since only this strategy can accurately track the
tendency of the displacement curve of Wolong Temple Slide even there is a sudden
inflection. This ability is very important for a model in order to predict landslide
occurrences.

(3) It would be a signal for forecasting a landslide occurrence if the intersection an-
gle reaches 45◦ at the turnings on the predictive curve when modeling the observed
displacement of the creep-typed slope. A landslide is a complex system involving
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many disciplines. Displacement modeling is a phenomenal analytical method for
landslide study; further studies need to continue on landslide predictions by a com-
position of displacement study and evolutionary mechanism analysis. Meanwhile,
studies should be also carried out on the topic of warning criteria for slopes with
different kinds of displacement characteristics such as the mutant type and stepped
type.

Appendix

Starting with Bayesian theory, the marginal likelihood p(y|X) is the integral of
the likelihood times the prior distribution, referring to the marginalization over the
lateral function f

p(y|X) =
∫

p(y| f ,X)p( f |X)d f (15)

The prior of the Gauss process is Gaussian distribution, f |X ∼ N(0,K)

log p( f |X) =−1
2

f T K−1 f − 1
2

log |K|− n
2

log2π (16)

The likelihood is a factorized Gaussian, y| f∼N( f ,σ2
n I). Let Ky = K +σ2

n I, the log
marginal likelihood is obtained as follows since the factorization of Gaussians is
also of Gaussian.

log p(y|X) =−1
2

yT (Ky)−1y− 1
2

log |Ky|−
n
2

log2π (17)

The hyper-parameters θ are implied potentially in the log marginal likelihood eq.(15).
Since

∂

∂θ
K−1

y =−K−1
y

∂Ky

∂θ
K−1

y ;
∂

∂θ
log |Ky|= tr

(
K−1

y
∂Ky

∂θ

)
(18)

Then eq.(12) is obtained.
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