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Abstract: The equations governing solid mechanics are often solved via New-
ton’s method. This approach can be problematic if the Jacobian determination,
storage, or solution cost is high. These challenges are magnified for multiphysics
applications. The Jacobian-free Newton-Krylov (JFNK) method avoids many of
these difficulties through a finite difference approximation. A parallel, nonlin-
ear solid mechanics and multiphysics application named BISON has been created
that leverages JFNK. We overview JFNK, outline the capabilities of BISON, and
demonstrate the effectiveness of JFNK for solid mechanics and multiphysics appli-
cations using a series of demonstration problems. We show that JFNK has distinct
advantages in many cases.

Keywords: JFNK, multiphysics, solid mechanics, fully implicit, finite element,
nonlinear solvers

1 Introduction

The standard numerical solution approach for implicit finite element nonlinear solid
mechanics problems is Newton’s method [Belytschko, Liu, and Moran (2000);
Bathe (1982)]. This method updates a solution vector by solving a system of equa-
tions where the matrix is the Jacobian. For solid mechanics, this Jacobian matrix is
commonly referred to as the stiffness matrix. At each iteration, the Jacobian matrix
is reformed, requiring a new direct or iterative solve.

This approach has a well-known property that makes it attractive for solving sys-
tems of coupled nonlinear equations. If the estimate of the solution is close to the
true solution, the method converges quadratically.

For a nonlinear system of coupled equations, Newton’s method comes with some
drawbacks as well. In order to achieve quadratic convergence, the exact Jacobian
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must be available. For relatively simple systems, the Jacobian may be determined
analytically, though it may be challenging. For more complicated systems, the
difficulty increases until it is prohibitive to obtain the Jacobian. For example, if the
calculation of the residual requires calling a third-party library, it may be impossible
to determine the analytic Jacobian. Furthermore, forming the Jacobian may be
expensive and require significant computer memory.

Other solution methods, such as Broyden’s method [Broyden (1965)], may also be
employed. Broyden’s method may be started with the true Jacobian or with an ap-
proximation to it. This is attractive when the Jacobian is unavailable or expensive to
form. Broyden’s method, as well as other secant updating methods, quasi-Newton,
and modified Newton methods have been developed to retain as much of the con-
vergence characteristics of Newton’s method as possible while reducing complexity
and expense. For a discussion of linear and nonlinear solution methods, see [Kelley
(1995)].

It is worth noting that approaches not associated with Newton’s method can be ro-
bust and efficient enough to solve a variety of large, complex problems. The nonlin-
ear conjugate gradient method [Fletcher and Reeves (1964)], though widely studied
in the context of nonlinear optimization (see, e.g., [Hager and Zhang (2006)]), has
not seen widespread use in nonlinear solid mechanics. Nevertheless, Sandia Na-
tional Laboratories has written a series of successful three-dimensional, fully par-
allel, nonlinear solid mechanics packages that rely on nonlinear conjugate gradient
solvers. See, for example, [SIERRA Solid Mechanics Team (2010)].

Another approach is to convert the nonlinear system of equations into a system of
ordinary differential equations. The work of [Liu and Atluri (2008)] clearly outlines
this approach and provides several examples of its use. A clear advantage of their
work is that it does not rely on the derivative of the residual function. The method
requires careful consideration of the time step size to prevent instability, and the
convergence speed is parameter-dependent.

Nonlinear solvers remain an active area of research. Indeed, a wide variety of non-
linear solution techniques exist with advantages and disadvantages to each. One of
the newer techniques is the Jacobian-free Newton Krylov (JFNK) method [Knoll
and Keyes (2004)]. Although the Jacobian is not required, the true effect of the
Jacobian is manifest in a quadratic convergence rate. For multiphysics analysis,
JFNK has an attractive characteristic in that it is inherently a fully-coupled ap-
proach and does not rely upon fixed point iteration, operator splitting, or loose
coupling. The method naturally accommodates multiple PDEs without the need to
develop specialized elements that couple several unknowns.

The JFNK method has been applied to magnetohydrodynamics [Knoll, Mousseau,
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Chacon, and Reisner (2005)], fluid dynamics [Geuzaine (2001); Banaś (2002);
Knoll and Mousseau (2000)], groundwater modeling [Hammond, Valocchi, and
Lichtner (2002)], ice sheet modeling [Lemieux, Price, Evans, Knoll, Sallinger,
Holland, and Payne (2011)], multiscale modeling [Rahul (2011)], neutron trans-
port [Roberts and Forget (2008)], and many other problems.

In this paper, we demonstrate the characteristics of the JFNK method as applied
to solid mechanics problems and to multiphysics problems where solid mechanics
is coupled to another PDE. Although it is generally difficult to compare nonlinear
solution methods to one another [Matthies and Strang (1979)], we show that the
JFNK method has distinct advantages over other solution techniques in many cases.

Note that no comparisons of CPU times between JFNK and other methods are made
here. A given implementation of JFNK compared to an implementation of another
method will likely perform better on some problems and worse on others. Much
depends on preconditioning, problem size, the cost of computing the residual, the
cost of computing the Jacobian, and other factors. While the computational expense
of JFNK may be more or less than that of other methods for a given problem,
the effort required to implement JFNK for that problem is a clear strength of the
method.

We begin by reviewing JFNK, including the importance of preconditioning. We
also discuss the expected convergence rate. In Section 3, solid mechanics equa-
tions, a set of constitutive laws, heat conduction, and gap heat conduction are re-
viewed. These equations are coupled together in our multiphysics examples and
may in general be coupled with those from other PDEs (e.g., species diffusion). We
overview four demonstration problems (general function minimization, a nonlinear
spring, plasticity in a thick cylinder, and deflection of a clamped plate) in Section 4.
Section 5 includes two multiphysics examples. The first is a simple problem cou-
pling heat transfer across a gap with thermal expansion. We then present results for
a complex nuclear fuel analysis problem (the performance of a light water reactor
fuel rod), demonstrating the effectiveness of JFNK on large multiphysics problems.
We give some details about BISON, the implicit multiphysics application used for
these examples. We also discuss the parallel scalability of our approach. Finally,
we conclude in Section 6 with a discussion of planned future work and possible
extensions.

2 Jacobian-Free Newton Krylov

To solve a nonlinear system of equations, it is common to begin with a residual
statement

f(x) = 0 (1)
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where f is the residual with x as the unknown solution. We write the Jacobian as

J(x) =
∂ f(x)

∂x
. (2)

Newton’s method is then

Compute J(xk), f(xk) (3)

Solve J(xk)s =−f(xk) for s (4)

xk+1 = xk + s (5)

which is continued until the update is sufficiently small or some other criterion is
met.

For any number of reasons, Newton’s method may be problematic. For example,
it may be difficult to obtain the analytic Jacobian. In a multiphysics setting, where
there may be several variables and residual contributions, deriving all possible sen-
sitivities may be prohibitive. Also, for large problems, the number of unknowns
may invoke an unacceptable memory cost. Modified Newton or quasi-Newton al-
gorithms attempt to remedy one or more of these concerns. See [Dennis, Jr. and
Moré (1977)] for a review of these approaches.

Iterative solution methods may help alleviate the memory and solution time costs,
particularly where parallel computing is needed. These methods, such as the con-
jugate gradient method (CG) [Hestenes and Stiefel (1952)] and the generalized
minimum residual method (GMRES) [Saad and Schultz (1986)], do not require the
factorization of a matrix or even its formation. Instead, they require only the action
of a matrix on a vector. In the case of Newton’s method, these methods require
the action of the Jacobian on a vector, Jv. This allows the effect of the matrix to
be built up piece by piece, element by element, in a matrix-free form, if desired.
See [Carey and Jiang (1986)] for a review of the matrix-free approach.

The JFNK method evaluates the action of the Jacobian through a finite difference
approximation,

J(xk)v≈
f(xk + εv)− f(xk)

ε
. (6)

This is an attractive form since neither the full Jacobian nor its element-by-element
contributions are required. Despite not requiring the analytic Jacobian, the effect
of the full Jacobian is seen from the first iteration of the iterative solver, unlike
modified Newton or quasi-Newton algorithms. Thus, with only GMRES or another
iterative solver and a function that computes the residual, JFNK finds solutions
to nonlinear coupled equations with the convergence rate of a traditional Newton
algorithm.
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The conjugate gradient method for solving Equation 4 with the finite difference
approximation (Equation 6) appears below:

s0 = 0
r0 =−f(xk)
v0 = r0

i = 0

Loop on i:

gi(xk) =
f(xk + εvi)− f(xk)

ε
(7)

αi =
rT

i ri

vigi

si+1 = si +αivi

ri+1 = ri−αigi

Exit if ri+1 is below tolerance

βi =
rT

i+1ri+1

rT
i ri

vi+1 = ri+1 +βivi

i = i+1

End loop

The only difference between a standard CG method and the JFNK approach is
Equation 7. A standard CG algorithm for solving Equation 4 is recovered by re-
placing Equation 7 with gi = Jvi.

One might expect the finite difference approximation made in JFNK to degrade
the convergence rate. However, for many problems, the error associated with the
finite difference formula is so small that effectively quadratic convergence is in
fact retained. Given that no analytical Jacobian is required, this is a very attractive
combination.

The finite difference approach of JFNK is particularly useful in a multiphysics set-
ting. With the finite difference approximation eliminating the need for the true
Jacobian, only the residual contributions of new variables and/or new terms are
needed. This makes numerical experimentation with different combinations of vari-
ables and terms in coupled PDEs straightforward.

Efficient solves using iterative methods require good preconditioners. The purpose
of preconditioning is to decrease the condition number of the system being solved.
Equivalently, preconditioning reduces the spread of eigenvalues in the system. In
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JFNK, it is common to use right preconditioning,

J(xk)M−1(M s) =−f(xk) (8)

where M is the preconditioner or preconditioning process. In this form, the solu-
tion approach involves two steps. First, solve J(xk)M−1w = −f(xk) for w. Then,
compute s = M−1w. Note that if M−1 = J−1 the iterative solve will converge in one
iteration. However, computing J−1 is equivalent to solving the original system and
so is not advantageous. It is necessary, therefore, to choose a preconditioner that re-
flects the character of J(xk) in order to accelerate the iterative method but also one
that is inexpensive to compute and apply. Simple approximations to sub-blocks of
the Jacobian along the diagonal may suffice.

Using right preconditioning with the finite difference approximation in Equation 6
leads to

J(xk)M−1v≈ f(xk + εM−1v)− f(xk)
ε

. (9)

This is accomplished by computing w = M−1v and then J(xk)w ≈ [f(xk + εw)−
f(xk)]/ε .

A host of preconditioning options are available. For example, see [Knoll and Keyes
(2004)] for a discussion of JFNK with physics-based preconditioning for a stiff
wave system. We explore the importance of preconditioning in more detail in Sec-
tions 4.3 and 5.5.

3 Fundamental Equations

In this section, we define the solid mechanics equations that will be used in most
of the example problems and that have been implemented in our multiphysics code
BISON. Further details concerning BISON are given in Section 5.2. We also review
equations for heat transfer that will be used in the multiphysics examples.

3.1 Solid Mechanics Equations

The governing equations associated with quasistatic solid mechanics are

∇ ·σ +b = 0 in Ω, (10)

u = ū on Γū,and (11)

t = t̄ on Γt̄, (12)

where u is displacement, σ is the Cauchy stress tensor, b is the body force, ū is the
prescribed displacements, and t̄ is the prescribed tractions. With an eye toward the
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weak form, we follow the well-established pattern and multiply Equation 10 by a
test function v

−v · (∇ ·σ +b) = 0. (13)

We then integrate over the volume

−
∫

Ω

v · (∇ ·σ +b) dΩ = 0. (14)

Employing the divergence theorem, we obtain∫
Ω

∇v : σ −
∫

∂Ω

v ·σn−
∫

Ω

v ·b = 0. (15)

Formally, the problem becomes

Find u ∈U ∃

G(u,v) =
∫

Ω

∇v : σ −
∫

∂Ω

v ·σn

−
∫

Ω

v ·b = 0 ∀ v ∈ V (16)

where

U =
{

u ∈ H1(Ω)|u = ū on Γū
}

V =
{

v ∈ H1
0 (Ω)

}
. (17)

3.1.1 The finite element approximation

We proceed through the finite element approximation for completeness. For a
Galerkin method, we approximate u and v for an element as

u≈ N u, (18)

v≈ N v, (19)

with N as the shape function matrix and u and v as the discretized nodal displace-
ment and virtual displacement vectors, respectively. Similarly, using a constitutive
law we can write

σ ≈C ε, where ε = B u (20)

with B as the strain displacement matrix, which is comprised of derivatives of shape
functions. The matrix C is the material matrix (or, more generally, a material oper-
ator). The discretized version of b is b, and the discretized version of t̄ is t̄.



130 Copyright © 2012 Tech Science Press CMES, vol.84, no.2, pp.123-152, 2012

The resulting equation is

G(u,v) =
nelem

∑
n=1

[
vT
∫

Ωelem

BT C B u dΩ

−vT
∫

Ωelem

NT b dΩ

−vT
∫

Γelemt

NT t̄ dΓelemt

]
= 0. (21)

3.1.2 Element kinematics

For geometrically linear analysis, ε is defined as the discrete form of 1/2[∇u +
∇uT ]. Furthermore, with a linear elastic constitutive model, the stress is simply Cε .
We now outline our approach for 3D nonlinear analysis. We follow the approach
in [Rashid (1993)] and [Key (2011)].

We begin with a complete set of data for step n and seek the displacements and
stresses at step n+1. We first compute an incremental deformation gradient,

F̂ =
∂xn+1

∂xn . (22)

With F̂, we next compute a strain increment that represents the rotation-free defor-
mation from the configuration at n to the configuration at n+1. Following [Rashid
(1993)], we seek the stretching rate D:

D =
1
∆t

log(Û) (23)

=
1
∆t

log
(
sqrt

(
F̂T F̂

))
(24)

=
1
∆t

log
(

sqrt
(

Ĉ
))

. (25)

Here, Û is the incremental stretch tensor, and Ĉ is the incremental Green defor-
mation tensor. Through a Taylor series expansion, this can be determined in a
straightforward, efficient manner. D is passed to the constitutive model as an input
for computing σ at n+1.

The next step is computing the incremental rotation, R̂ where F̂ = R̂Û. Like for D,
an efficient algorithm exists for computing R̂. It is also possible to compute these
quantities using an eigenvalue/eigenvector routine.

With σ and R̂, we rotate the stress to the current configuration.
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3.2 Constitutive laws

While other constitutive laws are available in BISON, we mention only the two used
in the demonstration problems: elasticity and linear strain hardening plasticity.

3.2.1 Elastic

We use a hypoelastic formulation for elasticity. Specifically,

σ
n+1
i j = σ

n
i j +∆tCi jklDkl (26)

where C is the elasticity tensor. For isotropic elasticity, this becomes

σ
n+1
i j = σ

n
i j +∆t (δi jλDkk +2µDi j) (27)

with λ as Lame’s first parameter and µ as the shear modulus. This stress update
occurs in the configuration at n. Thus, as mentioned, as a final step the stress must
be rotated to the configuration at n+1.

3.2.2 Linear strain hardening plasticity

Strain hardening plasticity is calculated implicitly utilizing the radial return method.
An excellent and detailed description of this proceedure is given in [Dunne and
Petrinic (2005)]. The radial return method consists of calculating an elastic trial
stress by using a total strain increment

σ
trial = σ

n +C∆ε (28)

where C is the linear isotropic elasticity tensor, ∆ε is the total strain increment ten-
sor, and σn is the stress from the previous time step. A yield function is evaluated
to determine if the trial stress exceeds a given yield stress. If yielding has occurred,
a plastic strain increment is calculated via Newton’s method (independent of the
system-wide nonlinear solve, which may be based on JFNK, Newton, etc.). This
plastic strain increment is subtracted from the total strain increment to give the
elastic strain increment

∆εe = ∆ε−∆εp. (29)

The elastic strain increment is used to calculate a new stress, returning the stress
back to the yield surface

∆σ = C∆εe, (30)
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σ
n+1 = σ

n +∆σ . (31)

The plastic strains are updated and the process is repeated as necessary

pn+1 = pn +∆εp. (32)

3.3 Heat Conduction

The heat conduction equation is

ρCp
∂T
∂ t
−∇ · (k∇T )−q = 0, (33)

where T , ρ and Cp are the temperature, density and specific heat, respectively, k is
the thermal conductivity of the material, and q is a volumetric heat generation rate.

When analyzing heat transfer between independent bodies, heat conduction across
a gap must be addressed. In our work, gap conductance h in a gas-filled gap
between two surfaces is described using the form proposed in [Ross and Stoute
(1962)]:

h =
kg(Tg)

Lg +1.5(r1 + r2)
(34)

where kg is the thermal conductivity of the gap medium, Tg is the temperature in
the gap, Lg is the gap length, and ri is a distance associated with the roughness of
the i side of the gap. Assuming the gap is helium-filled, the temperature dependent
conductivity from [Ramirez, Stan, and Cristea (2006)] is

kg(Tg) = 0.0468+3.81×10−4Tg−6.79×10−8T 2
g . (35)

4 Demonstration problems

In this section, we show results obtained using JFNK for four nonlinear problems.
Each demonstrates that correct solutions are possible with JFNK. The first prob-
lem is a general minimization problem while the remainder are solid mechanics
examples.
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4.1 Rosenbrock function

The Rosenbrock function [Rosenbrock (1960)] is given as

f = (1− x)2 +100(y− x2)2. (36)

It is a commonly-used function for evaluating minimization algorithms. It is char-
acterized by a curved valley with a global minimum at (1,1).
Starting at position (−1,1), we found the minimum of the Rosenbrock function
with Newton’s method and JFNK. A contour plot of the function and the iteration
history of Newton’s method is shown in Figure 1(a). Here we see that Newton’s
method (with a simple step limiting algorithm) follows the slight descent of the
valley until it reaches the minimum. A plot of the function value at each iteration
is shown for both methods in Figure 1(b). This figure shows the quadratic conver-
gence of both methods. The JFNK method results in a slightly higher final solution
for the same number of iterations. This is not unexpected but is so slight as to be
negligible.

4.2 Nonlinear spring

As a first nonlinear solid mechanics example, we consider a pair of one-dimensional
springs in series. The first, fixed at its left end, is a linear spring with a stiffness E.
The second is a nonlinear spring with a stiffness E(2.5−0.5tan−1(a(u2−u1−b))).
E = 0.3, a = 50, b = 0.1, and u1 and u2 are the displacements at the middle and
right of the two-spring assembly. This choice for the stiffness function of the sec-
ond spring was made since it results in a dramatic change in stiffness over a small
range of displacement. Thus, the spring is strongly nonlinear.

We vary the load at the free end from 0.05 to 0.1 in increments of 0.005. We
solve this small nonlinear problem for each of those loads using a simple fixed
point method, Newton’s method, Broyden’s method, nonlinear conjugate gradi-
ent [Fletcher and Reeves (1964)], and JFNK. The iterations required for each load
are plotted in Figure 2. The dramatic increase in number of iterations around a load
of 0.075 is due to the nonlinear behavior at that load.

The number of iterations required for each method at a given load should not be
considered a meaningful measure of the time to solution for each method. Clearly,
the work required for an iteration is different for each of the methods. In other
words, this small problem is by no means useful in determining the relative effi-
ciency of each method.

For this problem, all five methods are robust in finding a solution. At every load,
all methods converged to a solution.
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Figure 1: Results of minimization of the Rosenbrock function. Contour lines and
iteration history for Newton’s method are shown in (a). The function value at each
iteration is shown for Newton’s method and JFNK in (b). Note that both methods
show the characteristic rapid convergence near the solution.
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Figure 2: Number of iterations required by each nonlinear solver at each load level
for the nonlinear spring problem. The problem is particularly nonlinear at a load of
0.075.

All five methods found the same solution at every load, with one exception. At
a load of 0.075, two valid solutions were found. The fixed point iteration, New-
ton’s, nonlinear CG, and JFNK methods found a solution at (0.25,0.35). Broyden’s
method resulted in a solution of (0.25,0.363279). Both solutions are valid. In other
words, for every load case, every method found a valid solution, but they did not
always find the same solution.

This problem illustrates one of the well-known difficulties associated with non-
linear analysis: multiple valid solutions may exist. If desired for problems with
multiple solutions, additional techniques are required to direct the solver toward a
preferred solution. This is true whether nonlinear CG, JFNK, or Newton’s method
is employed.

4.3 Axisymmetric thick cylinder

This demonstration problem is taken from “4.6.2 NL2: Axisymmetric thick cylin-
der” in Abaqus Benchmarks Manual [aba (2009)]. The problem involves an elastic-
perfectly plastic material and increasing internal pressure (80, 100, 120, 140, and
160 MPa). In the BISON JFNK solution, the nonlinear relative convergence toler-
ance for the L2-norm of the residual was 5×10−3. The residual force criterion in
Abaqus was also 5×10−3.

Considering both the r- and θ -directions, the maximum error in the element average
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stresses compared to Abaqus was 0.00087%.

The number of Newton iterations used by Abaqus to reach the solution at each
load, as well as the number of JFNK iterations required by BISON, are in Ta-
ble 1. Recall that JFNK uses an approximation to the Jacobian for preconditioning
the linear solves but is Jacobian-free with respect to the overall nonlinear solution
method. For this problem, an identical number of nonlinear iterations were required
by JFNK in BISON compared to Newton’s method in Abaqus. The advantage of
the JFNK method in this case is the fact that a material tangent need not be derived,
coded, and debugged.

Table 1: Number of iterations required to compute solution at each load.

Internal Pressure (MPa)
80 100 120 140 160

Abaqus (Newton) 1 2 3 4 4
BISON (JFNK) 1 2 3 4 4

To demonstrate the effects of preconditioning, we converted this problem to a 3D
form. The 3D solid model height is the same as in the axisymmetric case, but the
solid model for the 3D case is a quarter annulus. The mesh had 24576 elements.

We ran the problem with the following preconditioners from the PETSc solver li-
brary [Balay, Buschelman, Eijkhout, Gropp, Kaushik, Knepley, McInnes, Smith,
and Zhang (2004)]: AMG (algebraic multigrid (hypre BoomerAMG, [Falgout and
Yang (2002)]), ASM (additive Schwarz method), ILU (incomplete LU factoriza-
tion), LU (LU factorization), and NONE (no preconditioning). The precondition-
ing matrix supplied by BISON was a block-diagonal, elastic approximation to the
Jacobian. The finite difference approximation of JFNK together with precondition-
ing followed the form in Equation 9.

The time to solution using each preconditioner is given in Table 2. Also shown is
the number of nonlinear iterations required at each timestep. These runs were made
with 8 processors except for the LU case, where a single processor was used.

The purpose here is not to present a definitive comparison of these preconditioners
but instead to show that the choice of preconditioning matters. Indeed, no effort
was taken to optimize the preconditioning settings. As expected, the preconditioner
has a significant effect on the efficiency of the JFNK method. In fact, whether
a solution is obtained, and not just how quickly it is obtained, may depend on
the preconditioner chosen. This is seen by the fact that the run with the ASM
preconditioner did not find a solution for the final load step.
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Table 2: Time to solution for a set of preconditioners for the thick cylinder problem.
The preconditioner has a significant impact on the time to solution as well as the
number of nonlinear solves at each timestep.

Preconditioner Time (s) Nonl. Its. per Timestep
AMG 844 2, 4, 5, 6, 6
ASM 12688 6, 6, 11, 26, 50∗

ILU 9253 2, 4, 6, 7, 37
LU 5123 2, 4, 5, 5, 6
NONE 10832∗∗ 14, 15, 24, 34, -
∗ Did not converge. ∗∗ Time for four solves.

4.4 Deflection of a Clamped Plate

Many authors have examined the problem of small displacements of thin plates
(see, for example, [Timoshenko and Woinowski-Krieger (1959)]). The particular
problem studied here is one of a clamped square plate with a uniform distributed
load such that the displacements are relatively large.

The length of each side of the square plate is a, the plate thickness is t, and the
distributed load is q. Young’s modulus is E, and Poisson’s ratio is ν . D is a plate
stiffness:

D =
Et3

12(1−ν2)
. (37)

The deflection at the center of the plate is given by [Timoshenko and Woinowski-
Krieger (1959)] as

w =
0.00126qa4

D
(38)

where w is the transverse displacement. This is valid for small displacements; i.e.,
when w is small compared to the plate thickness.

Substituting the values used in this study (E = 1e7, ν = 0.3, a = 1.0, t = 0.005,
q = 2), w = 0.0220. Since the displacement is considerably larger than the thick-
ness, we would not expect the small displacement theory to accurately predict the
displacement in this case.

We have chosen to use 8-node hexahedral elements for this study understanding
that shell elements are much better suited for this problem. Our purpose is not to
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demonstrate the qualities of particular finite elements but to show that the JFNK
method inherently accommodates geometric nonlinearity.

As a first test, we ran a series of meshes to see that the results were converging to a
solution with mesh refinement. Our meshes had 2 elements through the thickness
and 20, 40, 60, 80, or 100 elements in each of the other two directions. Results
from Abaqus and BISON are plotted in Figure 3(a).

As a second test, we ran a mesh with 100x100x2 elements with varying magnitudes
of the distributed load (1, 2, 3, 4, 5, 10, 15, 20, 25, and 30). Figure 3(b) shows that
the geometric stiffness is engaged (the displacement is not a linear function of the
load).

Thus, without requiring the geometric stiffness terms of the Jacobian, the JFNK
method is able to compute solutions to geometrically nonlinear problems.

4.5 Summary of JFNK for solid mechanics

The four problems in this section demonstrate that JFNK is a reasonable solver
for nonlinear solid mechanics problems. This is the case without the explicit con-
struction of the stiffness matrix. In the next section, we demonstrate that JFNK is
well-suited for highly coupled multiphysics analysis as well.

5 Coupled Multiphysics

5.1 Coupled heat transfer across a gap

As a simple multiphysics example, we consider a one-dimensional, coupled solid
mechanics and heat transfer problem where heat moves between a gap between
two elements (Equations 33-35). The mesh consists of two unit-length elements
designated AB and CD. A unit gap lies between them. The initial temperature
of both elements is 100◦. From time 0 to 1, the temperature at A (the left node
of the left element) increases linearly to 200◦ and is held at 200◦ from then on.
From time 1 to 2, the node at A moves to the right, closing the gap between the
elements. The node at D (the right node of the right element) is fixed at 100◦ and
zero displacement. The conductivity of the left element is 1, while the conductivity
of the right element is 10.

With the coefficient of thermal expansion set to zero for both elements, we displace
the node at A to the right 1 unit. This results in a final gap length of 0.

We solved this simple multiphysics problem using BISON. The results, which have
been verified, are given in Table 3.

As a second test, we set the coefficient of thermal expansion to 1× 10−6 and 1×
10−5 in the left and right elements, respectively. In this case, we displace node A
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Figure 3: Deflection of square clamped plate with distributed load. Center plate
displacement with increasing mesh density is shown in (a). Center plate displace-
ment with increasing pressure is shown in (b) with 100x100x2 elements in the x, y,
and z directions.
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Table 3: Solution for gap heat transfer with a zero coefficient of thermal expansion.

Time
1.0 2.0

Node Displacement Temperature Displacement Temperature
A 0 200 1 200
B 0 190.9143 1 109.0937
C 0 100.9086 0 109.0906
D 0 100 0 100

0.9999 units. This results in a final gap length of approximately zero. In this test,
the JFNK method must solve for the displacement of the interior nodes as well as
their temperatures. The results are in Table 4. It is worthwhile to note that the final
temperatures from the two analyses match.

The feature of this problem that makes it difficult is of course the expression for
the conductance of the gap. The conductivity is a quadratic function of the tem-
perature (though the coefficients are small), making the heat conduction nonlinear.
More onerous is the inverse relationship to the gap size, coupling the mechanical
response to the thermal. The presence of the roughness factors prevents the con-
ductance from reaching infinity at a zero gap length. Still, the solution becomes
very sensitive to small changes in displacement at the gap. This nonlinearity, along
with mechanical contact constraints at the gap, makes the analysis of the inter-
face behavior of systems such as nuclear fuel within cladding (see Section 5.3) a
formidable challenge.

This multiphysics problem is small but highlights an important advantage of JFNK.
The determination, programming, and debugging of the full Jacobian for the gap
heat transfer is not required with JFNK. Specialized elements that couple variables
from different physics are also not required. Despite this, the method retains the
quadratic convergence rate of Newton’s method when the estimated solution is near
the true solution.

5.2 BISON overview

In a typical light water reactor (LWR) nuclear fuel analysis, a stack of ceramic nu-
clear fuel pellets (typically UO2) will heat up, thermally expand, densify, and swell
according to specialized material models and power inputs. These pellets interact
with metal cladding (typically a zirconium alloy), which serves to contain fission
products and transfer heat from the pellets to the exterior coolant. The cladding is
initially slightly larger than the fuel pellets in the radial direction, with a gas-filled
gap between them. At the top portion of the cladding is a plenum, providing space
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Table 4: Solution for gap heat transfer with a non-zero coefficient of thermal ex-
pansion. Note that the final temperatures from Table 3 match.

Time
1.0 2.0

Node Displacement Temperature Displacement Temperature
A 0 200 0.9999 200
B 9.5461×10−5 190.9134 9.9995×10−1 109.0937
C −4.5433×10−6 100.9087 −4.5453×10−5 109.0906
D 0 100 0 100

for the gaseous fission products that will escape from the fuel pellets. See Figure 4.

metallic 
cladding 

plenum 

pellet-
clad gap 

ceramic 
fuel pellet 

Figure 4: Schematic diagram of ceramic fuel pellets, cladding, gap, and plenum for
the upper region of a typical UO2 ceramic fuel rod.

Idaho National Laboratory is developing BISON, a three-dimensional, nonlinear,
parallel multiphysics application based on JFNK and intended primarily for the
analysis of nuclear fuel. For details on nuclear fuel performance analysis and typ-
ical equations used, see [Olander (1976)] and [Williamson (2011a)]. In an early
LWR application, BISON was used to simulate thermomechanics and oxygen dif-
fusion in a single fuel pellet [Newman, Hansen, and Gaston (2009)]. It was demon-
strated that fully-coupled, three dimensional fuel performance solutions were quite
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plausible and efficient using the JFNK method. BISON has also been applied to
TRISO-coated fuel particles (the fuel form used in high temperature gas-cooled
reactors) by investigating coupled heat transfer and fission product transport for a
variety of fuel particle configurations [Williamson (2011b)]. For a detailed paper
on BISON and fuel performance modeling, see [Williamson, Hales, Novascone,
Tonks, Gaston, Permann, Andrs, and Martineau (2012)].

The solid mechanics capabilities of BISON include finite strain kinematics, nonlin-
ear constitutive laws, and contact. BISON automatically couples to nonlinear heat
conduction and can couple to other physics as well, such as meso-scale calculations
that determine thermal conductivity [Tonks, Gaston, Permann, Millett, Hansen, and
Wolf (2010)] and species diffusion models.

All of these capabilities are built upon MOOSE, Multiphysics Object Oriented
Simulation Environment [Gaston, Newman, Hansen, and Lebrun-Grandié (2009)].
MOOSE leverages the advantages of the JFNK method for solving fully coupled
nonlinear systems of equations and presents an interface for specifying the PDEs
to be solved.

By incorporating a select set of third-party libraries, MOOSE supplies a fairly
large set of common finite element software needs. MOOSE relies heavily on
libMesh [Kirk, Peterson, Stogner, and Carey (2006)], a finite element framework
providing parallel I/O services and interfaces to solver packages. In particular,
MOOSE accesses solvers in PETSc [Balay, Buschelman, Eijkhout, Gropp, Kaushik,
Knepley, McInnes, Smith, and Zhang (2004)].

Other applications being built on MOOSE include: a multi-phase flow code with
conjugate heat transfer; a pebble-bed reactor code (heat conduction, transport, and
neutronics); a reactive transport code; and a phase field code for modeling mi-
crostructure evolution [Tonks, Gaston, Millett, Andrs, and Talbot (2012)].

5.3 Description of Nuclear Fuel Analysis Requirements

Generally the most important calculation in nuclear fuel performance simulation is
the fuel centerline temperature. A correct fuel centerline temperature requires many
simulation capabilities, the most fundamental being fully coupled thermomechan-
ics. The source term in the heat conduction equation is volumetric heat generation
in the fuel due to fission. This fission heat source drives the coupled problem. In
addition to fully coupled thermomechanics within the fuel and clad, a capability to
model heat transfer and mechanical contact in the gap between the fuel and the clad
is critical. Finite strain deformation is important since both the fuel and the cladding
swell and contract considerably (especially in abnormal environments) due to ther-
mal expansion and thermal- and irradiation-driven creep. The fuel has additional
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volumetric strains due to fission product swelling and densification. Many of the
thermal and mechanical material models for the fuel and clad depend on tempera-
ture and burnup, where burnup is a measure of the energy extracted from the fuel.
The fission process also produces gases, which must be tracked. Some of this gas
is released into the plenum, resulting in increased pressure loading on the cladding
and decreased thermal conductance of the gap between the fuel and clad. This gap
thermal conductance is a function of gap size, temperature, and gas composition.
The plenum pressure is a function of the evolving internal volume, the amount of
gas (which increases due to fission gas release), and the gas temperature. On the
exterior of the cladding, convective heat transfer carries away the heat, which in
a nuclear reactor is used to generate electricity. It is also important to allow both
steady-state and transient analysis.

Clearly, this is a complex multiphysics application where practical problems are
very large. Thus, the software must run efficiently and make use of parallel com-
puting. The JFNK method is well suited for such problems. To begin, it is based
in iterative methods, which parallelize well. JFNK relies on the overall residual,
which can be built up one piece at a time. Specialized elements (coupling temper-
ature and displacement, for example) are not needed. Perhaps most importantly,
the true Jacobian for this problem would be extremely difficult to derive and ex-
tremely difficult to program. In contrast, we supply block-diagonal approximations
of the Jacobian for preconditioning only. This vastly simplifies the effort required
to develop a fuel performance analysis tool.

5.4 Axisymmetric Discrete-pellet Fuel Rod

The various modeling capabilities of BISON are demonstrated using a 2D axisym-
metric analysis of a simplified fuel rodlet. The assumed geometry is shown in Fig-
ure 5. The problem includes ten individual UO2 pellets, Zr-4 cladding, an initial 80
µm pellet-clad gap, and an open region to simulate the upper plenum. The plenum
volume was set assuming a plenum to fuel length ratio of 0.045, typical for PWR
fuel [Bailly, Ménessier, and Prunier (1999), p. 282]. A uniform convective bound-
ary condition at the clad outer wall simulates heat transfer to the flowing coolant.
Operating conditions typical of a PWR reactor were used, as given in Table 5.

UO2 properties were taken from [Olander (1976), Chap. 10 and 16], while tem-
perature dependent thermal and elastic properties for Zr-4 were taken from MAT-
PRO [Allison, Berna, Chambers, Coryell, Davis, Hagrman, Hagrman, Hampton,
Hohorst, Mason, McComas, McNeil, Miller, Olsen, Reymann, and Siefken (1993)].
The contact surface between the fuel and clad is assumed frictionless. For this
demonstration problem, mesh resolution studies were not performed. Note that re-
sults in which the 10 discrete pellets are simulated with a single smeared pellet are
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Figure 5: Axisymmetric problem geometry, materials, and typical mesh.

shown for comparison.

Results for temperature at the fuel centerline, fuel radial surface, and inner clad
surface for the smeared and discrete-pellet simulations are shown in Figure 6(a).
Following the initial power ramp, the fuel centerline temperature first increases
slightly due to an increase in the fuel-clad gap as a result of fuel densification.
After densification, fuel swelling and clad creep combine to reduce the gap size,
resulting in a decrease in fuel temperature.

Fission gas release begins at a burnup of 20 MWd/kgU, and plots of fission gas
release and the corresponding increase in plenum pressure are shown in Figure 6(b).
As gas is released to the gap a corresponding increase in fuel temperature occurs,
evident in Figure 6(a), due to a reduction in gap gas thermal conductivity as the
fission gas mixes with the helium fill gas. This temperature increase is gradually
reversed by continual gap closure, until the gap is fully closed at approximately 34
MWd/kgU. Fuel temperatures increase from this point on due to decreasing fuel
thermal conductivity with burnup.

The predicted gap width versus burnup, at both a pellet end and axial centerline,
is shown in Figure 6(c). Results from both the discrete and smeared-pellet cal-
culations are shown for comparison. Note that the gap closes earlier at the ends
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Table 5: Input parameters for the axisymmetric problem.

Linear average power (W/cm) 200
Fast neutron flux (n/m2-s) 9.5×1017

Coolant pressure (MPa) 15.5
Coolant temperature (uniform) (K) 530
Coolant convection coefficient (W/m2-K) 7500
Rod fill gas Helium
Fill gas initial pressure (MPa) 2.0
Initial fuel density 95% theoretical
Fuel densification 1% theoretical
Burnup at full densification (MWd/kgU) 5
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Figure 6: Results from the 2D axisymmetric ten pellet rodlet simulation for both
smeared and discrete pellets, where (a) shows temperature plots at three locations
in the fuel and (b) shows the pressure and fission gas release. The gap size is found
in (c).

of the pellet, which is evidence of the so-called “bambooing” effect that has been
observed in LWR fuel rods. This effect can be clearly seen in Figure 7, which com-
pares the cladding radial displacement for the smeared and discrete pellet cases, at
four burnup levels. The multidimensional bambooing effect of the discrete pellets
becomes obvious following pellet-clad contact.

A coupled multiphysics application like BISON is needed to obtain such results.
The fact that JFNK requires only approximate Jacobians (and then only for precon-
ditioning) makes the development of such an analysis tool much more efficient. We
next discuss the effectiveness of our approach for very large analyses.
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5.5 Parallel Scaling

High-fidelity multiphysics modeling is a computationally intense task. As the
number of coupled equations grow the computational burden quickly outpaces the
resources available on a standard workstation. Further, highly resolved, three-
dimensional geometry compounds the issue, necessitating the use of clusters or
even supercomputers.

Efficient utilization of such machines requires a robust parallel algorithm with
a minimum amount of communication and effective load balancing [Farhat and
Lesoinne (1993)]. When utilizing a Newton-Krylov method for implicit solid me-
chanics much of the burden of ensuring efficient parallel execution falls to the linear
solver used. However, the finite difference approximation in JFNK, requiring a full
residual vector computation for each linear iteration of the solver, must also per-
form well in parallel. Any load imbalance will significantly impact overall solve
performance as processors with a lighter load sit idle waiting on the others to finish
their piece of the residual computation. Similarly, communication must be mini-
mized in order to produce an efficient JFNK residual evaluation. If a poor subdo-
main decomposition is chosen, the communication of off-processor residual vector
computations will stall the entire simulation. Finally, the need for forming effec-
tive preconditioners in parallel presents yet another obstacle to efficient solution of
coupled multiphysics problems utilizing JFNK.
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In spite of these issues, solid mechanics with JFNK can be extremely paralleliz-
able. Given a competent partitioning library such as METIS [Karypis and Kumar
(1996)] or Zoltan [Devine, Boman, Heaphy, Hendrickson, and Vaughan (2002)] the
load imbalance and communication during normal finite element residual and Jaco-
bian assembly can be minimized. For preconditioning, the strongly elliptic nature
of the stress divergence equation lends itself well to the use of multigrid methods.
As shown previously in Table 2, the Hypre algebraic multigrid (AMG) precondi-
tioner can be extremely effective. In the context of parallel computation, AMG
methods are attractive for their ability to maintain efficacy as the problem is spread
among more parallel partitions. Many previous researchers have shown the utility
in applying AMG to solid mechanics problems in parallel [Wriggers and Boersma
(1998); Adams, Bayraktar, Keaveny, and Papadopoulos (2004); Lang, Wieners, and
Wittum (2003)].

As mentioned previously, BISON is built using the MOOSE computational frame-
work which, in turn, utilizes the libMesh finite element library. Through libMesh
a number of partitioning libraries including those mentioned above can be easily
applied to create communication minimizing, load balanced mesh partitions for
distributed memory parallelism. MOOSE, following the libMesh convention, han-
dles distributed memory parallel assembly of residuals and Jacobians through the
use of “ghost elements” as described in [Kirk, Peterson, Stogner, and Carey (2006)]
and parallel vectors/matrices supplied by an underlying linear or nonlinear solver
library such as PETSc [Balay, Buschelman, Eijkhout, Gropp, Kaushik, Knepley,
McInnes, Smith, and Zhang (2004)] or Trilinos [Heroux et al. (2008)]. MOOSE
also provides a hybrid-parallelism model consisting of a distributed memory par-
allel model utilizing MPI and a shared memory model through use of threading.
These two models can be used concurrently allowing for matching parallel com-
munication hierarchies to cluster network topologies, enabling efficient utilization
of massively parallel computers.

To demonstrate the efficacy of this approach for solving implicit, fully-coupled
solid mechanics systems in parallel, a high-fidelity, three-dimensional nuclear fuel
simulation has been run on a massively-parallel computer. Two different scaling
studies were performed: a “strong scaling” study where a fixed simulation was run
using successively more processors and a “weak scaling” study where the problem
size is scaled with the number of processors. The strong scaling simulation in-
volved 320 nuclear fuel pellets stacked inside the protective cladding tube as shown
in Figure 8. This simulation utilized approximately 234 million total unknowns for
temperature and displacements in three directions. The weak scaling study used
this same configuration but scaled the number of pellets (and the cladding height)
with the number of processors being used. All of these simulations were performed
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on Idaho National Laboratory’s Fission supercomputer containing over 12,000 pro-
cessing cores.

Figure 8: Full length fuel rod containing 320 nuclear fuel pellets inside cladding an-
alyzed in 3D for strong scaling study. Colors indicate the temperature distrubution
after 14 months in the reactor.

 1000

 10000

 1000  10000

S
o

lv
e
 T

im
e
 (

s
)

Processing Cores

Ideal
320 Pellets Strong
Weak

40 80 160
320

Figure 9: Strong and weak scaling results. The number of pellets in each of the
weak scaling cases is listed in bold type.

Results from these scaling studies are given in Figure 9. It is clear that the use
of preconditioned JFNK for solution of solid mechanics simulations allows for ex-
cellent scaling even out to over 10,000 processors. Both strong and weak scaling
lines follow their respective ideal speedup lines, only significantly diverging over
5,000 processors. Utilization of this parallel scaling capability enables the study of
extremely complex, multiphysics and even multiscale phenomena on high-fidelity,
three-dimensional grids.

6 Summary

While the solution of the equations governing solid mechanics is often obtained via
Newton’s method, this approach can be problematic if the determination, storage,
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or solution cost associated with the Jacobian is high. JFNK methods employ a
finite difference approximation to the Jacobian and offer compelling advantages
for multiphysics modeling and parallel computing. Primary among these is the fact
that the analytic Jacobian need not be determined, coded, and debugged. Despite
this, the quadratic convergence rate of Newton’s method is retained. JFNK is well-
suited for multiphysics analysis since additional variables and/or terms in PDE’s are
easily incorporated. The method naturally accommodates multiple PDEs without
the need to develop specialized elements that couple several unknowns. JFNK is
inherently a fully-coupled approach and does not rely upon fixed point iteration,
operator splitting, or loose coupling. JFNK also works well in a parallel computing
environment.

The finite element code BISON is a parallel, object-oriented, nonlinear solid me-
chanics and multiphysics application that leverages JFNK methods. BISON demon-
strates the robustness and flexibility of JFNK and is capable of solving traditional
solid mechanics problems as well as large multiphysics problems.

Further work is underway to improve and extend BISON’s set of features. In partic-
ular, we are interested in using BISON to study abnormal, 3D nuclear fuel scenarios
which are beyond the reach of traditional nuclear fuel analysis codes.
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