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Application of Homotopy Analysis Method for Periodic
Heat Transfer in Convective Straight Fins with
Temperature-Dependent Thermal Conductivity

Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen 1,2

Abstract: In this paper, the homotopy analysis method is applied to analyze the
heat transfer of the oscillating base temperature processes occurring in a convective
rectangular fin with variable thermal conductivity. This method is a powerful and
easy-to-use tool for non-linear problems and it provides us with a simple way to
adjust and control the convergence region of solution series. Without the need
of iteration, the obtained solution is in the form of an infinite power series and
the results indicated that the series has high accuracy by comparing it with those
generated by the complex combination method.
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Nomenclature

Ac cross-sectional area of the fin m2

B dimensionless frequency of oscillation ωb2/α

b fin length m
C specific heat J/kg ·K
C1 integral constant
C2 integral constant
G dimensionless fin parameter [Phb2/kaAc]1/2

h heat transfer coefficient W/m2 ·K
k thermal conductivity W/m ·K
L auxiliary linear operator
N non-linear operator
P fin perimeter m
Q dimensionless temperature gradient
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S dimensionless amplitude of oscillation
T temperature K
Tbm average temperature K
t time s
w fin thickness m
x axial distance measured from fin tip
X dimensionless distance x/b

Greek symbols

α thermal diffusivity m2/s
β slop of the thermal conductivity-temperature divided by the intercept ka

ε thermal conductivity parameter (kb−ka)/ka

η fin efficiency
h̄ non-zero auxiliary parameter
θ dimensionless temperature (T −Ta)/(Tbm−Ta)
ρ density kg/m3

τ dimensionless time αt/b2

ω frequency 1/s

Subscripts

a ambient
b base of the fin
m number of terms in the series

1 Introduction

In the real world, almost every natural phenomenon arises in a non-linear system.
Still, we are far less understand ing of non-linear systems than linear ones. Non-
linear problems are complicated and unpredictable, making them difficult to solve
precisely. Even if an exact solution is obtained, the necessary calculations may
be too complicated to be practical. Therefore, researchers make endless efforts
try to find ways to solve them or to decrease the error of the solution, such as
the perturbation method [Cole (1986); Nayfeh (1981, 1985)], Lyapunov’s artificial
small parameter method [Lyapunov (1992)], the δ -expansion method [Karmishin,
Zhukov, and Kolosov (1990)], Adomian’s decomposition method [Adomian (1976,
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1984, 1994)] and homotopy analysis method [Liao (2003)] etc. Thanks to these
proposed methods, we can solve lots of non-linear problems efficiently.

Among scientific issues, heat transfer problems are often very important because
they are closely related to our lives. Extended surfaces (fins) have been especially
widely used in applications to enhance the heat transfer between a solid surface
and its surroundings. [Hung and Appl (1967)] presented the performance of a
straight fin with temperature-dependent conductivity and internal heat generation.
[Yang (1972)] solved the heat transfer in straight fins with the method of complex
combination and obtained a closed form solution. This was further extended to
an annular fin and temperature-dependent conductivity by [Aziz (1975)]. Later,
[Aziz and Enamul Hug (1975)] and [Krane (1976)] used the regular perturbation
method and the numerical solution method to analyze a straight convecting fin with
temperature-dependent thermal conductivity. Recently, [Chiu and Chen (2002)] ap-
plied Adomian’s decomposition method (ADM) to determine the performance of a
longitudinal fin with a constant heat transfer coefficient and variable thermal con-
ductivity. [Abbasbandy (2006)] investigated non-linear equations arising in heat
transfer based on homotopy analysis method (HAM) and showed the validity and
great potential of the HAM for non-linear problems in science and engineering.
In addition, [Mueller Jr. and Abu-Mulaweh (2006)] predicted the temperature in
a long horizontal fin rod with natural convection and radiation conditions. The
results show that the heat loss due to radiation is typically 15-20% of the total.
While [Coşkun and Atay (2008)] investigated the fin efficiency with variational it-
eration method (VIM). The authors observed that the value of thermo-geometric
fin parameter is another factor affecting the behavior of the solution. Both [Inc
(2008)] and [Domairry and Fazeli (2009)] studied the fin efficiency of convective
straight fins with temperature-dependent thermal conductivity and showed that the
obtained solution agreed well with both the exact solution and ADM’s. Further-
more, fins are also used for some engineering applications which often operate
under periodic thermal conditions, such as electronic components, solar collectors
and internal combustion engines etc. [Yang, Chien, and Chen (2008)] researched
the periodic base temperature in convective longitudinal fins with the double de-
composition method. Their results showed that the double decomposition solution
has more advantages than the Adomian decomposition solution.

Regarding the view mentioned above, it’s beneficial for us to discuss practical situ-
ations. In this paper, we are going to analyze the fin’s heat transfer of the oscillating
base temperature by using a powerful method (HAM). The basic idea of the HAM
will be first introduced in the next section, and also the results of why HAM shows
performance that equals the complex combination method.
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2 Basic idea of HAM

In this section, we apply the homotopy analysis method to the discussed problem.
To illustrate the basic ideas of this method, we consider the following general non-
linear differential equation

N [u(x, t)] = 0 (1)

where N is a non-linear operator, x and t denote independent variables, and u(x, t)
is an unknown function, respectively. For simplicity, we ignore all boundary and
initial conditions, which can be treated in the similar way. By means of HAM, we
first construct the so-called zero-order deformation equation

(1− p)L [φ (x, t; p)−u0 (x, t)] = ph̄H (x, t)N [φ (x, t; p)] , (2)

where p ∈ [0,1] is the embedding parameter, h̄ is a non-zero auxiliary parameter,
H (x, t) is a non-zero auxiliary function, L is an auxiliary linear operator, u0 (x, t)
is an initial guess of u(x, t) and φ (x, t; p) is an unknown function, respectively.
Obviously, when p = 0 and p = 1 it holds

φ (x, t; 0) = u0 (x, t) , (3)

φ (x, t; 1) = u(x, t) , (4)

respectively. The solution φ (x, t; p) varies from the initial guess u0 (x, t) to the
solution u(x, t) as p increases from 0 to 1. [Liao (2003)] expand ed φ (x, t; p) in
Taylor series with respect to p, one has

φ (x, t; p) = u0 (x, t)+
+∞

∑
m=1

um (x, t) pm, (5)

where

um (x, t) =
1

m!
∂ mφ (x, t; p)

∂ pm . (6)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h̄ and the
auxiliary function H (x, t) are properly chosen, the series (5) converges at p = 1, as

u(x, t) = u0 (x, t)+
+∞

∑
m=1

um (x, t). (7)

Define the vector

−→u m = {u0 (x, t) ,u1 (x, t) , · · · ,um (x, t)}
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Differentiating Eq.(2) m times with respect to the embedding parameter p and then
dividing them by m! and finally setting p = 0, we have the so-called mth-order
deformation equation

L [um (x, t)−χ (m)um−1 (x, t)] = h̄H (x, t)R (−→u m−1) , (8)

where

R (−→u m−1) =
1

(m−1)!
∂ m−1N [φ (x, t; p)]

∂ pm−1

∣∣∣∣
p=0

, (9)

and χ (m) =

{
0 m≤ 1
1 m > 1

.

It should be emphasized that um (x, t) for m≥ 1 is governed by the linear equation
(8) with the boundary conditions that come from the original problem, which can be
easily solved by symbolic computation software such as Maple and Mathematica.

3 The governing equation and boundary condition

As Fig. 1 shows, a rectangular fin with length, b, and thickness, w, is considered.
The fin surface exposed to a convective environment at temperature Ta and heat
transfer coefficient, h, is assumed to be uniform. The thermal conductivity of the
fin material, k, is assumed to vary as a linear function of the temperature, i.e.

k(T ) = ka [1+β (T −Ta)] ,

where ka is the thermal conductivity at ambient temperature and β is the slope of
the thermal conductivity temperature curve divided by the intercept, ka.

 
Figure 1: Fin geometry and base temperature oscillation
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The fin tip is assumed to be adiabatic while the base temperature Tb is allowed to
vary periodically around Tbm with frequency ω . The axial distance x is measured
from the fin tip in figure 1. According to [Lau and Tan (1973)], one can neglect
the effect of heat conduction in y-direction if the fin’s Biot number, hw/k, is less
than 0.1. In the one-dimensional system, the energy equation and the boundary
conditions are

∂

∂x

(
k

∂T
∂x

)
− hP

Ac
(T −Ta) = ρC

∂T
∂ t

, (10)

∂T
∂x

∣∣∣∣
x=0

= 0, (11)

T (b, t) = Tb = Tbm +(Tbm−Ta)Scosωt. (12)

By using the following dimensionless variables,

θ =
T −Ta

Tbm−Ta
, X =

x
b
, ε =

kb−ka

ka
= β (Tbm−Ta) ,

G2 =
Phb2

kaAc
, τ =

αt
b2 , B =

ωb2

α
.

We have

(1+ εθ)
∂ 2θ

∂X2 + ε

(
∂θ

∂X

)2

−G2 =
∂θ

∂τ
, (13)

∂θ

∂X

∣∣∣∣
X=0

= 0, (14)

θ (1,τ) = 1+ScosBτ, (15)

where S is the dimensionless amplitude of oscillation.

4 Analysis

Since the governing equation (13) is a partial differential equation, it will be dif-
ficult for us to choose a proper base function, which includes two independent
variables to express the solution. So, here we temporarily take the variable τ as a
constant and choose θ0 (X ,τ) = 1+ScosBτ to be our initial guess. In this way, we
can express the solution by a set of base functions{

amX2m
∣∣m = 0,1,2,3, · · ·

}
, (16)



Application of Homotopy Analysis Method 161

which still obey the rule of solution express [Liao (2003)]. According to (13), we
choose the linear operator

L [φ (X ,τ; p)] =
∂ 2φ (X ,τ; p)

∂X2 , (17)

with the property

L [C1X +C2] = 0,

where the integral constant C1 and C2 are determined by the boundary conditions.
From Eq. (13), we define a non-linear operator

N [φ (X ,τ; p)] = [1+ εφ (X ,τ; p)]
∂ 2φ (X ,τ; p)

∂X2 + ε

(
∂φ (X ,τ; p)

∂X

)2

−G2

− ∂φ (X ,τ; p)
∂τ

. (18)

Then, from Eq. (9), we have

Rm (θm−1) =
∂ 2θm−1

∂X2 −G2
θm−1 + ε

∂

∂X

(
m−1

∑
j=0

∂

∂X
θm−1− j ·θ j

)
− ∂θm−1

∂τ
.

To obey both the rule of solution expression and the rule of the coefficient ergodic-
ity, the corresponding auxiliary function should be determined uniquely H (X ,τ) =
1. Now, the solution of the mth-order deformation equation (8) for m≥ 1 becomes

θm = χ (m)θm−1 + h̄
∫ X

0

∫ X

0
H (X ,τ) ·Rm (θm−1)dXdX +C1X +C2. (19)

Therefore, the first three iterates are expressed as

θ0 (X ,τ) = 1+ScosBτ

θ1 (X ,τ)=−1
2

h̄
[
X2G2 (1+ScosBτ)−X2SBsinBτ−G2 (1+ScosBτ)+SBsinBτ

]

θ2 (X ,τ) =− 1
24

h̄2X4 [SB2 cosBτ−SG4 cosBτ +2SBG2 sinBτ−G4]
− 1

24
h̄X4 [−12SBh̄G2 sinBτ +24εSh̄G2 cosBτ + · · ·

]
+ · · ·
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Summing these terms, it is observed that

ψm (X ,τ) =
m−1

∑
n=0

θn = θ0 +θ1 +θ2 + · · ·+θm−1. (20)

Thus, components of θ are determined and written as a m-terms approximation.
With a proper chosen of auxiliary parameter h̄, it will converge to θ as m→ ∞.
Here, we take m to be seven. The temperature distribution along the fin axial and
fin performance can be easily performed by using Eq.(20).

5 Results and discussion

While h̄ is a convergence-controller parameter, we first plot the so-called h̄-curve
of ψ

′′
7 (0,0) in figure 2. From the figure, it’s easy to discover the valid domain of

h̄(h̄ ∈ [−1.1,−0.3]) for the present problem. Therefore, we choose h̄ = −0.6 and
consider the same conditions in [Yang (1972)] that is defined as the thermal con-
ductivity parameter ε = 0, amplitude parameter S = 0.1 and frequency parameter
B = 1.0. Fig. 3 shows the axial temperature distribution at G = 1.0. A perfect
match between the HAM results and [Yang (1972)] is observed, which confirms
the validity of the homotopy analysis method. Obviously, the present method gives
quick and accurate results instead of complicated numerical integration and itera-
tion procedures.

Consequently, we further discuss the effects on the fin for different parameters with
G = 0.3,0.5,1.0 and ε = 0, ±0.2, ±0.4. Figures 4a-4c show the non-dimensional
temperature distribution along with the fin surface for different values of G = 0.3,
G = 0.5, G = 1.0 with ε varying from −0.4 to 0.4, respectively. The mean tem-
perature increases with the increasing ε of the fin. This is because an improvement
in thermal conductivity is obtained for a raise of ε and a greater heat transfer will
be more easily transferred to the fin tip. In addition, it could be found that under a
fixed value of ε , the temperature distribution at fin tip decreases with fin parameter
G increasing. This is due to the larger fin parameter, the stronger convection heat
transfer around the fin surface.

The temperature distributions at the fin tip (X = 0) with the variable parameters
ε and G are shown in Fig. 5a-5c. At a fixed value of G, the variation of thermal
conductivity ε affects both the amplitude and phase angle of temperature variation.
The decreasing ε decreases the amplitude but increases the phase angle. And these
become obvious for the lower fin parameter.

Both the fin efficiency and the total energy transferred from the fin base are of
great interest in engineering. The fin efficiency can be defined as the ratio of the
actual heat transfer to heat transfer from the fin surface at base temperature η =
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Figure 2: The h̄-curve for 7th-order approximation of θ

′′
(0,0)

Figure 3: The variation relationships of θ and X for several assigned values of Bτ
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(a)

 
(b)

 
(c)

Figure 4: (a) Effect of parameter ε and Bτ on the axial temperature distribution for
G = 1.0. (b) Effect of parameter ε and Bτ on the axial temperature distribution for
G = 0.5. (c) Effect of parameter ε and Bτ on the axial temperature distribution for
G = 0.3
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(a)

 
(b)

 
(c)

Figure 5: (a) Effect of parameter ε on the temperature oscillation at fin tip (X = 0)
for G = 1.0. (b) Effect of parameter ε on the temperature oscillation at fin tip
(X = 0) for G = 0.5. (c) Effect of parameter ε on the temperature oscillation at fin
tip (X = 0) for G = 0.3.
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(a)

 
(b)

 
(c)

Figure 6: (a) The variation of the base temperature gradient Qb with parameter ε at
G = 1.0. (b) The variation of the base temperature gradient Qb with parameter ε at
G = 0.5. (c) The variation of the base temperature gradient Qb with parameter ε at
G = 0.3
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(a)

 
(b)

 
(c)

Figure 7: (a) Effect of parameter ε on instantaneous fin efficiency at G = 1.0. (b)
Effect of parameter ε on instantaneous fin efficiency at G = 0.5. (c) Effect of
parameter ε on instantaneous fin efficiency at G = 0.3



168 Copyright © 2012 Tech Science Press CMES, vol.84, no.2, pp.155-169, 2012

∫ 1
0 θ (X ,τ)dX and the total energy transferred from the fin base can be indicated

by the dimensionless temperature gradient Qb with the definition Qb = ∂θ

∂X

∣∣∣
X=1

.
Fig. 6a-6c illustrate the effects of parameter ε with G = 1.0,0.5,0.3 on the total
energy transferred. The amplitude of oscillation and phase angle are affected by the
changing ε and G. Under a fixed parameter G, the parameter ε decreases, causing
Qb increase. Note that the phase angle changes significantly as ε varies from −0.4
to 0.4. Fig. 7a-7c show the time-dependent fin efficiency under different values of ε

and G. The amplitude of the oscillation increases significantly as the parameter G is
reduced. In addition, for higher value of parameter ε lead to a better fin efficiency.

6 Conclusions

In this work, the HAM is applied to a non-linear, convective, rectangular fin with
variable thermal conductivity and the oscillation base temperature problem. The
results show that the HAM is effective and reliable. Different from all other an-
alytic methods, the obtained solution offers many advantages over other methods.
It provides us with a simple way to adjust and control the convergence region of
solution series by introducing an auxiliary parameter h̄. Such a powerful method
might be applied to solve other strongly non-linear or linear problems in science
and engineering.
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